Optimizing the Preoperative Preparation of Sarcopenic Older People: The Role of Prehabilitation and Nutritional Supplementation before Knee Arthroplasty
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
4.1. Sarcopenia in Elderly Individuals with Knee Osteoarthritis
4.2. Metabolic and Nutritional Changes
4.3. Dietary Supplementation against Sarcopenia in Knee Osteoarthritis
4.4. Dietary Supplementation to Improve Muscle Mass
4.5. Prehabilitation: An Essential Step before Orthopedic Surgery
5. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kakehi, S.; Wakabayashi, H.; Inuma, H.; Inose, T.; Shioya, M.; Aoyama, Y.; Hara, T.; Uchimura, K.; Tomita, K.; Okamoto, M.; et al. Rehabilitation Nutrition and Exercise Therapy for Sarcopenia. World J. Mens. Health 2022, 40, 1. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Landi, F.; Schneider, S.M.; Zuniga, C.; Arai, H.; Boirie, Y.; Chen, L.-K.; Fielding, R.A.; Martin, F.C.; Michel, J.-P.; et al. Prevalence of and Interventions for Sarcopenia in Ageing Adults: A Systematic Review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014, 43, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Pegreffi, F.; Balestra, A.; De Lucia, O.; Smith, L.; Barbagallo, M.; Veronese, N. Prevalence of Sarcopenia in Knee Osteoarthritis: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 1532. [Google Scholar] [CrossRef] [PubMed]
- Koh, F.H.; Chua, J.M.; Tan, J.L.; Foo, F.-J.; Tan, W.J.; Sivarajah, S.S.; Ho, L.M.L.; Teh, B.-T.; Chew, M.-H. Paradigm Shift in Gastrointestinal Surgery—Combating Sarcopenia with Prehabilitation: Multimodal Review of Clinical and Scientific Data. World J. Gastrointest. Surg. 2021, 13, 734–755. [Google Scholar] [CrossRef] [PubMed]
- Chabot, K.; Gillis, C.; Carli, F. Prehabilitation: Metabolic Considerations. Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Iida, Y.; Yamazaki, T.; Arima, H.; Kawabe, T.; Yamada, S. Predictors of Surgery-Induced Muscle Proteolysis in Patients Undergoing Cardiac Surgery. J. Cardiol. 2016, 68, 536–541. [Google Scholar] [CrossRef]
- Cisterna, B.; Malatesta, M. Molecular and Structural Alterations of Skeletal Muscle Tissue Nuclei during Aging. Int. J. Mol. Sci. 2024, 25, 1833. [Google Scholar] [CrossRef]
- Stevens, J.E.; Mizner, R.L.; Snyder-Mackler, L. Quadriceps Strength and Volitional Activation before and after Total Knee Arthroplasty for Osteoarthritis. J. Orthop. Res. 2003, 21, 775–779. [Google Scholar] [CrossRef]
- Rice, D.A.; McNair, P.J. Quadriceps Arthrogenic Muscle Inhibition: Neural Mechanisms and Treatment Perspectives. Semin. Arthritis Rheum. 2010, 40, 250–266. [Google Scholar] [CrossRef]
- Cannataro, R.; Carbone, L.; Petro, J.L.; Cione, E.; Vargas, S.; Angulo, H.; Forero, D.A.; Odriozola-Martínez, A.; Kreider, R.B.; Bonilla, D.A. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. Int. J. Mol. Sci. 2021, 22, 9724. [Google Scholar] [CrossRef]
- Evans, W.J.; Guralnik, J.; Cawthon, P.; Appleby, J.; Landi, F.; Clarke, L.; Vellas, B.; Ferrucci, L.; Roubenoff, R. Sarcopenia: No Consensus, No Diagnostic Criteria, and No Approved Indication—How Did We Get Here? GeroScience 2023, 46, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [PubMed]
- Buccheri, E.; Dell’Aquila, D.; Russo, M.; Chiaramonte, R.; Musumeci, G.; Vecchio, M. Can Artificial Intelligence Simplify the Screening of Muscle Mass Loss? Heliyon 2023, 9, e16323. [Google Scholar] [CrossRef] [PubMed]
- Mangano, G.R.A.; Avola, M.; Blatti, C.; Caldaci, A.; Sapienza, M.; Chiaramonte, R.; Vecchio, M.; Pavone, V.; Testa, G. Non-Adherence to Anti-Osteoporosis Medication: Factors Influencing and Strategies to Overcome It. A Narrative Review. J. Clin. Med. 2022, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A Scale for the Quality Assessment of Narrative Review Articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef]
- Briguglio, M.; Hrelia, S.; Malaguti, M.; De Vecchi, E.; Lombardi, G.; Banfi, G.; Riso, P.; Porrini, M.; Romagnoli, S.; Pino, F.; et al. Oral Supplementation with Sucrosomial Ferric Pyrophosphate Plus L-Ascorbic Acid to Ameliorate the Martial Status: A Randomized Controlled Trial. Nutrients 2020, 12, 386. [Google Scholar] [CrossRef]
- Bruyere, O.; Pavelka, K.; Rovati, L.C.; Gatterová, J.; Giacovelli, G.; Olejarová, M.; Deroisy, R.; Reginster, J.Y. Total Joint Replacement after Glucosamine Sulphate Treatment in Knee Osteoarthritis: Results of a Mean 8-Year Observation of Patients from Two Previous 3-Year, Randomised, Placebo-Controlled Trials. Osteoarthr. Cartil. 2008, 16, 254–260. [Google Scholar] [CrossRef]
- Cao, S.-L.; Ren, Y.; Li, Z.; Lin, J.; Weng, X.-S.; Feng, B. Clinical Effectiveness of 3 Days Preoperative Treatment with Recombinant Human Erythropoietin in Total Knee Arthroplasty Surgery: A Clinical Trial. QJM Int. J. Med. 2020, 113, 245–252. [Google Scholar] [CrossRef]
- Choi, K.Y.; Koh, I.J.; Kim, M.S.; Kim, C.; In, Y. Intravenous Ferric Carboxymaltose Improves Response to Postoperative Anemia Following Total Knee Arthroplasty: A Prospective Randomized Controlled Trial in Asian Cohort. J. Clin. Med. 2022, 11, 2357. [Google Scholar] [CrossRef]
- Dreyer, H.C.; Strycker, L.A.; Senesac, H.A.; Hocker, A.D.; Smolkowski, K.; Shah, S.N.; Jewett, B.A. Essential Amino Acid Supplementation in Patients Following Total Knee Arthroplasty. J. Clin. Investig. 2013, 123, 4654–4666. [Google Scholar] [CrossRef]
- Long, G.; Zhang, G.Q. Effects of Adenosine Triphosphate (ATP) on Early Recovery After Total Knee Arthroplasty (TKA): A Randomized, Double-Blind, Controlled Study. J. Arthroplast. 2014, 29, 2347–2351. [Google Scholar] [CrossRef] [PubMed]
- Mundy, G.M.; Birtwistle, S.J.; Power, R.A. The Effect of Iron Supplementation on the Level of Haemoglobin after Lower Limb Arthroplasty. J. Bone Jt. Surgery. Br. Vol. 2005, 87-B, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Muyskens, J.B.; Foote, D.M.; Bigot, N.J.; Strycker, L.A.; Smolkowski, K.; Kirkpatrick, T.K.; Lantz, B.A.; Shah, S.N.; Mohler, C.G.; Jewett, B.A.; et al. Cellular and Morphological Changes with EAA Supplementation before and after Total Knee Arthroplasty. J. Appl. Physiol. 2019, 127, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Nishizaki, K.; Ikegami, H.; Tanaka, Y.; Imai, R.; Matsumura, H. Effects of Supplementation with a Combination of β-Hydroxy-β-Methyl Butyrate, L-Arginine, and L-Glutamine on Postoperative Recovery of Quadriceps Muscle Strength after Total Knee Arthroplasty. Asia Pac. J. Clin. Nutr. 2015, 24, 412–420. [Google Scholar] [CrossRef]
- Ueyama, H.; Kanemoto, N.; Minoda, Y.; Taniguchi, Y.; Nakamura, H. 2020 Chitranjan S. Ranawat Award: Perioperative Essential Amino Acid Supplementation Suppresses Rectus Femoris Muscle Atrophy and Accelerates Early Functional Recovery Following Total Knee Arthroplasty: A Prospective Double-Blind Randomized Controlled Trial. Bone Jt. J. 2020, 102-B, 10–18. [Google Scholar] [CrossRef]
- Ueyama, H.; Kanemoto, N.; Minoda, Y.; Taniguchi, Y.; Nakamura, H. Perioperative Essential Amino Acid Supplementation Facilitates Quadriceps Muscle Strength and Volume Recovery After TKA: A Double-Blinded Randomized Controlled Trial. J. Bone Jt. Surg. 2023, 105, 345–353. [Google Scholar] [CrossRef]
- Weintraub, M.T.; Guntin, J.; Yang, J.; DeBenedetti, A.; Karas, V.; Della Valle, C.J.; Nam, D. Vitamin D3 Supplementation Prior to Total Knee Arthroplasty: A Randomized Controlled Trial. J. Arthroplast. 2023, 38, S114–S119. [Google Scholar] [CrossRef]
- Yoo, S.; Bae, J.; Ro, D.H.; Han, H.-S.; Lee, M.C.; Park, S.-K.; Lim, Y.-J.; Bahk, J.-H.; Kim, J.-T. Efficacy of Intra-Operative Administration of Iron Isomaltoside for Preventing Postoperative Anaemia after Total Knee Arthroplasty: A Randomised Controlled Trial. Eur. J. Anaesthesiol. 2021, 38, 358–365. [Google Scholar] [CrossRef]
- Lingard, E.A.; Katz, J.N.; Wright, E.A.; Sledge, C.B. Predicting the Outcome of Total Knee Arthroplasty. J. Bone Jt. Surg. 2004, 86, 2179–2186. [Google Scholar] [CrossRef]
- Sharma, L.; Sinacore, J.; Daugherty, C.; Kuesis, D.T.; Stulberg, S.D.; Lewis, M.; Baumann, G.; Chang, R.W. Prognostic Factors for Functional Outcome of Total Knee Replacement: A Prospective Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1996, 51A, M152–M157. [Google Scholar] [CrossRef]
- Mizner, R.L.; Petterson, S.C.; Stevens, J.E.; Axe, M.J.; Snyder-Mackler, L. Preoperative Quadriceps Strength Predicts Functional Ability One Year after Total Knee Arthroplasty. J. Rheumatol. 2005, 32, 1533–1539. [Google Scholar] [PubMed]
- Zeni, J.A.; Snyder-Mackler, L. Preoperative Predictors of Persistent Impairments During Stair Ascent and Descent After Total Knee Arthroplasty. J. Bone Jt. Surg.-Am. Vol. 2010, 92, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Maniar, R.N.; Patil, A.M.; Maniar, A.R.; Gangaraju, B.; Singh, J. Effect of Preoperative Vitamin D Levels on Functional Performance after Total Knee Arthroplasty. Clin. Orthop. Surg. 2016, 8, 153. [Google Scholar] [CrossRef]
- Kong, Y.; Han, M.; Lee, M.; Kim, E.H.; Jung, I.; Park, K.K. The Association of Calcium and Vitamin D Use With Implant Survival of Total Knee Arthroplasty: A Nationwide Population-Based Cohort Study. J. Arthroplast. 2021, 36, 542–549.e3. [Google Scholar] [CrossRef]
- Hegde, V.; Arshi, A.; Wang, C.; Buser, Z.; Wang, J.C.; Jensen, A.R.; Adams, J.S.; Zeegen, E.N.; Bernthal, N.M. Preoperative Vitamin D Deficiency Is Associated With Higher Postoperative Complication Rates in Total Knee Arthroplasty. Orthopedics 2018, 41. [Google Scholar] [CrossRef] [PubMed]
- Topp, R.; Swank, A.M.; Quesada, P.M.; Nyland, J.; Malkani, A. The Effect of Prehabilitation Exercise on Strength and Functioning After Total Knee Arthroplasty. PMR 2009, 1, 729–735. [Google Scholar] [CrossRef]
- Swank, A.M.; Kachelman, J.B.; Bibeau, W.; Quesada, P.M.; Nyland, J.; Malkani, A.; Topp, R.V. Prehabilitation Before Total Knee Arthroplasty Increases Strength and Function in Older Adults With Severe Osteoarthritis. J. Strength. Cond. Res. 2011, 25, 318–325. [Google Scholar] [CrossRef]
- Huber, E.O.; Roos, E.M.; Meichtry, A.; De Bie, R.A.; Bischoff-Ferrari, H.A. Effect of Preoperative Neuromuscular Training (NEMEX-TJR) on Functional Outcome after Total Knee Replacement: An Assessor-Blinded Randomized Controlled Trial. BMC Musculoskelet. Disord. 2015, 16, 101. [Google Scholar] [CrossRef]
- Kim, S.; Hsu, F.-C.; Groban, L.; Williamson, J.; Messier, S. A Pilot Study of Aquatic Prehabilitation in Adults with Knee Osteoarthritis Undergoing Total Knee Arthroplasty—Short Term Outcome. BMC Musculoskelet. Disord. 2021, 22, 388. [Google Scholar] [CrossRef]
- Brown, K.; Brosky, J.A.; Topp, R.; Lajoie, A.S. Prehabilitation and Quality of Life Three Months after Total Knee Arthroplasty: A Pilot Study. Percept. Mot. Ski. 2012, 115, 765–774. [Google Scholar] [CrossRef]
- Zheng, Y.; Huang, Z.; Dai, L.; Liu, Y.; Chen, Y.; Zhang, W.; Lin, R. The Effect of Preoperative Rehabilitation Training on the Early Recovery of Joint Function after Artificial Total Knee Arthroplasty and Its Effect Evaluation. J. Healthc. Eng. 2022, 3860991. [Google Scholar] [CrossRef]
- Huang, S.-W.; Chen, P.-H.; Chou, Y.-H. Effects of a Preoperative Simplified Home Rehabilitation Education Program on Length of Stay of Total Knee Arthroplasty Patients. Orthop. Traumatol. Surg. Res. 2012, 98, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Matassi, F.; Duerinckx, J.; Vandenneucker, H.; Bellemans, J. Range of Motion after Total Knee Arthroplasty: The Effect of a Preoperative Home Exercise Program. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Jahic, D.; Omerovic, D.; Tanovic, A.; Dzankovic, F.; Campara, M. The Effect of Prehabilitation on Postoperative Outcome in Patients Following Primary Total Knee Arthroplasty. Med. Arch. 2018, 72, 439. [Google Scholar] [CrossRef] [PubMed]
- Cavill, S.; McKenzie, K.; Munro, A.; McKeever, J.; Whelan, L.; Biggs, L.; Skinner, E.H.; Haines, T.P. The Effect of Prehabilitation on the Range of Motion and Functional Outcomes in Patients Following the Total Knee or Hip Arthroplasty: A Pilot Randomized Trial. Physiother. Theory Pract. 2016, 32, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Mat Eil-Ismail, M.; Sharifudin, M.; Ahmed Shokri, A.; Ab Rahman, S. Preoperative Physiotherapy and Short-Term Functional Outcomes of Primary Total Knee Arthroplasty. Singap. Med. J. 2016, 57, 138–143. [Google Scholar] [CrossRef]
- Doiron-Cadrin, P.; Kairy, D.; Vendittoli, P.-A.; Lowry, V.; Poitras, S.; Desmeules, F. Feasibility and Preliminary Effects of a Tele-Prehabilitation Program and an in-Person Prehablitation Program Compared to Usual Care for Total Hip or Knee Arthroplasty Candidates: A Pilot Randomized Controlled Trial. Disabil. Rehabil. 2020, 42, 989–998. [Google Scholar] [CrossRef]
- Beaupre, L.A.; Lier, D.; Davies, D.M.; Johnston, D.B.C. The Effect of a Preoperative Exercise and Education Program on Functional Recovery, Health Related Quality of Life, and Health Service Utilization Following Primary Total Knee Arthroplasty. J. Rheumatol. 2004, 31, 1166–1173. [Google Scholar]
- Gränicher, P.; Stöggl, T.; Fucentese, S.F.; Adelsberger, R.; Swanenburg, J. Preoperative Exercise in Patients Undergoing Total Knee Arthroplasty: A Pilot Randomized Controlled Trial. Arch. Physiother. 2020, 10, 13. [Google Scholar] [CrossRef]
- Villadsen, A.; Overgaard, S.; Holsgaard-Larsen, A.; Christensen, R.; Roos, E.M. Postoperative Effects of Neuromuscular Exercise Prior to Hip or Knee Arthroplasty: A Randomised Controlled Trial. Ann. Rheum. Dis. 2014, 73, 1130–1137. [Google Scholar] [CrossRef]
- Franz, A.; Ji, S.; Bittersohl, B.; Zilkens, C.; Behringer, M. Impact of a Six-Week Prehabilitation With Blood-Flow Restriction Training on Pre- and Postoperative Skeletal Muscle Mass and Strength in Patients Receiving Primary Total Knee Arthroplasty. Front. Physiol. 2022, 13, 881484. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, J.; Casaña, J.; Ezzatvar, Y.; Jakobsen, M.D.; Sundstrup, E.; Andersen, L.L. High-Intensity Preoperative Training Improves Physical and Functional Recovery in the Early Post-Operative Periods after Total Knee Arthroplasty: A Randomized Controlled Trial. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 2864–2872. [Google Scholar] [CrossRef] [PubMed]
- Skoffer, B.; Maribo, T.; Mechlenburg, I.; Hansen, P.M.; Søballe, K.; Dalgas, U. Efficacy of Preoperative Progressive Resistance Training on Postoperative Outcomes in Patients Undergoing Total Knee Arthroplasty. Arthritis Care Res. 2016, 68, 1239–1251. [Google Scholar] [CrossRef] [PubMed]
- Skoffer, B.; Maribo, T.; Mechlenburg, I.; Korsgaard, C.G.; Søballe, K.; Dalgas, U. Efficacy of Preoperative Progressive Resistance Training in Patients Undergoing Total Knee Arthroplasty: 12-Month Follow-up Data from a Randomized Controlled Trial. Clin. Rehabil. 2020, 34, 82–90. [Google Scholar] [CrossRef]
- Domínguez-Navarro, F.; Silvestre-Muñoz, A.; Igual-Camacho, C.; Díaz-Díaz, B.; Torrella, J.V.; Rodrigo, J.; Payá-Rubio, A.; Roig-Casasús, S.; Blasco, J.M. A Randomized Controlled Trial Assessing the Effects of Preoperative Strengthening plus Balance Training on Balance and Functional Outcome up to 1 Year Following Total Knee Replacement. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 838–848. [Google Scholar] [CrossRef]
- Aytekin, E.; Sukur, E.; Oz, N.; Telatar, A.; Eroglu Demir, S.; Sayiner Caglar, N.; Ozturkmen, Y.; Ozgonenel, L. The Effect of a 12 Week Prehabilitation Program on Pain and Function for Patients Undergoing Total Knee Arthroplasty: A Prospective Controlled Study. J. Clin. Orthop. Trauma. 2019, 10, 345–349. [Google Scholar] [CrossRef]
- Tungtrongjit, Y.; Weingkum, P.; Saunkool, P. The Effect of Preoperative Quadriceps Exercise on Functional Outcome after Total Knee Arthroplasty. J. Med. Assoc. Thai 2012, 95 (Suppl. S10), S58–S66. [Google Scholar] [PubMed]
- Soeters, R.; White, P.B.; Murray-Weir, M.; Koltsov, J.C.B.; Alexiades, M.M.; Ranawat, A.S. Preoperative Physical Therapy Education Reduces Time to Meet Functional Milestones After Total Joint Arthroplasty. Clin. Orthop. Relat. Res. 2018, 476, 40–48. [Google Scholar] [CrossRef]
- Soni, A.; Joshi, A.; Mudge, N.; Wyatt, M.; Williamson, L. Supervised Exercise plus Acupuncture for Moderate to Severe Knee Osteoarthritis: A Small Randomised Controlled Trial. Acupunct. Med. 2012, 30, 176–181. [Google Scholar] [CrossRef]
- Williamson, L.; Wyatt, M.R.; Yein, K.; Melton, J.T.K. Severe Knee Osteoarthritis: A Randomized Controlled Trial of Acupuncture, Physiotherapy (Supervised Exercise) and Standard Management for Patients Awaiting Knee Replacement. Rheumatology 2007, 46, 1445–1449. [Google Scholar] [CrossRef]
- Thornton, M.; Sim, M.; Kennedy, M.A.; Blodgett, K.; Joseph, R.; Pojednic, R. Nutrition Interventions on Muscle-Related Components of Sarcopenia in Females: A Systematic Review of Randomized Controlled Trials. Calcif. Tissue Int. 2023, 114, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Priego, T.; Martín, A.I.; González-Hedström, D.; Granado, M.; López-Calderón, A. Role of Hormones in Sarcopenia. In Vitamins and Hormones; Academic Press Inc.: Cambridge, MA, USA, 2021; Volume 115, pp. 535–570. ISBN 978-0-323-85548-8. [Google Scholar]
- Deutz, N.E.P.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein Intake and Exercise for Optimal Muscle Function with Aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Tournadre, A.; Vial, G.; Capel, F.; Soubrier, M.; Boirie, Y. Sarcopenia. Jt. Bone Spine 2019, 86, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.-T.; Lin, J.-Y.; Lin, C.-J.; Lee, Y.-J.; Chang, W.-H. Association of Possible Sarcopenia or Sarcopenia with Body Composition, Nutritional Intakes, Serum Vitamin D Levels, and Physical Activity among Patients with Type 2 Diabetes Mellitus in Taiwan. Nutrients 2023, 15, 3892. [Google Scholar] [CrossRef]
- Verlaan, S.; Aspray, T.J.; Bauer, J.M.; Cederholm, T.; Hemsworth, J.; Hill, T.R.; McPhee, J.S.; Piasecki, M.; Seal, C.; Sieber, C.C.; et al. Nutritional Status, Body Composition, and Quality of Life in Community-Dwelling Sarcopenic and Non-Sarcopenic Older Adults: A Case-Control Study. Clin. Nutr. 2017, 36, 267–274. [Google Scholar] [CrossRef]
- Robinson, S.M.; Reginster, J.Y.; Rizzoli, R.; Shaw, S.C.; Kanis, J.A.; Bautmans, I.; Bischoff-Ferrari, H.; Bruyère, O.; Cesari, M.; Dawson-Hughes, B.; et al. Does Nutrition Play a Role in the Prevention and Management of Sarcopenia? Clin. Nutr. 2018, 37, 1121–1132. [Google Scholar] [CrossRef]
- Flakoll, P.; Sharp, R.; Baier, S.; Levenhagen, D.; Carr, C.; Nissen, S. Effect of β-Hydroxy-β-Methylbutyrate, Arginine, and Lysine Supplementation on Strength, Functionality, Body Composition, and Protein Metabolism in Elderly Women. Nutrition 2004, 20, 445–451. [Google Scholar] [CrossRef]
- Guo, Y.; Fu, X.; Hu, Q.; Chen, L.; Zuo, H. The Effect of Leucine Supplementation on Sarcopenia-Related Measures in Older Adults: A Systematic Review and Meta-Analysis of 17 Randomized Controlled Trials. Front. Nutr. 2022, 9, 929891. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.M.; Verlaan, S.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.T.; Mets, T.; Seal, C.; Wijers, S.L.; et al. Effects of a Vitamin D and Leucine-Enriched Whey Protein Nutritional Supplement on Measures of Sarcopenia in Older Adults, the PROVIDE Study: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Am. Med. Dir. Assoc. 2015, 16, 740–747. [Google Scholar] [CrossRef]
- Muir, S.W.; Montero-Odasso, M. Effect of Vitamin D Supplementation on Muscle Strength, Gait and Balance in Older Adults: A Systematic Review and Meta-Analysis. J. Am. Geriatr. Soc. 2011, 59, 2291–2300. [Google Scholar] [CrossRef]
- Jordan, A.N.; Jurca, R.; Abraham, E.H.; Salikhova, A.; Mann, J.K.; Morss, G.M.; Church, T.S.; Lucia, A.; Earnest, C.P. Effects of Oral ATP Supplementation on Anaerobic Power and Muscular Strength. Med. Sci. Sports Exerc. 2004, 36, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Reginster, J.Y.; Deroisy, R.; Rovati, L.C.; Lee, R.L.; Lejeune, E.; Bruyere, O.; Giacovelli, G.; Henrotin, Y.; Dacre, J.E.; Gossett, C. Long-Term Effects of Glucosamine Sulphate on Osteoarthritis Progression: A Randomised, Placebo-Controlled Clinical Trial. Lancet 2001, 357, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Pavelká, K.; Gatterová, J.; Olejarová, M.; Machacek, S.; Giacovelli, G.; Rovati, L.C. Glucosamine Sulfate Use and Delay of Progression of Knee Osteoarthritis: A 3-Year, Randomized, Placebo-Controlled, Double-Blind Study. Arch. Intern. Med. 2002, 162, 2113. [Google Scholar] [CrossRef]
- Giron, M.; Thomas, M.; Dardevet, D.; Chassard, C.; Savary-Auzeloux, I. Gut Microbes and Muscle Function: Can Probiotics Make Our Muscles Stronger? J. Cachexia Sarcopenia Muscle 2022, 13, 1460–1476. [Google Scholar] [CrossRef]
- Ni, Y.; Yang, X.; Zheng, L.; Wang, Z.; Wu, L.; Jiang, J.; Yang, T.; Ma, L.; Fu, Z. Lactobacillus and Bifidobacterium Improves Physiological Function and Cognitive Ability in Aged Mice by the Regulation of Gut Microbiota. Mol. Nutr. Food Res. 2019, 63, 1900603. [Google Scholar] [CrossRef]
- Chen, L.-H.; Huang, S.-Y.; Huang, K.-C.; Hsu, C.-C.; Yang, K.-C.; Li, L.-A.; Chan, C.-H.; Huang, H.-Y. Lactobacillus Paracasei PS23 Decelerated Age-Related Muscle Loss by Ensuring Mitochondrial Function in SAMP8 Mice. Aging 2019, 11, 756–770. [Google Scholar] [CrossRef] [PubMed]
- McGlory, C.; Calder, P.C.; Nunes, E.A. The Influence of Omega-3 Fatty Acids on Skeletal Muscle Protein Turnover in Health, Disuse, and Disease. Front. Nutr. 2019, 6, 144. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Chiu, W.-C.; Hsu, Y.-P.; Lo, Y.-L.; Wang, Y.-H. Effects of Omega-3 Fatty Acids on Muscle Mass, Muscle Strength and Muscle Performance among the Elderly: A Meta-Analysis. Nutrients 2020, 12, 3739. [Google Scholar] [CrossRef]
- Abel, R.; Niederer, D.; Offerhaus, C.; Shafizadeh, S.; Glowa, A.; Froböse, I.; Wilke, C. Effects of Exercise Prehabilitation before Anterior Cruciate Ligament Reconstruction on Functional Outcomes during Pre- and Postoperative Rehabilitation—Protocol for a Single-Blinded Randomised Controlled Trial. Trials 2023, 24, 752. [Google Scholar] [CrossRef]
- Shaarani, S.R.; O’Hare, C.; Quinn, A.; Moyna, N.; Moran, R.; O’Byrne, J.M. Effect of Prehabilitation on the Outcome of Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2013, 41, 2117–2127. [Google Scholar] [CrossRef]
Study | Justification of Importance (0–2) | Concrete Aims/Questions (0–2) | Literature Search Description (0–2) | Referencing (0–2) | Scientific Reasoning (0–2) | Appropriate Data Presentation (0–2) | Total Score (0–12) |
---|---|---|---|---|---|---|---|
Briguglio et al., 2020 [16] | 2 | 2 | 0 | 2 | 2 | 2 | 10 |
Bruyere et al., 2008 [17] | 2 | 2 | 1 | 2 | 1 | 1 | 9 |
Cao et al., 2020 [18] | 2 | 2 | 0 | 2 | 2 | 2 | 10 |
Choi et al., 2022 [19] | 2 | 2 | 0 | 2 | 2 | 2 | 10 |
Dreyer et al., 2013 [20] | 2 | 2 | 0 | 2 | 2 | 2 | 10 |
Long and Zhang, 2014 [21] | 2 | 2 | 0 | 2 | 2 | 2 | 10 |
Mundy et al., 2005 [22] | 1 | 1 | 0 | 1 | 2 | 1 | 6 |
Muyskens et al., 2019 [23] | 2 | 1 | 0 | 1 | 1 | 1 | 6 |
Nishizaki et al., 2015 [24] | 2 | 2 | 0 | 2 | 2 | 2 | 10 |
Ueyama et al., 2020 [25] | 2 | 2 | 0 | 2 | 2 | 2 | 10 |
Ueyama et al., 2023 [26] | 2 | 2 | 0 | 2 | 2 | 2 | 10 |
Weintraub et al., 2023 [27] | 2 | 1 | 0 | 1 | 1 | 1 | 6 |
Yoo et al., 2021 [28] | 2 | 2 | 0 | 2 | 2 | 2 | 10 |
Supplementation | Authors | Study Design | Sample Size, Age | Outcomes | Results | Conclusions |
---|---|---|---|---|---|---|
Iron | ||||||
Sucrosomial ferric pyrophosphate (30 mg) plus L-ascorbic acid (70 mg) | Briguglio et al. [16] | RCT | N = 73, 67.3 ± 8.6. Intervention group: N = 37, Control group: N= 36 | Anemia | Older patients with no support lost −2.8 ± 5.1%, while the intervention group gained +0.7 ± 4.6% circulating hemoglobin from baseline (p = 0.019) | After 30 days of oral iron plus L-ascorbic acid therapy, no significant changes in the martial status were observed after treatment. |
Ferric carboxymaltose 1000 mg (body weight ≥ 50 kg) Ferric carboxymaltose 500 mg (body weight < 50 kg) For 1 day before and 3 days after surgery | Choi et al., 2022 [19] | RCT | 110 pt, Intervention group: N = 54, 71.4 ± 5.7 Control group: N = 55, 71.8 ± 6.2 | Hb and iron response, QoL | The FCM group demonstrated a significantly greater number of Hb responders (p < 0.001) and a higher Hb level (p = 0.008) at 2 weeks postoperatively. | In postoperative anemia, a single infusion of 5000 and 1000 mg ev of ferric carboxymaltose increases the Hb response and improved Hb and iron metabolism variables. However, intervention did not affect the transfusion rate or QOL. |
Ferrous sulphate (200 mg, containing 65 mg of elemental iron) 3 times daily for 3 weeks | Mundy et al., 2005 [22] | RCT | 31 pt, Intervention group: N = 18, 67.8 ± 10.5 Control group: N = 13, 67.0 ± 9.4 | Hemoglobin and absolute reticulocyte count | Administration of iron supplements after elective total hip or total knee arthroplasty does not appear to be worthwhile. | Administration of iron supplements after elective total hip or total knee arthroplasty does not appear to be worthwhile. |
Iron isomaltoside administered 30 min during surgical wound closure. | Yoo et al., 2021 [28] | RCT | 89 pt Intervention group N = 44 71 ± 6 Control group N = 45 70 ± 7 | Hb | The incidence of anemia at 30 days after surgery was significantly lower in the treatment group (p = 0.008) | The intra-operative administration of iron isomaltoside effectively prevents postoperative anemia |
Daily doses of rhEPO combined with iron supplement | Cao et al., 2020 [18] | RCT | 102 pt Group A: rhEPO + iron (3 days before surgery), Group B: rhEPO + iron (day of surgery), Group C: iron alone | Hb, blood loss, reticulocyte levels, complications | Patients in Group A had significantly lower total blood loss than Groups B and C (A vs. B: p = 0.010; A vs. C: p < 0.001). Group A patients had significantly smaller Hb decline than Group C on the third and fifth postoperative days (p = 0.049, p = 0.037), as well as than Group B on the fifth postoperative day (p = 0.048) | Daily dose of rhEPO combined with iron supplement administered 3 days before TKA procedures could significantly decrease perioperative blood loss and improve postoperative Hb levels, without significantly elevating risks of complications |
Glucosamine sulphate | ||||||
Oral glucosamine sulphate 1500 mg once-a-day for at least 12 months and up to 3 years. | Bruyere et al., 2008 [17] | RCT | 275 pt, Intervention group: N = 144, 62.9 ± 7.6 Control group: N = 131, 63.6 ± 6.6 | Number of knee arthroplasties | A significantly decreased (p = 0.026) cumulative incidence of total knee replacements in patients who had received glucosamine sulphate. | Treatment of knee OA with glucosamine sulphate for at least 12 months and up to 3 years may prevent surgery |
Essential Amino Acids | ||||||
20 g of EAA Twice daily between meals for 1 week before and 2 weeks after surgery. | Dreyer et al., 2013 [20] | RCT | 28 pt, Intervention group: N = 16, 68 ± 5 Control group: N = 12, 70 ± 5 | Muscle atrophy, muscle strength, and functional mobility | Patients receiving placebo exhibited greater quadriceps muscle atrophy, 2 weeks (p = 0.036) and 6 weeks after surgery (p = 0.001) | EAA treatment attenuated muscle atrophy and accelerated the return of functional mobility in older adults following surgery |
EAA 20 g of EAA twice-daily, for 7 days before and for 6 weeks after surgery | Muyskens et al., 2019 [23] | RCT | N = 41 | A biopsy during surgery, and two additional biopsies at either 1 or 2 weeks after surgery to study satellite cells and other key histological markers of inflammation, recovery, and fibrosis. | ||
L-arginine (Arg; 14,000 mg) and L-glutamine (Gln; 14,000 mg) (HMB/Arg/Gln), Beta-hydroxy beta-methylbutyrate (HMB; 2400 mg), (158 kcal of energy) for 5 days before the surgery and for 28 days after the surgery. Patients fasted on the day of surgery. | Nishizaki et al., 2015 [24] | RCT | N = 32 | Body weight, bilateral knee extension strength, rectus femoris cross-sectional area | The maximal quadriceps strength was 1.1 ± 0.62 Nm/Kg before surgery and 0.7 ± 0.9 Nm/Kg after surgery 14 days in the control group (p = 0.02), and 1.1 ± 0.3 Nm/Kg before surgery and 0.9 ± 0.4 Nm/Kg after surgery 14 days in the HMB/Arg/Gln group. | Consuming HMB/Arg/Gln supplementation may suppress the loss of muscle strength after TKA. Intervention with exercise and nutrition appears to enable patients to maintain their quadriceps strength. |
Isoleucine (603 mg, 6.7%), leucine (684 mg, 7.6%), lysine (756 mg, 8.4%), methionine (603 mg, 6.7%), phenylalanine (405 mg, 4.5%), threonine (405 mg, 4.5%), tryptophan (207 mg, 2.3%), valine (603 mg, 6.7%), arginine (630 mg, 7%), histidine (315 mg, 3.5%), and starch (1089 mg, 12.1%) From 1 week prior to surgery until 2 weeks after it. 3 times daily (after every meal) for a total of 9 g/day. | Ueyama et al., 2020 [25] | RCT | 60 pt Intervention group N = 30 75.9 Control group N = 30 75.8 | Rectus femoris muscle area | Improvement of VAS (p = 0.038), albumin level (p = 0.009), quadriceps area (p = 0.026), muscle diameter (p = 0.029) after 4 weeks from surgery | Perioperative essential amino acid supplementation prevents rectus femoris muscle atrophy and accelerates early functional recovery after surgery |
Threonine (405 mg, 4.5%), lysine (756 mg, 8.4%), isoleucine (603 mg, 6.7%), valine (603 mg, 6.7%), methionine (603 mg, 6.7%), tryptophan (207 mg, 2.3%), phenylalanine (405 mg, 4.5%), leucine (684 mg, 7.6%), histidine (315 mg, 3.5%), arginine (630 mg, 7%), and glycine (1089 mg, 12.1%); the remainder was starch (2700 mg, 30%). | Ueyama et al., 2023 [26] | RCT | 52 pt Intervention group N = 26 76.4 ± 8.3 Control group N = 26 75.2 ± 5.5 | Rectus femoris muscle area | Improvement in rectus muscle area (p = 0.02, p = 0.01), diameter (p = 0.009) after 1 year and 2 years | Perioperative EAA supplementation contributes to the recovery of rectus femoris muscle volume and quadriceps muscle strength in the 2 years after surgery |
Vitamin D3 | ||||||
50,000 international units vitamin D3 on the morning of surgery | Weintraub et al., 2023 [27] | RCT | 107 pt Intervention group N = 57 63.7 ± 9.5 Control group N = 50 64.5 ± 63.7 | KSS, TUG | There was no difference in improvement in KSS at 3 weeks (p = 0.6) or 6 weeks (p = 0.5) from baseline. There was no difference in change in TUGT at 3 weeks (p = 0.6) or 6 weeks (p = 0.6) from baseline. | Supplementation with vitamin D3 on the day of surgery failed to demonstrate statistically significant differences in functional KSS, TUGT times, or complications in the early postoperative period compared to placebo. |
Adenosine 5′-triphosphate supplementation | ||||||
ATP 20 mg ATP for 4 weeks | Long and Zhang, 2014 [21] | RCT | 232 pt, Intervention group: N = 119, 60.1 ± 4.5 Control group: N = 113, 58.9 ± 5.2 | Quadriceps strength, pain scores | Reduction in length of hospitalization (p = 0.0027) and analgesic consumption (p = 0.021) | Oral supplement of ATP could benefit patients recovering from knee arthroplasty |
Training | Timing: Weeks before Surgery | Results | References |
---|---|---|---|
Straitening and resistance training, flexibility, and aerobic training | 4–8 weeks | Improvement in knee pain, functional ability, and quadriceps strength | Topp et al., 2009 [36], Swank et al., 2011 [37], Huber et al., 2015 [38] |
8 weeks | Improvement in depression and cognition and quality of life | Kim et al., 2021 [39], Brown et al., 2012 [40] | |
3 days | Reduction in pain, improve functional state of knee joints | Zheng et al., 2022 [41] | |
4 and 6 weeks | Reduction in the days lost and increase cost savings | Huang et al., 2011 [42] | |
6 weeks | Increase in mobility and knee function | Matassi et al., 2012 [43], Jahic et al., 2018 [44] | |
Strengthening and aerobic program | 4 weeks | Improvement in knee range of motion | Cavill et al., 2016 [45] |
6 weeks | Improvement in pain, quality of life, ROM | Mat Eil-Ismail et al., 2016 [46] | |
Strengthening, aerobic and proprioceptive exercises | 12 weeks | Improvement in satisfaction | Doiron-Cadrin et al., 2020 [47] |
Program of strengthening | 4 weeks | No improvement in ROM, strength, pain, function, and QoL | Beaupre et al., 2004 [48] |
Endurance training + proprioceptive neuromuscular facilitation (PNF) | 3–4 weeks | Improvement in the level of physical activity | Gränicher et al., 2020 [49] |
Neuromuscular and postural exercises | 8 weeks | No additional benefits | Villadsen et al., 2013 [50] |
Blood-Flow-Restriction Exercises | 6 weeks | Reduction in pain; increase in metabolic stress; improvement in muscle function and QoL, muscle mass and strength | Franz et al., 2022 [51] |
High-intensity strength training | 8 weeks | Reduction in pain and improvement in lower limb muscle strength, ROM, and functional task performance | Calatayud et al., 2017 [52] |
4 weeks | Improvement in ROM | Skoffer et al., 2016 [53], Skoffer et al., 2020 [54] | |
Balance training | 4 weeks | Improvement in balance | Domínguez-Navarro et al., 2021 [55] |
Home-based exercises | 8–12 weeks | Increase in knee flexion and extension, gait re-education, and home/functional adaptations | Aytekin et al., 2019 [56] |
3 weeks | Decreased pain, improved quadriceps strength, and improved quality of life | Tungtrongjit et al., 2012 [57] | |
2 weeks | No effect on days of hospitalization and WOMAC scores | Soeter et al., 2017 [58] | |
Acupuncture and strength exercises | 4 weeks | Acupuncture and physiotherapy preoperatively did not improve patient outcomes postoperatively | Soni et al., 2012 [59] |
6 weeks | Reduction in OKS | Williamson et al., 2007 [60] |
Preoperative Strategies | |
---|---|
Nutritional Supplementation | Prehabilitation |
Ferric supplementation | |
|
|
Glucosamine sulphate | |
| |
Essential Amino Acids | |
|
|
Vitamin D3 |
|
Adenosine 5′-triphosphate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pegreffi, F.; Chiaramonte, R.; Donati Zeppa, S.; Lauretani, F.; Salvi, M.; Zucchini, I.; Veronese, N.; Vecchio, M.; Bartolacci, A.; Stocchi, V.; et al. Optimizing the Preoperative Preparation of Sarcopenic Older People: The Role of Prehabilitation and Nutritional Supplementation before Knee Arthroplasty. Nutrients 2024, 16, 3462. https://doi.org/10.3390/nu16203462
Pegreffi F, Chiaramonte R, Donati Zeppa S, Lauretani F, Salvi M, Zucchini I, Veronese N, Vecchio M, Bartolacci A, Stocchi V, et al. Optimizing the Preoperative Preparation of Sarcopenic Older People: The Role of Prehabilitation and Nutritional Supplementation before Knee Arthroplasty. Nutrients. 2024; 16(20):3462. https://doi.org/10.3390/nu16203462
Chicago/Turabian StylePegreffi, Francesco, Rita Chiaramonte, Sabrina Donati Zeppa, Fulvio Lauretani, Marco Salvi, Irene Zucchini, Nicola Veronese, Michele Vecchio, Alessia Bartolacci, Vilberto Stocchi, and et al. 2024. "Optimizing the Preoperative Preparation of Sarcopenic Older People: The Role of Prehabilitation and Nutritional Supplementation before Knee Arthroplasty" Nutrients 16, no. 20: 3462. https://doi.org/10.3390/nu16203462
APA StylePegreffi, F., Chiaramonte, R., Donati Zeppa, S., Lauretani, F., Salvi, M., Zucchini, I., Veronese, N., Vecchio, M., Bartolacci, A., Stocchi, V., & Maggio, M. (2024). Optimizing the Preoperative Preparation of Sarcopenic Older People: The Role of Prehabilitation and Nutritional Supplementation before Knee Arthroplasty. Nutrients, 16(20), 3462. https://doi.org/10.3390/nu16203462