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Abstract: Background: (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HMC), a ho-
moisoflavonoid isolated from Portulaca oleracea, has significant anti-adipogenesis potential; it regulates
adipogenic transcription factors. However, whether HMC improves hepatic steatosis in hepatocytes
remains vague. This study investigated whether HMC ameliorates hepatic steatosis in free fatty
acid-treated human hepatocellular carcinoma (HepG2) cells, and if so, its mechanism of action was
analyzed. Methods: Hepatic steatosis was induced by a free fatty acid mixture in HepG2 cells.
Thereafter, different HMC concentrations (10, 30, and 50 µM) or fenofibrate (10 µM, a PPARα agonist,
positive control) was treated in HepG2 cells.Results: HMC markedly decreased lipid accumulation
and triglyceride content in free fatty acid-treated HepG2 cell; it (10 and 50 µM) markedly upregulated
protein expressions of pAMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase. HMC
(10 and 50 µM) markedly inhibited the expression of sterol regulatory element-binding protein-1c,
fatty acid synthase, and stearoyl-coA desaturase 1, which are the enzymes involved in lipid synthesis.
Furthermore, HMC (10 and 50 µM) markedly upregulated the protein expression of peroxisome
proliferator-activated receptor alpha (PPARα) and enhanced the protein expressions of carnitine
palmitoyl transferase 1 and acyl-CoA oxidase 1. Conclusion: HMC inhibits lipid accumulation and
promotes fatty acid oxidation by AMPK and PPARα pathways in free fatty acid-treated HepG2 cells,
thereby attenuating hepatic steatosis.
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1. Introduction

Hepatic lipid levels are generally balanced by the influx of free fatty acids (FFAs)
and lipid synthesis and consumption. When the influx of FFAs and lipogenesis increases
in the liver, excessive lipid accumulation occurs, leading to hepatic steatosis. Hepatic
steatosis has long been considered a symptom of alcoholic liver disease; however, steatosis
has been found even in the absence of alcohol consumption. As the number of obese or
overweight individuals increases, nonalcoholic fatty liver disease has become a highly
prevalent chronic liver disease. Nonalcoholic fatty liver disease includes nonalcoholic
fatty liver (simple hepatic steatosis), inflammatory nonalcoholic steatohepatitis, advanced
fibrosis, and liver cirrhosis [1]. Nonalcoholic fatty liver is an early, reversible stage of
nonalcoholic fatty liver disease characterized by the accumulation of lipids without an
inflammatory response [2]. Although the etiology of nonalcoholic fatty liver disease is
not fully understood, it is believed that lipid metabolic disorders in the liver may play a
crucial role in its initiation and progression [3]. Thus, the inhibition of lipid accumulation
by regulating hepatic lipid metabolism is important for the treatment and prevention of
fatty liver disease.
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The major regulators of hepatic lipid metabolism that inhibit lipid accumulation
are AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor
alpha (PPARα) [4–6]. Acetyl-CoA carboxylase (ACC) and sterol regulatory element-binding
protein 1c (SREBP-1c) are modulated by AMPK [7]. The activation of AMPK inhibits ACC
and fatty acid synthase (FAS) by downregulating SREBP-1c and suppressing lipogenesis [8].
The PPARα, nuclear receptor protein activated by a ligand, modulates the expression of
lipid oxidation transcription factors such as carnitine palmitoyl transferase 1 (CPT1) and
acetyl-CoA oxidase 1 (ACOX1). Activated PPARα increases the expression of ACOX1 and
CPT1 [9]. A reduction in PPARα expression was observed in individuals with hepatic
steatosis, and a PPARα agonist was used to ameliorate this symptom [10,11]. Thus, AMPK
and PPARα may be major targets for the prevention of hepatic steatosis.

The compound HMC ((E)-hydroxy-7-methoxy-3-(2′-hydroxybenzyl)-4-chromanone)
was isolated from P. oleracea. It is homoisoflavonoid compound, a subclass of flavonoids
with an additional carbon atom. Previous studies have revealed that HMC has antidia-
betic, anti-obesity, and anti-inflammatory effects in cellular and diabetic animal model
systems [12–14]. Although several effects and mechanisms of HMC in diseases have
been elucidated, whether and how HMC improves nonalcoholic fatty liver in hepatocytes
remains unclear. In this study, we investigated whether HMC could attenuate hepatic
steatosis in FFA-stimulated human hepatocellular carcinoma (HepG2) cells. Furthermore,
we determined the mechanism of action of the compound.

2. Material and Methods
2.1. Materials

P. oleracea was collected from Hyosung-Food Inc. (Gangwon, Hongcheon, Republic
of Korea). Extraction (using dichloromethane and methanol) and isolation of HMC from
P. oleracea were performed using a previously established method in our laboratory [14].
HM-chromanone was isolated by reversed-phase HPLC (ODS-A, 75% aq. MeOH) using
5% MeOH in the CHCl3 fraction (0.35 g). The structure of the compound (Figure 1) was
elucidated using a combination of spectroscopic methods, including HR/Mass and ¹H and
¹³C NMR.
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Figure 1. Chemical structure of HMC isolated from P. oleracea.

2.2. Cell Culture

The HepG2 cells (human liver cancer cell line, immortal cells) were purchased from
the Korean Cell Line Bank (KCLB No. 88065) and cultured in Dulbecco’s modified eagle’s
medium (DMEM; HyClone Laboratories, Logan, UT, USA) at 37 ◦C in 5% CO2. The cells
were then treated with a medium containing various concentrations of HMC and 1.0 mM
FFA mixture (oleate/palmitate = 2:1) for 24 h. Fenofibrate (10 µM) served as the positive
control, and compound C (10 µM) served as the AMPK inhibitor.

2.3. Treatment of Free Fatty Acid Mixture

The FFA mixture was prepared by conjugating oleate/palmitate (2:1) with fatty acid-
free BSA [15]. Oleate and palmitate were dissolved in warmed BSA solution (45–50 ◦C) to
give a stock of 8 mM FFA mixture. The final molar ratio of FFA mixture to BSA was 6:1.
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2.4. Cell Viability

HepG2 cells were seeded a density of 1 × 104 cells/well in 96-well plates and incubated
at 37 ◦C in 5% CO2. Thereafter, different HMC concentrations (10, 30, and 50 µM) or
fenofibrate (10 µM, a PPARα agonist, positive control) with the FFA (1.0 mM)-treated cells
were incubated for 24 h. To each well, the MTT solution (Sigma, St. Louis, MO, USA) was
added and incubated for 4 h. The absorbance was measured using the microplate reader
(540 nm).

2.5. Oil Red O Staining

Cells were seeded at a density of 3 × 105 cells/mL (1 mL) in 24-well plates for 24 h
and then treated with the FFA mixtures. After 24 h of exposition, the HepG2 cells were
washed with PBS and fixed in formalin for 2 h at room temperature. After washing with
distilled H2O and once with 60% isopropanol, the fixed adipocytes were completely dried,
stained with Oil Red O working solution for 1 h, and washed immediately with distilled
H2O. Adipocytes were visualized using a microscope and image analysis. Intracellular
triglyceride (TG) content was determined in cell lysates by an enzymatic colorimetric
method and normalized by protein content, as previously described [16].

2.6. Western Blotting Analysis

The HepG2 cells were incubated with FFA stock solution (1.0 mM), followed by
treatment with 10 and 50 µM HMC. The supernatants were quantified using Bio-Rad
protein quantification reagent (Bio-Rad, Hercules, CA, USA). Samples were prepared by
mixing buffer (Bio-Rad). The protein samples were separated by SDS-PAGE, and the
acrylamide gel was transferred onto a nitrocellulose membrane. After blocking with
TBS-T containing 5% skim milk for 1 h. The membrane was treated with the primary
antibody (AMPK, PPARα, ACC, SREBP-1c, FAS and SCD-1, CPT1 and ACOX1) for 1 h.
The secondary antibody (diluted 1:1000 with TBS-T) was incubated, and ECL solution
was added to analyze protein expression in the dark using BioMax film. Relative protein
expression was quantified by densitometric means using Multi Gauge v3.1.

2.7. Statistical Analysis

The results are expressed as mean ± standard deviation (SD, n = 3). Statistical analyses
were performed using SPSS version 29.0 (IBM Corp., Armonk, NY, USA). The treatment
groups were compared using one-way analysis of variance (ANOVA), followed by Tukey’s
HSD test.

3. Results
3.1. Cell Viability with HMC

To test the cytotoxicity of the FFA and HMC, various HMC concentrations were
incubated with the FFA in the cells (Figure 2). In HepG2 cells treated with an FFA, the cell
viability was markedly lower compared to that in the normal control cells. However, the
HMC treatment markedly increased the viability rate lowered by the FFA treatment.

3.2. HMC Inhibits Lipid Accumulation

Lipid accumulation is an important factor in fatty liver disease in hepatocytes. To
investigate whether HMC could inhibit lipid accumulation in hepatocytes, HepG2 cells
were treated with 10, 30, and 50 µM of HMC or 10 µM fenofibrate (positive control), and
then exposed to a 1.0 mM FFA mixture (oleate/palmitate = 2:1) for 24 h. As shown in
Figure 3, HMC markedly reduced lipid droplet formation in HepG2 cells exposed to FFAs.
Lipid accumulation markedly increased by 2.55-fold upon exposure to FFA in HepG2
cells compared with that in the control. However, 10, 30, and 50 µM of HMC markedly
reduced lipid accumulation by 2.20-, 2.03- and 1.34-fold, respectively, in HepG2 cells.
Fenofibrate reduced lipid accumulation by 1.28% when used at a concentration of 10 µM.
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The 10 µM fenofibrate control and 50 µM HMC treatments showed similar values, with no
significant difference.
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3.3. HMC Reduces the Protein Expression of SREBP-1c, SCD-1, and FAS

In FFA-exposed HepG2 cells, treatment with 10 and 50 µM HMC markedly reduced
SREBP-1c expression by 166.43% and 121.11%, respectively, which was increased to 221.10%
by FFAs (Figure 4). The 10 µM fenofibrate reduced SREBP-1c expression to 117.84%, which
was not markedly different from the result of 50 µM HMC treatment. SCD-1 and FAS were
also markedly increased to 259.98% and 297.45%, respectively, in HepG2 cells exposed to
FFAs compared to that in the normal control cells. However, treatment with 10 and 50 µM
HMC markedly decreased SCD-1 to 200.31% and 139.52% and FAS to 234.61% and 127.88%,
respectively, compared to that in FFA-exposed HepG2 cells.

3.4. HMC Promotes AMPK and ACC in FFA-Exposed HepG2 Cells

To investigate whether HMC could induce AMPK in HepG2 cells exposed to FFA,
HepG2 cells were treated with 10 and 50 µM of HMC and then exposed to FFAs. The
AMPK phosphorylation markedly decreased by 48.51% in HepG2 cells exposed to FFAs
compared to that in the control. However, treatment with 10 µM and 50 µM of HMC
markedly increased the phosphorylation levels of AMPK to 57.39% and 89.38%, respectively
(Figure 5). To confirm AMPK activation by HMC, ACC phosphorylation was investigated
in HepG2 cells exposed to FFAs. The phosphorylation of ACC markedly decreased by
32.21% in HepG2 cells exposed to FFAs compared to that in the control. However, 10 µM
and 50 µM of HMC markedly increased pACC to 52.30% and 78.19%, respectively.
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3.5. HMC Inhibits the Expression of SREBP-1c, SCD-1, and FAS via Activating AMPK

To determine whether AMPK phosphorylation mediates the effects of HMC on the
inhibition of lipogenesis-related transcription factors and enzymes, FFA-exposed HepG2
cells were treated with an AMPK inhibitor, compound C, in addition to HMC treatment.
Exposure to FFAs increased SREBP-1c to 221.10% in HepG2 cells compared to that in the
control; however, this increase was markedly inhibited by treatment with HMC (Figure 6).
At a concentration of 50 µM, HMC markedly inhibited SREBP-1c expression by 123.43% in
FFA-exposed HepG2 cells, but this effect was blocked by compound C. We also examined
SCD-1, FAS, and SREBP-1c expression. Treatment with 50 µM HMC markedly decreased
the expression of SCD-1 and FAS to 138.26% and 124.58%, respectively, compared with
that in FFA-exposed HepG2 cells. However, these effects were blocked by compound C.
When cells were treated with HMC combined with compound C, the expression of SCD-1
and FAS markedly increased. These results show that HMC may inhibit the expression of
SREBP-1c, SCD-1, and FAS by activating AMPK in HepG2 cells exposed to FFA.
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steatosis. (A) The protein expression of SREBP-1c. (B) The protein expression of SCD-1 and FAS. Each
value is expressed as the mean ± standard deviation (n = 3), and values with different superscript
letters were markedly different with p < 0.05 as analyzed using ANOVA, followed by Tukey’s HSD
test. *: Statistically significant differences.

3.6. HMC Increases the Phosphorylation of PPARα, CPT1, and ACOX1

The HMC markedly increased the expression of PPARα, CPT1, and ACOX1 in FFA-
exposed HepG2 cells. The expression level of PPARα was markedly reduced to 42.86% by
FFAs in HepG2 cells compared to that in the control. However, the reduction was markedly
recovered by treatment with 10 µM and 50 Mm of HMC to 68.37% and 89.84%, respectively
(Figure 7). The PPARα expression level of the 10 µM fenofibrate control increased to
92.33%, and there was no significant difference between the 50 µM HMC treatment and
10 µM fenofibrate control. The expression levels of CPT1 and ACOX1, the critical fatty acid
oxidation enzymes, were also markedly decreased to 23.97% and 37.38%, respectively, in
FFA-exposed HepG2 cells compared to that in the control. However, treatment with 10 and
50 µM of HMC markedly increased the expression levels of CPT1 to 44.64% and 75.68%
and ACOX1 to 63.75% and 92.33%, respectively. These results indicate that HMC could
upregulate the expression of PPARα, CPT1, and ACOX1 in FFA-exposed HepG2 cells.
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with different superscript letters were markedly different with p < 0.05 as analyzed using one-way
analysis of variance (ANOVA), followed by Tukey’s HSD test. *: Statistically significant differences.
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4. Discussion

Hepatic steatosis begins with lipid accumulation in the liver and is considered a major
health problem. It could be caused by various factors, including the increased hepatic de
novo lipogenesis, FFA uptake into the liver, and damaged fatty acid β-oxidation [17,18].
Insulin resistance also causes peripheral adipose lipolysis, which in turn promotes hepatic
steatosis by inducing hepatic TG production when FFA supply to the liver is increased [19].
Patients with hepatic steatosis have approximately 60% of hepatic lipids induced from FFAs
in adipose tissues. In contrast, healthy individuals obtain less than 5% of their hepatic lipids
from de novo lipogenesis [20,21]. Thus, lipid accumulation due to excessive FFA influx
and de novo lipogenesis is regarded as the main pathological factor in the development of
hepatic steatosis. Reducing lipid accumulation by modulating hepatic lipid metabolism is
an important strategy in the treatment of hepatic steatosis. We investigated whether HMC
could reduce hepatic lipid accumulation, and if so, by what mechanism, in FFA-stimulated
HepG2 cells.

Increased FFA influx results in hepatic lipid accumulation, leading to hepatic steatosis.
Palmitic acid and oleic acid are common fatty acids. When used in vitro as a mixture, it
can be an efficient model to investigate the effects of hepatic steatosis [22]. In this study,
hepatic steatosis was induced using a FFA mixture (oleate/palmitate = 2:1) in HepG2
cells. The FFA mixture markedly increased lipid accumulation in HepG2 cell and HMC
markedly decreased the lipid accumulation. Reduction in hepatic lipid accumulation
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has been associated with several lipid metabolism proteins [23,24]. Activation of AMPK
inhibits lipogenesis, which utilizes ATP. Activated AMPK decreases SREBP-1c and inhibits
the activation of ACC, SCD-1, and FAS [25]. Changes in the expression of these proteins
related to hepatic lipogenesis were investigated to elucidate the mechanism by which HMC
reduces hepatic lipid accumulation.

Expression of phosphorylated AMPK and ACC was markedly increased by HMC in
FFA-exposed HepG2 cells. Lipogenesis is inhibited when AMPK is activated by phospho-
rylation. AMPK phosphorylates and inactivates the lipogenic enzyme ACC [26]. Therefore,
HMC appears to be involved in the inhibition of hepatic lipid accumulation by phospho-
rylating AMPK and ACC. Homoisoflavone compounds markedly increase AMPK, and
this activation was attributed to the C-3 methine group in the compounds [27]. Conse-
quently, AMPK activation by HMC is possibly due to the C-3 methine group in its 16-carbon
skeleton structure.

A major lipogenic transcription factor that is abundant in the liver is SREBP-1c [24].
Increased FFA influx into hepatocytes induces the overexpression of SREBP-1c, leading to
de novo lipogenesis [28]. Activated SREBP-1c is translocated to the nucleus and upregulates
the expression of lipogenic enzymes [29], which are the main enzymes involved in fatty
acid and triglyceride synthesis in the liver, respectively. The synthesis of mono-unsaturated
fatty acid from saturated fatty acetyl Co-A is catalyzed by SCD-1, and its deletion prevents
the development of fatty liver [30,31]. The last step of fatty acid biosynthesis is catalyzed
by FAS [32]. In this study, HMC markedly reduced the expression of SREBP-1c, SCD-1, and
FAS in FFA-exposed HepG2 cells. However, it failed to reduce the expression of SREBP-1c,
SCD-1, and FAS increased by FFAs in HepG2 cells pretreated with the AMPK inhibitor. This
indicated that HMC reduced the expression of SREBP-1c, SCD-1, and FAS by activating
AMPK. This was consistent with a study by Li et al. [25] where activated AMPK reduced
the expression of SREBP-1c and subsequently inhibited SCD-1 and FAS activation [6].

Flavonoids can decrease lipid accumulation by increasing AMPK activation while
suppressing SREBP-1c expression in HepG2 cells with palmitic acid [33]. Nobiletin, a major
flavonoid in citrus fruit, reduced SREBP-1c and FAS via AMPK and inhibited hepatic lipid
accumulation [34]. Hesperidin also inhibited lipid accumulation by increasing AMPK
and decreasing SREBP-1c, ACC, and FAS expression in oleic acid-treated HepG2 cell [35].
Reports have indicated that AMPK activated by flavonoids could reduce lipogenesis by
inhibiting SREBP-1c expression, thereby decreasing ACC and FAS expression.

The activation of PPARα promotes fatty acid β-oxidation and decreases the lipid
content [36]. Agonists of PPARα have lipid-lowering action, such as lowering TGs, and
they have long been used to treat dyslipidemia [37]. It markedly decreased triglyceride
content in the liver of an insulin-resistant animal model [38]. The alleviation of fatty liver
by atorvastatin, a lipid-regulating drug, has been demonstrated to be due to an increase in
hepatic PPARα expression in rats [39]. The enzyme CPT1 controls acetyl CoA inflow and
fatty acid β-oxidation in the mitochondrial membrane. It is a major regulator of fatty acid
β-oxidation in the liver. An increase in its expression decreases hepatic triglyceride content
and ameliorates fatty liver [40]. The rate-regulating enzyme, ACOX1, is the first enzyme
involved in fatty acid β-oxidation [41]. Administration of a PPARα agonist enhances fatty
acid β-oxidation enzymes, such as CPT1 and ACOX1, in rodent hepatocytes [42]. Thus,
HMC markedly increased PPARα expression and enhanced CPT1 and ACOX1 expression
in FFA-exposed HepG2 cells.

Quercetin enhanced PPARα and CPT-1 expression and decreased hepatic steatosis by
increasing fatty acid oxidation [43]. Genistein, a major isoflavone, increased CPT-1 and
ACOX1 through the activation of PPARα [44]. These reports indicate that compounds
such as flavonoids and isoflavones could activate PPARα and increase the expression of
genes involved in fatty acid catabolism. This study suggests that HMC could also stimulate
β-oxidation through the PPARα activation and the increase in CPT1 and ACOX1 expression
in hepatocytes.
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5. Conclusions

Our results demonstrate that HMC reduced lipid accumulation. This effect resulted
from the activation of AMPK and PPARα signaling pathways, thereby suppressing SREBP-
1c, FAS, and SCD-1 expression and increasing CPT1 and ACOX1 expression. Thus, lipogen-
esis was inhibited, and lipolysis was stimulated in the HepG2 cells (Figure 8).
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