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Abstract: Background: Flax (Linum usitatissimum L.) is the richest plant source of lignin secondary
metabolites. Lignans from flax have been applied in the fields of food, medicine, and health due to
their significant physiological activities. The most abundant lignan is secoisolariciresinol, which exists
in a glycosylated form in plants. Results: After ingestion, it is converted by human intestinal flora
into enterodiol and enterolactone, which both have physiological roles. Here, the basic structures,
contents, synthesis, regulatory, and metabolic pathways, as well as extraction and isolation methods,
of flax lignans were reviewed. Additionally, the physiological activity-related mechanisms and their
impacts on human health, from the biosynthesis of lignans in plants to the physiological activity
effects observed in animal metabolites, were examined. Conclusions: The review elucidates that
lignans, as phenolic compounds, not only function as active substances in plants but also offer
significant nutritional values and health benefits when flax is consumed.
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1. Introduction

Flax (Linum usitatissimum L.) is an annual or perennial self-pollinating herb [1]. Flax
is one of the earliest cultivated fiber crops, with cultivation beginning as early as the Pre-
Pottery Neolithic period (around 8500 BC). Flax, belonging to the genus Linum, originated
mainly in the Near East and the Mediterranean coast. It has been cultivated primarily
for food, fiber, and oil. Owing to its rich oil content, it is often referred to as ‘oil flax’
and is highly valued. Additionally, flaxseed contains several active ingredients that have
important physiological functions, resulting in increased scientific attention in recent years.
These include α-linolenic acid (ALA), linoleic acid, lignans, and linseed gum [2,3]. Flaxseed
oil content ranges from 35% to 45%, of which 45% to 52% is ALA, an omega-3 fatty acid
known for its excellent nutritional value and cholesterol lowering ability [4]. Additionally,
flaxseed hulls are rich in lignans, containing about 9 to 30 mg/g, which is 40 to 800 times
more than the level in 70 other kinds of lignan-containing plants, making flax the richest
known source of lignans [5]. In recent years, lignans have received increasing attention
for their unique functions, particularly in regulating and balancing estrogen levels in
mammals [6]. Lignans have anti-cancer and antioxidant effects, including in the prevention
of breast cancer [7–10]. Moreover, there has been extensive research on the extraction
and purification of lignans, as well as on the detection of the physiological functions of
metabolites [11–13]. Lignans are widely used in disease prevention and treatment, food
production and processing, and industrial extraction methods.

Lignans are widely distributed in the roots, stems, leaves, and fruits of many plants.
They play various roles, including contributing to plant resistance, environmental adap-
tation, and pest-related cytotoxicity resistance [14]. Currently, most plant lignans are not
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extensively studied due to their low content or limited economic benefits. However, some
have gained importance due to their unique properties. For example, the well-known
antitumor drug, podophyllotoxin, originates from lignans of the genus Podophyllum in
the family Berberidaceae. Despite their low contents in plants, advancements in chemical
synthesis and synthetic biology are gradually increasing their significance [15]. Lignans
have been applied in various health fields, and they hold important positions among the
many phenolic compounds studied in health. Specifically, (-)-secoisolariciresinol (SECO),
an open-chain lignan found in flax, has been extensively studied due to its high content
and role as a precursor to mammalian lignans.

Lignans can be classified as plant lignans or animal lignans based on their origin. In
flax, SECO accounts for more than 95% of the lignan content [16,17]. Other lignans include
matairesinol (MAT), pinoresinol (PINO), sesamin (Ses), lariciresinol (LARI), larch resinol,
1 ariciresinol (LCS), syringaresinol, isolariciresinol, arctigenin, nordihydroguaiaretic acid,
and lilac. SECO and MAT are the most abundant lignans in flax, PINO in sesame, and
PINO and LCS in Brassica vegetables [18]. The lignan contents of some plants are shown in
Table 1.

Table 1. The lignans contents in different plants.

Plant Name
Different Lignans Content Total

Content Methods ReferenceSECO MAT PINO LAR

Oilseeds and nuts

Flaxseed 294,210 553 3324 3041 301,129 µg/100 g fresh
edible weight [18]

Flaxseed 7208 0 2 29 - µg/100 g wet basis [19]
Flaxseed
(whole) 11,845 26 383 220 - µg/100 g wet basis [18]
Flaxseed 369,900 1087 - - 370,987 µg/100 g dry wt [20]

Sunflower seeds 26.2 0.5 33.9 149.7 - µg/100 g wet basis [19]

Sesame seed 66 481 29,331 9470 39,348 µg/100 g fresh
edible weight [18]

Vegetables

Garlic 50 0 200 286 536 µg/100 g fresh
edible weight [18]

Curly kale 19 12 1691 599 2321 µg/100 g fresh
edible weight [18]

Broccoli 38 0 315 972 1325 µg/100 g fresh
edible weight [18]

Asparagus 743 14 122 92 1034 [16]
Cabbages

(Finnish database) 30.3 0.2 - - 30.5 Mean of the group [21]

Cabbages
(Dutch database) 8 2 335 255 600

Weighted mean (most
common
cabbages)

[21]

Fruit vegetables
(Finnish database) 5.49 0.01 - - 5.5 Weighted mean (tomato and

cucumber) [21]

Fruit vegetables
(Dutch database) 10 0 19 103 132

Mean of sweet pepper,
zucchini, cucumber and

tomato
[21]

Onion-family
vegetables

(Finnish database)
20 3.8 - - 23.8 Mean, SECO-value

weighted by onion [21]

Onion-family
vegetables

(Dutch database)
34 0 100 153 287 Mean of garlic, leek

and onion [21]

Fruits

Apricot 31 0 314 105 450 µg/100 g fresh edible
weight [18]

Strawberry 5 0 117 212 334 µg/100 g fresh edible
weight [18]

Peach 27 0 186 80 293 µg/100 g fresh edible
weight [18]

Yuzu 26 - 654 192 1291 µg/100 g wet basis [16]
Valencia orange 56 - 51 193 521 µg/100 g wet basis [16]
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Table 1. Cont.

Plant Name
Different Lignans Content Total

Content Methods ReferenceSECO MAT PINO LAR

Cereal and
grain products

Rye
(Finnish database) 40 55 - - 95 Weighted mean (whole

grain rye flour) [21]

Rye
(Dutch database) 23 20 246 175 458 Ryebread × 1.43 [21]

Wheat
(Finnish database) 20 5 - - 25 Weighted mean (wheat

flour) [21]

Wheat
(Dutch database) 12 0 29 60 99 Wheatbread × 1.43 [21]

Rice
(Finnish database) 26.4 1 - - 27.4 Means of

rice/rice-containing foods [21]
Rice

(Dutch database) 1.5 1 3.5 17.5 23.5 Means of white rice and
whole grain rice [21]

Pasta and
macaroni

(Finnish database)
6.8 0.4 - - 7.2 Mean of all pastas [21]

Pasta and
macaroni

(Dutch database)
18 5 0 4 9 Cooked pasta [21]

2. The Basic Types of Lignans

Lignans are widespread throughout the plant kingdom and are found in almost all
vascular plants. They are synthesized from mangiferous acid pathway initiation, with the
phenylalanine pathway leading to the common lignan precursor, PINO. This precursor is
then catalyzed by different enzymes along various pathways to produce lignans having
different structures, types, and functions. Although lignans typically contain two C6-C3
skeletons linked by C8, newly derived lignans exhibit a rich variety of structures, with
linkages occurring at other carbon positions besides C8 [19]. Additionally, different sub-
stitution patterns on the aromatic ring of the backbone and varying degrees of side chain
oxidation contribute to the diversity of lignans, making them a significant class of secondary
metabolites [16,20]. For clarity and classification, lignans are divided into eight subtypes:
dibenzyl butyrolactone, dibenzyl cyclooctadiene, dibenzyl butane, aryl naphthalene, aryl
tetrahydronaphthalene, furan, and furanone (Figure 1, only showing the example com-
pounds from the 4 subtypes). This classification is based on the carbon skeleton, the manner
in which oxygen binds to the skeleton, and the cyclization mode [16,19,21,22]. PINO, SYRI,
LARI, and Ses are furans, MAT is a dibenzyl butyrolactone, SECO is a 9,9′-dihydroxy
dibenzylbutane, and isolariciresinol is a 9,9′-dihydroxyaryltetrahydronaphthalene [23,24].
Each lignan subtype has its own unique and advantageous physiological activities. Among
these, dibenzylbutyrolactone lignans are particularly noteworthy, because they are widely
distributed in seed plants and found in nearly 200 species [23]. They are usually present as
free glycosides or glycosides. In flax, typical representatives of this type of lignan include
enterodiol, enterolactone, secoisolariciresinol, matiresinol, isoarctigenin, arctigenin, trachel-
ogenin, hydroxymatairesinol, pinoresinol, lariciresinol, and syringaresinol [25]. Although
these lignans are not abundant in flax, they have important physiological activities. MAT ex-
hibits anti-leukemia properties by inhibiting DNA, RNA, and protein synthesis in leukemic
cells [26]. Arctigenin has antiviral effects, inhibiting human immunodeficiency virus-1
replication and preventing the integration of viral DNA into the cellular genome [27].
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Figure 1. Example compounds of lignans in plants. PINO, SYRI, LARI, and Ses are furans, MAT
is a dibenzyl butyrolactone, SECO is a 9,9′-dihydroxy dibenzylbutane, and isolariciresinol is a
9,9′-dihydroxyaryltetrahydronaphthalene.

3. Lignan Synthesis and Regulation

The synthesis of most secondary metabolites in plants begins in the chloroplast, where
the metabolite erythrose-4-phosphate from the pentose phosphate pathway condenses
with phosphoenolpyruvate, an intermediate product of glycolysis, to form chorismate.
Chorismate is then converted to prephenic acid by chorismate mutase. Prephenic acid
is further catalyzed by prephenate aminotransferase to produce arogenic acid, which is
then converted to phenylalanine (Phe) by arogenate dehydratase. Among these three
catalytic enzymes, arogenate dehydratase is considered the key enzyme, and its activity is
usually inhibited by feedback from the Phe product. This pathway, known as the shikimic
acid pathway, occurs entirely in the plastid [28–32]. This pathway produces both Phe
and tyrosine, which are then transferred from the plastid to the cytoplasm. There, they
contribute to the synthesis of plant secondary metabolites such as lignans, anthocyanins,
and flavonoids [31].

The synthesis of lignans from Phe involves a multi-step reaction catalyzed by various
enzymes. The process begins with the deamination of Phe by Phe ammonia-lyase to
produce cinnamic acid. Cinnamic acid is then oxidized by cinnamate 4-hydroxylase to
produce p-coumaric acid, which undergoes further oxidation to produce caffeic acid. Caffeic
acid is then methylated by caffeic acid O-methyltransferase to form ferulic acid. Ferulic acid
is converted to its activated form, feruloyl-CoA, by 4-coumarate-CoA ligase. Feruloyl-CoA
is reduced to coniferyl aldehyde by cinnamoyl-CoA reductase. Finally, coniferyl aldehyde
is reduced to coniferyl alcohol by cinnamyl-alcohol dehydrogenase and sinapyl alcohol
dehydrogenase [33–35].

After the synthesis of PINO, the dirigent (DIR) guide protein couples two molecules
of PINO in a specific stereostructure to produce one molecule of pineol. The synthesis of
lignans from PINO can proceed via two different pathways. In one pathway, the furan
structure of PINO is reduced to produce dibenzylbutane lignans, such as the linseed lignan
SECO. In the other pathway, the furan structure of pineol remains intact, resulting in the
production of methylenedioxy-bridged furanone lignans, such as the sesquiterpene lignan
Ses [16,33,35,36]. In flax, the turpentine phenol is first reduced by PINO–LARI reductases
(PLRs), resulting in the complete conversion to LARI [37], and the further catalysis by PLRs
produces SECO [18,35,38]. Most secondary metabolites in plants exist in stable glycosylated
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forms. This glycosylation process is primarily mediated by the UGT family of enzymes,
and, in flax, it is mainly catalyzed by UGT74S1 [39,40].

There are three rate-limiting steps in the synthesis of SECO, and each is catalyzed by
three key enzymes, including stereoselective coupling by DIR-guided proteins, reduction
by PLR, and glycosylation by UGT enzymes to convert PINO in flaxseed into the water-
insoluble and stable SDG (Figure 2).

Figure 2. Lignan synthesis and regulation. The text on the green background represents the phenyl-
propanoid biosynthesis pathway. The text on the blue background represents the lignan biosyn-
thetic pathway.

The DIR family was first studied in forsythia in 1990, in which it is involved in lignan
biosynthesis [41]. Among the C6-C3 units synthesized by the Phe pathway, only pinealol is
dimerized in a stereospecific manner, with the DIR-directing protein playing a key role in
this process [42]. DIR family members encode both (−) and (+) PINO. The DIR encoding
(−) PINO is expressed early in flaxseed coat development, generating (+) SECO, which is
then used by UGT74S1 to catalyze the formation of (+) SDG. In contrast, the DIR encoding
(+) PINO is expressed later in plant stem and leaf development, generating (−) SECO,
which cannot form SDG [43]. Therefore, SDG is only detected in seeds [44].

Six potential DIR enzymes involved in the lignan synthesis pathway, LuDIR1–6,
were further investigated. LuDIR1 expression in plant stems and leaves corresponds
with the production of (+) PINO, whereas LuDIR5 and LuDIR6 are consistent with SDG
accumulation in the seed coat, with LuDIR5 playing the primary role [16,43]. Due to the
critical role of DIR proteins in lignan biosynthesis, studies have explored their application
in the biosynthesis of the well-known antitumor lignan podophyllotoxin [15,45].

The PLRs catalyze the conversion of PINO to SECO. Two enantioselective PLR en-
zymes, LuPLR1 and LuPLR2, are present in flax. LuPLR1 is associated with the location
and timing of SDG accumulation in the seed coat [46]. Moreover, the LuPLR1 promoter
contains a binding region for the phytohormone abscisic acid (ABA), which promotes the
transcriptional activation of LuPLR1. The addition of exogenous ABA enhances LuPLR1
transcription and facilitates the accumulation of SDG [44,47]. These results suggest that
LuPLR1, with its enzyme activity and transcriptional expression regulated by ABA, is
involved in the biosynthesis of lignans that promote SDG accumulation. LuPLR1 is mainly
present in the seed coat, whereas LuPLR1 and LuPLR2 can be detected in plant roots
and seeds. However, LuPLR2 is only expressed in stems and leaves, indicating that the
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abundant accumulation of SDG in seeds is not catalyzed by LuPLR2 [48]. LuPLR2 promotes
the accumulation of yatein, which may be related to plant defense [37,44,46,49,50].

In the final step of SDG synthesis, SECO is catalyzed by the GT family to form a
glycosylated structure, which is then linked to hydroxymethylglutaric acid to form an
SDG–HMG complex that is stored in the flaxseed shell [43,51]. The plant GT family
members are uridine glycosyltransferases (UGTs), which have the main role of catalyzing
the transfer of activated UDP glycosides to specific receptor molecules [52–54]. This process
increases the complexity and diversity of phytochemical structures, while also ensuring
the stability and water solubility of plant natural products [55]. In flax, 137 UGT genes
have been identified [40]. Further studies identified five UGT family enzymes, UGT74S1,
UGT74T1, UGT89B3, UGT94H1, and UGT712B1 as having conserved sequences. Among
them, UGT74S1 and UGT94H1 are highly expressed during seed development and are
co-expressed with PLR, a key enzyme for SECO synthesis. The expression patterns of these
genes are correlated with SDG biosynthesis, but UGT74S1 is the only enzyme that catalyzes
the formation of SECO monoglucoside from SECO and further catalyzes the production of
SDG from SECO monoglucoside [39,40,51]. Another study showed that mutating UGT74S1
prevents SECO from forming SDG, further demonstrating that UGT74S1 is the only enzyme
responsible for catalyzing the glycosylation of SECO into SDG in flax [56].

4. Lignan Metabolic Pathways

After ingestion by animals, lignans from plants are first hydrolyzed in the gastroin-
testinal tract. This process releases SDG from its complex, converting it to SECO, which
undergoes O-demethylation, dehydroxylation, and dehydrogenation reactions, primarily
by bacteria in the colon, to produce enterolactone (EL). Enterodiol (EN) and EL were first iso-
lated from human and animal serum, intestine, and bile samples in the early 1980s [57,58].
Due to their estrogenic and anti-estrogenic activities in humans and their plant origin,
EN and EL are classified as phytoestrogens. Because they are produced in the intestines
of animals, they are also referred to as mammalian lignans or enterolignans. Not only
SECO, but also MAT, ART, syringaresinol, PDG, and Ses can undergo a series of intestinal
reactions to eventually produce EL. However, due to lower levels and the higher number
of required reactions, these lignans are significantly less utilized compared with the flax
lignan SDG. Approximately 100% LARI, 72% SECO, and 55% PINO are metabolized to
produce EN, whereas 62% MAT and EN are metabolized to EN [23,59–63]. The formation of
these animal lignans plays an important physiological role in the body. The health benefits
of flaxseed consumption are largely derived from EL and its oxidation products [64–67].
ED and EL are mainly absorbed in the colon. The key bacterial groups involved in con-
verting plant lignans to animal lignans in the intestine have been identified [68–71]. Their
identification has not only pinpointed the main contributors to the conversion process but
has also enabled the in vitro production of animal lignans [70,72]. The deglycosylation of
SDG is mainly carried out by bacteria, such as Bacteroides distasonis, Bacteroides fragilis, and
Bacteroides ovatus, to produce SECO [59]. SECO is further demethylated by Butyribacterium
methylotrophicum, Eubacterium callanderi, and other strains to produce dihydroxyenterodiol
(2,3-bis (3,4-dihydroxybenzyl)-1,4-butanediol). Clostridium scindens and Eggerthella lenta
then dehydroxylate SECO to produce EN, which is finally converted to EL by Lactococcus
spp., Ruminococcus spp., and others [61]. Through these conversion steps, plant lignans,
like SDG, are successfully converted into animal lignans, like EL. EL is then absorbed by
intestinal cells, conjugated with glucosinolates or sulfates, and transported to the liver
where it undergoes two stages of metabolism. Some metabolites partly return to the intes-
tine via the hepatic intestinal circulation, while others circulate through the body via the
bloodstream to exert physiological effects (Figure 3) [6,73].
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Figure 3. Lignan metabolic processes in humans.

5. Lignan Extraction, Isolation, Purification, and Toxicity

Lignans with various benefits have been applied in the food, clinical, and medical
fields. Compared with chemical synthesis, the direct extraction of lignans from flax offers
advantages, such as higher returns, simplicity, and cost-effectiveness. Consequently, several
studies have focused on extracting and isolating flax lignans to achieve higher yields and
product purity levels [12,18,74–80]. The extraction of lignans mainly refers to the flax
lignan SDG, which is first released from its complex with HMG during the extraction
process [81]. Because SDG is mainly located in the shell of the encapsulated flaxseed,
accounting for 22.6% of the total seed weight, some studies have used flaxseed shells
directly for extraction to achieve higher purity lignans [75,77,82]. To obtain higher purity
lignans, whole flaxseed or defatted flaxseed powder have been used for extraction [83–85].
After grinding, the samples are first degreased using organic solvents like hexane, because
the oil in the seeds can affect subsequent treatments [86]. The lignans are then extracted
using organic solvents, typically ethanol, and supercritical fluid extraction and ultrasonic-
assisted extraction methods to improve efficiency [4,75,84,85,87]. Separation, quantification,
and identification are usually carried out using high-performance liquid chromatography,
chromatography-tandem mass spectrometry, nuclear magnetic resonance spectrometry, and
other techniques [75,79,83,88,89]. In recent years, several methods have been used to extract
lignans, with the yield and purity of the products varying in method-dependent manners.
The yield and purity of SDG depend significantly on the method and solvent used during
extraction. Strong acids can break ester and glycosidic bonds, producing deglycosylated
SDG or SECO, whereas alkaline hydrolysis only breaks ester bonds. Therefore, current
extraction methods usually use alkaline hydrolysis to obtain intact SDG [75,83]. In some
studies, the extraction methods were optimized by refining various conditions to obtain the
highest lignan yield. The highest reported yield is 23.3 mg/g under optimal conditions [75].

Flaxseed contains excellent bioactive substances and has multiple health benefits,
such as the ability to prevent and treat various diseases including cancer. Flaxseed also
contains potential toxic substances and anti-nutritional factors, with the main toxins being
multifaceted [90]. In order to improve nutritional and functional characteristics, advanced
technologies are needed to remove the toxins without affecting their nutritional value,
such as by inhibiting the genes that produce the toxins. The safety of flaxseed is still
controversial, especially when consumed frequently in large quantities. In addition, the
content of cyanogenic glycosides will increase due to the concentration effect of oil removal,
and high levels of cyanogenic glycosides will limit the use of flaxseed powder as animal
feed and its sales in various markets. Flaxseed protein is a prominent active compound
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with excellent health benefits. However, there are still some unresolved issues, such
as the improvement of enzymatic hydrolysis conditions for bioactive peptides, clinical
applications, and the elucidation of cellular toxicity mechanisms in some graded and
purified structures [90]. Given the characteristics of peptides, including molecular weight,
net charge, and hydrophobicity, it is necessary to develop improved purification processes
by combining different separation methods, and to determine their roles and functions
in living systems [91]. There is a lack of data on the toxicity caused by flaxseed oil, cyclic
peptides, and polysaccharides. The dose-dependent toxicity of bioactive compounds from
flaxseed (lignans, proteins, and oils) needs to be explored under different conditions and in
different in vitro, animal, and human models [91,92]. To study the toxicity and cytotoxicity
of flaxseed compounds, it is important to examine the role and function of flaxseed bioactive
compounds in living systems. The role of these compounds in organisms, such as their
functions, anti-tumor mechanisms, and applications, is not yet clear [92,93]. Flaxseed cyclic
peptides have potential in the fields of affinity purification, fluorescence and antibody
production, structural elucidation, and tumor activity relationships, and their effects on
cell behavior need further exploration.

6. The Roles of Lignans in Human Health

After flaxseed consumption by humans and rats, SECO, mammalian lignans, intestinal
lipids, and intestinal diols have been detected in urine, revealing significant increases in
both blood and urinary excretions [72]. Lignans are metabolized by the human intestinal
flora into EN and EL, which are absorbed through the intestinal tract, enter the hepatic
intestinal circulation, and eventually reach the bloodstream, where they exert their phys-
iological effects. The physiological activities of lignans in the body focus on reducing
menopausal symptoms, heart disease, osteoporosis, and breast cancer risk [94]. For exam-
ple, SDG can reduce the risk of breast cancer by delaying N-methyl-nitrosourea-induced
tumorigenesis through the regulation of terminal differentiation [95].

Flax lignans exert their beneficial effects through intestinal lipids and metabolites
that circulate to specific organs. Their physiological activity is primarily based on their
estrogenic, anti-estrogenic, and antioxidant effects. For example, lignans exhibit strong
antioxidative activities, functioning as hydroxyl radical scavengers. Recently, many new
lignans with anti-inflammatory and antiviral activities have been discovered [96].

The health benefits of flaxseed are related to its high content of unsaturated fatty
acids, which help reduce LDL-C, lower blood lipids, reduce blood viscosity, improve blood
circulation, and prevent cardiovascular diseases. The lignans, particularly those related to
podophyllotoxin, an important anti-cancer drug, have anti-cancer effects that are closely
related to their phytoestrogenic and antioxidant properties [97].

Flax lignan consumption may prevent and reduce the risk of breast cancer, with
varying effects observed before and after menopause. This difference may be related
to hormonal changes, because estrogen promotes the occurrence and growth of breast
cancer. After menopause, when estrogen levels decline, the preventive effect of lignan
consumption appears more significant [98]. Phytoestrogen lignans are taken by mammals
and converted into animal enterolignans, such as EL and EN. These enterolignans enter the
bloodstream and compete with the animal estrogen estradiol for estrogen receptors α and
β, thereby exerting preventive and delaying effects on hormone-sensitive tumors. These
lignans exhibit both estrogenic and anti-estrogenic activities in vivo. Due to their structural
similarity to estradiol, EL and EN compete for estrogen receptors in vivo, reducing the
occurrence and development of breast cancer (Figure 4) [66,99,100].
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Figure 4. Functions of lignans in humans and their use.

Over the years, lignans have been extensively studied for their physiological activi-
ties, especially their antioxidative activities [101,102]. The antioxidative activity of SDG
is expressed through its metabolites, ED and EL, which are effective in lowering serum
cholesterol and reducing the development of atherosclerosis [101]. Consequently, the
antioxidative activity of SDG significant contributes to delaying hypercholesterolemic
atherosclerosis and diabetes. Additionally, high SDG intake reduces liver serum triglyc-
erides and cholesterol, suggesting that lignans have lipid-lowering effects (Figure 4) [103].

7. Summary and Outlook

This paper discussed the discovery of lignans in plants and the subsequent studies
on their extraction, optimization, synthetic pathways, metabolism, bioavailability, and
anti-disease mechanisms. As living standards have improved, the disease-preventive phys-
iological activities of lignans have garnered increased attention. Various lignans extracted
and identified from different plants have shown clear antiviral and anti-inflammatory ef-
fects. The important antitumor lignans, onychotoxins, play important roles in medicine and
have also prompted the industrial production of lignans using synthetic biology. SDG is the
most abundant lignan in flax, and its synthesis pathway is well-studied. However, there is
limited research on the transcription factors that regulate the key enzymes of the pathway,
and the downstream pathways of SDG metabolism remain largely unexplored. While
research has elevated SDG as the most utilized lignan, there is potential for downstream
products having higher utilization values, as exemplified by podophyllotoxins. Therefore,
identifying and utilizing key genes and downstream products in lignan synthesis represents
a promising direction for future lignan research.
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