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Abstract: Background/Objectives: Hyperuricemia (HUA) is a common metabolic disease caused
by purine metabolic disorders in the body. Portulaca oleracea L. (PO) is an edible wild vegetable.
Methods: In this study, the regulatory effect of PO on HUA and its potential mechanism were initially
elucidated through network pharmacology and experimental validation. Results: The results showed
that PO from Sichuan province was superior to the plant collected from other habitats in inhibiting
xanthine oxidase (XOD) activity. Berberine and stachydrine were isolated and identified from PO for
the first time by UPLC-Q-Exactive Orbitrap MS. The potential molecular targets and related signaling
pathways were predicted by network pharmacology and molecular docking techniques. Molecular
docking showed that berberine had strong docking activity with XOD, and the results of in vitro
experiments verified this prediction. Through experimental analysis of HUA mice, we found that PO
can reduce the production of uric acid (UA) in the organism by inhibiting XOD activity. On the other
hand, PO can reduce the body ‘s reabsorption of urate and aid in its excretion out of the body by
inhibiting the urate transporter proteins (GLUT9, URAT1) and promoting the high expression of urate
excretory protein (ABCG2). The results of H/E staining showed that, compared with the positive
drug (allopurinol and benzbromarone) group, there was no obvious renal injury in the middle- and
high-dose groups of PO extract. Conclusions: In summary, our findings reveal the potential of wild
plant PO as a functional food for the treatment of hyperuricemia.

Keywords: hyperuricemia; Portulaca oleracea; xanthine oxidase; ABCG2; berberine

1. Introduction

With the improvement of modern living standards, people‘s dietary patterns have
begun to develop towards high purines, and the number of patients with hyperuricemia
(HUA) has, accordingly, also increased [1,2]. Many studies have shown that HUA is due
to the disorder of the purine metabolism or the obstruction of UA excretion in the body,
which eventually leads to a high concentration of UA in serum, which then evolves into a
metabolic disease that endangers human health [3,4].

Uric acid (UA) is the end-product of a purine metabolism series in the body [5]. UA
homeostasis is maintained by multiple organs in the body. After UA is formed, about 1/3
of it is excreted through the gastrointestinal tract and 2/3 is excreted through the kidney
tissue [6]. Eventually, the remainder is reabsorbed into the bloodstream [7]. Researchers
have found that with an increase of UA levels, urate crystals gradually formed in the
tubules and interstitia of the kidneys, ultimately leading to pathological damage to kidney
tissue [8,9]. Excessive accumulation of urate may trigger diseases such as gout, which
seriously affects the daily lives of patients [10].
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The main factor contributing to the cause of HUA is a dysfunction of urate transport
in the kidneys or a blockage of the transport pathway. In renal tissues, urate transporter
proteins include URAT1 (SLC22A12), OAT4 (SLC22A11), OAT10 (SLC22A13), and GLUT9
(SLC2A9). Excretory proteins include ABCG2, ABCC4, and NPT1 (SLC17A1). OAT1
(SLC22A6), OAT2 (SLC22A7), and OAT3 (SLC22A8) proteins, on the outside of the cellular
basement membrane, are similarly involved in urate transport [11–15]. In addition, XOD,
as a key enzyme in UA production, is often considered an important target in HUA
studies [16]. Allopurinol, benzbromarone, and febuxostat, which are widely used in clinical
practice, have been associated with serious adverse effects [17–20]. In contrast, natural
drug preparations often have the advantages of multi-target regulation and low levels
of side-effects, and have shown great potential in the field of HUA treatment in recent
years [21–23].

Portulaca oleracea L. (PO) is an annual herb of Caryophyllaceae and Portulacaceae,
with fleshy, branched, and light-red stems. It is distributed all over the world, mainly in
temperate and tropical regions, and is distributed throughout many provinces in China.
It is an edible wild plant [24]. People in many countries, such as Spain, Greece, Italy,
Turkey, the United States, and China, cook it as a traditional dish. It is one of the famous
medicinal and edible wild plants in China, one which is called the “longevity vegetable”
in traditional folklore [25–28]. PO is rich in a variety of bioactive substances, including
polysaccharides, alkaloids, unsaturated fatty acids, flavonoids, terpenoids, proteins, vita-
mins, and minerals [29,30]. In ancient Chinese traditional prescriptions, it has the functions
of detoxification, detumescence, anti-inflammation, diuresis, and so on. In folk medicine, it
is used to treat bloody diarrhea [28,31]. In recent years, studies have found that the extracts
of PO have a wide range of pharmacological activities, including anti-inflammatory [32],
anti-diabetic [33], anti-bacterial [34], anti-ulcer [35], anti-oxidation, and immunomodula-
tory effects [36]. However, there have not yet been any clinical reports demonstrating its
efficacy in lowering UA.

Within the realm of traditional Chinese medicine, considerable emphasis is placed on
authentic medicinal materials, denoting those cultivated in specific regions and possessing
superior therapeutic efficacy and a more stable quality compared with the same herbs from
other origins. Consequently, we meticulously chose four emblematic regions across China,
varying in both longitude and latitude, specifically, Sichuan, Henan, Guangdong, and Jilin,
to meticulously analyze and juxtapose the inhibitory prowess of PO against XOD, whilst
theoretically forecasting PO’s plausible targets in HUA treatment through the application
of LC-MS technology, network pharmacology, and molecular docking. Finally, the pertinent
mechanism was further elucidated by in vivo experiments.

2. Materials and Methods
2.1. Materials

The aerial parts of PO were harvested from four distinct locations: Mianyang City,
Sichuan Province (104◦44′ E, 31◦53′ N); Luoyang City, Henan Province (112◦4′ E,
34◦20′ N); Guangzhou City, Guangdong Province (113◦15′ E, 23◦06′ N); and Changchun
City, Jilin Province (125◦42′ E, 31◦53′ N). These specimens were meticulously identified by
Professor Shuwen Guan of the College of Life Sciences, Jilin University.

XOD and xanthine (XA) were purchased from Shanghai Yuanye Bio-Technology Co.,
Ltd. (Shanghai, China). Methanol and formic acid were purchased from ThermoFisher,
Waltham, MA, USA. Berberine (HPLC ≥ 98%) and stachydrine (HPLC ≥ 98%) were pur-
chased from Aladdin Reagent Co., Ltd. (Shanghai, China). Yeast extract was purchased
from Beijing Oberstar Biotechnology Co., Ltd. (Beijing, China). Allopurinol was pur-
chased from Jiangsu World Trade Tianjie Pharmaceutical Co., Ltd. (Yancheng, China).
Benzbromarone was purchased from Herman Pharma Kft. (Hungary, Germany). UA,
XOD, blood urea nitrogen (BUN), and serum creatinine (SCr) kits were purchased from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China). The following primary anti-
bodies were purchased from Proteintech Group, Inc. (Wuhan, China): ABCG2 (27286-1-AP,
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1:1000), GLUT9 (26486-1-AP, 1:600), and URAT1 (14937-1-AP, 1:1500). The β-actin (GB15003,
1:2000) and horseradish peroxidase (HRP)-labeled anti-rabbit IgG (GB23303, 1:5000) were
purchased from Wuhan Servicebio Technology Co., Ltd. (Wuhan, China).

2.2. Preparation of PO Extract

The aerial parts of freshly picked PO were dried and crushed, and then passed through
a 60-mesh sieve. PO powder was mixed with distilled water at a ratio of 1:12 (w/v) and
extracted at 60 ◦C for 3 h. During the extraction, PO water extract and water-extract residue
were obtained by ultrasonic-assisted extraction and vacuum filtration. Then, ethanol was
used to extract the water extraction-filter residue under the same conditions to obtain the
ethanol extract. The water extract and the ethanol extract were then mixed and, following
this, concentrated using a vacuum rotary evaporator, and the PO extract was obtained
after vacuum drying. Subsequently, the extract was resuspended in ultrapure water for
subsequent experiments.

2.3. XOD Inhibition-Ability Experiment

Based on the formation of UA catalyzed by XOD, a stable enzymatic reaction system
was established [37]. Firstly, 0.08 U/mL XOD was added to the system containing substrate
(1.5 mm xanthine, XA) and inhibitor (sample concentrations were 1000, 500, 400, 250, 200,
and 100 µg/mL, respectively), and then the catalytic reaction was carried out at 37 ◦C for
30 min. Subsequently, the absorbance was measured by a spectrophotometer at 295 nm,
and the XOD inhibition rate was calculated according to the following formula:

XOD Inhibition rate (%) =
(A − B)− (C − D)

A − B
× 100%

A: OD295 nm solution containing XA and XOD.
B: OD295 nm solution containing only XA.
C: OD295 nm solution containing inhibitors, XA, and XOD.
D: OD295 nm solution containing inhibitors and XA.

2.4. Compositional Analysis

PO extracts were identified by UPLC-Q-Exactive Orbitrap MS [38]. A sample of 0.15 g
was weighed, and 1000 µL 80% methanol and grinding beads were added. Grinding pro-
ceeded for 5 min, and then the mixture was vortexed for 10 min. During the centrifugation
at 4 ◦C for 10 min, the centrifugal force was 20,000× g. The supernatant was then filtered
and injected for analysis.

An Ultimate AQ-C18 chromatographic column (150 × 2.1 mm, 1.8 µm, Welch Technol-
ogy (SHANGHAI) Co., Ltd., Shanghai, China) was used in this study. The mobile phase A
was composed of 0.1% (v/v) formic acid and water. The B phase was methanol. Gradient
elution was performed under the following conditions: 98% A phase (0–1 min), 98–80%
A phase (1–5 min), 80–50% A phase (5–10 min), 50–20% A phase (10–15 min), 20–5% A
phase (15–20 min), 5% A phase (20–27 min), 5–98% A phase (27–28 min), and 98% A phase
(28–30 min). The fixed flow rate was 0.30 mL/min, the temperature of the automatic sam-
pler was 10.0 ◦C, the column temperature was 35 ◦C, and the injection volume was 5.00 µL.
The mass spectrometer was equipped with a Q Exactive ESI source with a scan range of m/z
150–2000. The detection method selected was data-dependent tandem mass spectrometry
(dd-MS2) for full-mass scanning. The resolution of the full-mass scanning was 70,000, and
the resolution for the dd-MS2 was 17,500. The voltage of the ion jet needle was 3.2 kV
(positive). The capillary temperature was 300 ◦C. The collision gas was high-purity argon
(purity ≥ 99.999%). The sheath gas was nitrogen (purity ≥ 99.999%) 40 Arb; the auxiliary
gas was nitrogen (purity ≥ 99.999%), 15 Arb; and the heater temperature was 350 ◦C. The
data acquisition time was 30.0 min.

The analysis of berberine and stachydrine in the PO was based on the methods of Ren
et al. [39] and Yan et al. [40]. Berberine (HPLC ≥ 98%) and stachydrine (HPLC ≥ 98%)
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were dissolved in methanol and treated with ultrasound for 5 min to prepare a standard
stock solution, with a concentration of 5 µg/mL, for subsequent analysis.

2.5. Identification of Candidate Targets of PO with Effects on HUA

The PO potential targets were predicted by the TCMSP database [41] (https://tcmsp-
e.com/index.php/, accessed on 12 March 2024), Targetnet database [42], and SwissTarget-
Prediction [43] (http://www.swisstargetprediction.ch/, accessed on 12 March 2024). The
above collected targets were merged and de-weighted using the UniProt database [44] (http:
//www.uniprot.org, accessed on 12 March 2024) and further standardized into official gene
names for subsequent analysis. Employing “hyperuricemia” as the search term, disease-
associated targets were explored within the CTD [45] (http://ctdbase.org/, accessed on 12
March 2024), OMIM [46] (https://omim.org/, accessed on 12 March 2024), and DisGeNET
databases [47] (https://www.disgenet.org/, accessed on 12 March 2024), with the results
subsequently being merged and de-duplicated to procure hyperuricemia-associated targets.
Finally, the Venny2.1.0 online utility (https://bioinfogp.cnb.csic.es/tools/venny, accessed
on 12 March 2024) was employed for visual examination of the intersecting elements
between the disease-associated and PO targets. The members of the intersecting target
ensemble were regarded as putative therapeutic targets for both PO and HUA.

2.6. Analysis of Protein−Protein Interaction Network

The collected intersecting targets were imported into the String database [48] (https://cn.
string-db.org/, accessed on 12 March 2024), the free genes were removed, and confidence levels
were selected to obtain a PPI network graph for PO treatment of HUA, in which the nodes
represent the potential targets and the connecting lines represent their interactions. The nodes
were saved and imported into Cytoscape 3.7.1 software [49] for visualization and analysis, and
the importance of the nodes in the network was evaluated by using the degree value after
the topological network analysis; the larger the value of the degree was, the greater was the
relevance and the more effective the effect of the node in the network.

2.7. Construction of Gene Enrichment Analysis

The bioinformatics analysis platform DAVID database [50] (https://david.ncifcrf.
gov/, accessed on 13 March 2024) was used to perform GO annotation of biological
processes, cellular components, and molecular functions, in addition to KEGG pathway
enrichment analysis of the above PO and HUA intersection targets. The obtained results
were arranged in descending order according to their −lg(P) values, and the results were
visualized and analyzed using the microbiology platform (https://www.bioinformatics.
com.cn/login/, accessed on 13 March 2024) in order to explore the relevant mechanism of
action of PO in treating HUA.

2.8. Molecular Docking Validation

The 3D structural information associated with the berberine molecule was downloaded
using the PubChem database [51] (pubchem.ncbi.nlm.nih.gov/, accessed on 13 March 2024),
and the XOD protein and its ligand complexes were obtained from the PDB protein structure
database (htps://www.rcsb.org/, accessed on 13 March 2024); water molecules and ligands
of target proteins were removed using PyMOL 2.5.7 software, the 3D structure of SDF was
converted to PDB format, and the receptor and ligand were pre-processed using AutbDock
Tools and then saved in PDBQT format for use. Finally, molecular docking of the ligand and
receptor was performed using AutoDock 4.2.6 software [52]. It is generally accepted that
when the docking score is less than −7.0, it indicates significant binding activity between
the active ingredient and the target; less than −5.0 indicates good binding activity between
the two; less than −4.25 indicates the presence of some binding activity [53].

https://tcmsp-e.com/index.php/
https://tcmsp-e.com/index.php/
http://www.swisstargetprediction.ch/
http://www.uniprot.org
http://www.uniprot.org
http://ctdbase.org/
https://omim.org/
https://www.disgenet.org/
https://bioinfogp.cnb.csic.es/tools/venny
https://cn.string-db.org/
https://cn.string-db.org/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://www.bioinformatics.com.cn/login/
https://www.bioinformatics.com.cn/login/
pubchem.ncbi.nlm.nih.gov/
htps://www.rcsb.org/
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2.9. Establishment of HUA Mouse Model

All experimental procedures involving animals adhered strictly to the guiding prin-
ciples for animal care and use outlined by the Animal Experiment Ethics Committee of
Jilin University (Changchun, China), in accordance with the regulations stipulated by
the Committee for Animal Use and Care and the principles established in the Helsinki
Declaration. SPF-grade male C57BL/6J mice, aged 4–6 weeks, weighing 20 ± 2 g, were
purchased from Liaoning Changsheng Biotechnology Co., Ltd. (Shenyang, China), under
license number SCXK (Liao) 2020-0001. The experimental animals were not genetically
modified during the experiment. The mice were accommodated in the Jilin University
Experimental Animal Platform, where they had unrestricted access to sterile water and
food. The animals were maintained under controlled conditions of (22 ± 2) ◦C and 60%
humidity, and subjected to a 12 h light/dark cycle. After 1 week of adaptive feeding, the
mice were randomly divided into groups. The change in body weight of each mouse was
recorded for subsequent equivalent dose conversion based on body weight.

Referring to the method of Dai et al. [54], the HUA mouse model was induced using
gastric gavage with yeast paste. Except for the control group (n = 8), the mice received daily
gastric gavage of yeast paste at a dosage of 20 g/kg. After 14 days of pretreatment, the mice
were randomly divided into six groups as follows: the model group; the allopurinol group
(7.6 mg/kg); the benzbromarone group (7.6 mg/kg); and low-, medium-, and high-dose
PO groups (0.5, 1, and 2 g/kg, LPO, MPO, HPO, respectively) (n = 8 per group). Following
this, daily gastric gavage with yeast paste was performed every morning to sustain clinical
manifestations of HUA, followed by daily drug administration for 7 consecutive days in
the afternoon. On the final day of treatment, mice were euthanized with carbon dioxide
2 h after administration. Blood samples were collected and centrifuged at 3000 rpm, 4 ◦C
for 15 min to separate serum. The levels of UA, XOD, creatinine (SCr), and urea nitrogen
(BUN) in serum were detected by detection kit. Following extraction, mice liver and kidney
tissues were rinsed with physiological saline, air-dried, and weighed post-absorption of
moisture; the left kidney tissues were fixed in 4% paraformaldehyde for histopathological
examination, and the right kidney tissues were stored at −80 ◦C for subsequent analysis.

2.10. Western Blot Analysis

Kidney tissues were subjected to lysis utilizing RIPA buffer supplemented with pro-
tease inhibitors. Protein concentration was quantified employing the bicinchoninic acid
(BCA) protein assay kit. Subsequently, proteins were fractionated via sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently transferred onto
polyvinylidene difluoride (PVDF) membranes. Following blocking with 5% non-fat milk
for 2 h, the membranes were then incubated overnight at 4 ◦C with antibodies targeting
ABCG2, GLUT9, and URAT1. Subsequent to this, the membranes were exposed to sec-
ondary antibodies for a duration of 1.5 h. Lastly, the membranes underwent washing and
imaging utilizing an enhanced chemiluminescence (ECL) detection kit. Band intensities
were quantified utilizing Image J software (version 1.54).

2.11. H/E Staining and IHC Analysis

The kidney tissues, fixed and embedded, underwent precision slicing into 4 µm
sections. Following meticulous deparaffinization employing a gradient of xylene and
ethanol, the sections underwent staining with hematoxylin/eosin (H/E).

Upon deparaffinization, endogenous peroxidase activity was effectively inhibited
using 3% hydrogen peroxide, and subsequent blocking of the sections was achieved with 3%
BSA. Subsequently, the sections were incubated overnight at 4 ◦C with primary antibodies
targeting ABCG2, GLUT9, and URAT1. Following this, the sections were subjected to a 1 h
incubation at room temperature with secondary antibodies, followed by detection utilizing
DAB chromogen and subsequent counterstaining with hematoxylin.
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2.12. Statistical Analysis

The values are expressed as the mean ± SEM/SD in multigroup animal experiments.
One-way ANOVA was used to analyze the significance of differences, and a value of
p < 0.05 was considered statistically significant; highly significant differences were indicated
at p < 0.01. All statistical analyses were performed using GraphPad Prism 8 software. IHC
and Western Blot analyses were performed by Image J, and subsequently employed for
densitometric analysis.

3. Results
3.1. In Vitro XOD Inhibition Experiment

Figure 1 demonstrates the inhibition effect of PO on XOD for the Sichuan, Henan,
Guangdong, and Jilin samples; the degree of inhibition of XOD by PO extracts from different
geographical regions and different concentrations was calculated based on the absorbance
(OD) at 295 nm of the reaction systems of each group. The corresponding IC50 inhibition
curves were plotted using GraphPad Prism 8. According to the enzyme inhibition rate
curves, it can be seen that the PO extracts showed concentration dependence, and the best
inhibition of XOD was achieved by the PO from Sichuan, with an IC50 value of 160 µg/mL;
we therefore chose the PO from Sichuan for the subsequent experiments.
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Figure 1. (A) Photograph of the aerial parts of Portulaca Oleracea. (B) Mechanism map of purine
metabolism and uric acid excretion pathway (Created in bioRender). (C) Inhibitory effect of PO
extracts from different producing areas on XOD, in vitro.
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3.2. Analysis of PO Components from Sichuan

UPLC-Q-Orbitrap MS was used to characterize the major components in the PO
extract in both positive and negative ion modes. The total ion chromatogram of PO is
shown in Figure 2A. The compounds with the best matching score for mzCloud (above 90)
in the possible molecular formula deduced from the high-resolution mass spectrometry
information were selected and analyzed, in combination with data from the literature.
Trigonelline, betaine, stachydrine, berberine, salsolinol, baicalin, tangeritin, nobiletin, cur-
cumin, scopoletin, vanillin, lupeol, cafestol, oleanolic acid, salsolinol, and other components
were screened. Among them, stachydrine and berberine were, for the first time, detected
in PO, in the sample produced in Sichuan. Berberine has broad-spectrum antibacterial
activity and can potentially be used as a drug for the treatment of various diseases [55].
Stachydrine is a multifunctional bioactive substance with great potential in the treatment
of many diseases [56].

In order to verify the presence of stachydrine and berberine in PO samples more accu-
rately, they were compared with the corresponding standards using the LC-MS technique.
In Figure 2B,C, the retention times of the samples showed RT1 = 2.36 min and RT2 = 3.41
min, values which were consistent with the retention times of the standards, which were
Rt = 2.37 and 3.41 min, respectively. Furthermore, in the MS2 spectra shown in
Figure 2D,E, target compound 1 was found to produce ions at m/z 144.10 [M + H],
m/z 84.24, m/z 58.33 and m/z 42.48, yielding fragment ions in agreement with the stachy-
drine standard comparison. Similarly, target compound 2 produced fragment ions at m/z
336.12 [M + H], m/z 320.17, and m/z 292.10, in agreement with the berberine standards.
Eventually, the two compounds were identified as stachydrine and berberine.
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Figure 2. PO component analysis by UPLC-Q-Orbitrap MS. (A) Total ion chromatogram (TIC).
(B) LC-MS chromatograms of the stachydrine (RT: 2.37) and berberine (RT: 3.41) standards.
(C) LC-MS chromatograms of the stachydrine (RT: 2.36) and berberine (RT: 3.41) in the sample.
(D) LC-MS chromatograms of the stachydrine ion channel (left) and MS2 spectra (right) for the
separated sample. (E) Ion channel chromatogram (left) and MS2 spectra (right) of berberine in the
separated sample.
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3.3. Construction of the Component–Target–Disease Network and Analysis of the PPI Network

A total of 82 cross-targets were screened by the Venn intersection of PO component-
related targets and HUA disease-related targets which had been identified as potential
therapeutic targets for HUA (Figure 3A). The interactions between target proteins are
shown in Figure 3B. The PPI network contained 82 nodes and 712 edges. After processing,
a total of 15 key targets were obtained: ABCG2, PPARG, HMGCR, CASP3, PARP1, MCL1,
BCL2, ESR1, TNF, ACE, SIRT1, ICAM1, REN, PTGS2, GCG. Through the analysis of
these key targets, it was found that the XDH (XOD), ABCG2 protein and its associated
SLC22A12 (URAT1) protein were closely related to urate transport, anion transport, small
molecule transport, and purine-containing compound metabolism, which are common
targets in HUA research. Therefore, we selected proteins such as ABCG2 and URAT1 for
further study.
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The intricate network depicting the components, targets, and pathways influenced by
PO in addressing HUA is visually represented in Figure 3C. The left side, depicted in orange,
signifies the active constituents present in PO, while the right side, in green, delineates
the pertinent signaling pathways identified through KEGG enrichment analysis. The
intersecting targets of these components and pathways are depicted in blue. Subsequent
topological analysis, facilitated by plugins, unveiled potential biological impacts of PO on
HUA, targeting key elements like RELA, CASP9, BCL2, CASP3, CDK4, and TNF. These
interactions are implicated in pivotal signaling cascades, encompassing the cancer, PI3K-
Akt, p53, and NF-κB pathways, among others.

3.4. Enrichment Analysis of Related Pathways and the Biological Process

The comprehensive GO analysis resulted in the identification of a remarkable
1124 entries related to biological processes (BP), encompassing a diverse array of phe-
nomena ranging from rhythmic processes to intricate hormonal regulatory mechanisms
and responsive reactions to organic substances, among others (as illustrated in Figure 4A).
Moreover, the analysis unveiled 46 distinct entries associated with cellular components
(CC), spanning crucial entities like the cytoplasm, receptors, and extracellular regions.
Additionally, it elucidated 97 entries pertaining to molecular functions (MF), exemplified by
crucial interactions such as protein kinase binding, chromatin binding, and oxidoreductase
activity, among others.
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Subsequent enrichment analysis of KEGG pathways unveiled their intricate association
with various critical signaling cascades, notably encompassing cancer-related pathways, the
AGE-RAGE signaling pathway implicated in diabetic complications, the pivotal PI3K-Akt
signaling cascade, the regulatory p53 signaling pathway, and the intricate NF-κB signaling
pathway, among others (as depicted in Figure 4B).

3.5. Molecular Docking and Residue Interaction

With the aid of PyMOL software, the binding pocket of the berberine–XOD complex
was visualized (Figure 4C), having a binding energy of approximately −10.00 kJ-mol−1,
in which amino acid residues located within approximately 4.0 Å (Å) of the berberine
have been highlighted. After careful screening, we have targeted a series of key active
site residues, including THR262, SER347, and LEU404, which are uniquely located and
surrounded near the active center of molybdenum chalcogenide, and the results indicate
that berberine has strong docking activity with XOD. The binding energy of stachydrine
with XOD was about −3.51 kJ-mol−1, which is a weak binding ability. Therefore, according
to the experimental steps described in Section 2.3, the IC50 value of berberine was about
74 µg/mL, demonstrating a good inhibitory effect on XOD in vitro (Figure S1).

3.6. In Vivo Studies on the Reduction of Uric Acid

UA levels in serum samples from each group of mice were measured using the
colorimetric method to compare the changes in serum-UA levels in mice after drug admin-
istration. After 14 days of modeling, compared with the control group, the serum UA in the
model group was significantly increased (### p < 0.001), indicating that the model construc-
tion method used was effective and successful. The serum-UA levels of mice in different
treatment groups showed a decreasing trend after gavage administration, among which
the positive control group and the HPO group showed excellent UA-lowering efficacy
(*** p < 0.001); no statistically significant difference was observed in the comparison between
the groups (Figure 5A).
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level in mice after intragastric administration. (B) The level of XOD in serum of mice after intragastric
administration. ### p < 0.001 compared with the control group. * p < 0.05, ** p < 0.01, and *** p < 0.001,
compared with the model group. ns (no significance).

Since the level of XOD activity is proportional to the rate of UA production, we
measured the XOD activity in the serums of mice to reflect the level of XOD inhibition of
the drug. The results of the XOD activity assay showed that the treatment of yeast-paste
gavage modeling resulted in a significant effect on the XOD activity of the mice in each
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group (### p < 0.001); this is because, after the mice received yeast paste gastric gavage,
the purine-like substances in the body accumulated in large quantities, which led to the
elevation of XOD activity in the body and the production of large quantities of UA. The
XOD-inhibitor allopurinol group and the HPO group showed significantly inhibited levels
of XOD activity and lowered serum-UA levels, and there were no statistically significant
differences compared with the control group (Figure 5B).

3.7. Renal Protection Properties of PO

The centrifuged serums were immediately, and following the operating instructions
in the biochemical kit, tested for the determination of SCr levels, as shown in Figure 6A;
the SCr values in the model group of mice showed a significantly higher trend compared
with the normal group (### p < 0.001), and after the administration of the drug, the SCr
levels in the allopurinol group, the benzbromarone group, the MPO group, and the HPO
group were significantly decreased (* p < 0.05, ** p < 0.01, *** p < 0.001), and there was no
significant difference in SCr value between the HPO group and the control group. BUN
levels were measured by the 96-well plate colorimetric method (Figure 6B), and from the
results returned by the biochemical assay kit, it could be seen that the BUN levels of mice
in the model group were significantly higher than those in the control group (### p < 0.001),
while after the administration of the drug, the BUN levels of the mice in all the groups
appeared to be reduced to varying degrees; the dose-dependencies between the various
administration groups of PO are presented, and the BUN levels of the HPO group can be
seen to be significantly lower than those of the model group (*** p < 0.001).
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intragastric administration. ### p < 0.001 compared with the control group. * p < 0.05, ** p < 0.01, and
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3.8. Effects of PO on Renal Histopathology

Illustrated in Figure 7, the histological analysis of renal tissues from individual mouse
cohorts subsequent to H/E staining illuminated that within the control cohort, renal tubules
manifested an exemplary preservation of morphology, which was characterized by proxi-
mal epithelial cells presenting a plump appearance and the renal interstitia being densely
populated. Nonetheless, subsequent to gastric gavage with yeast paste to instigate the
experimental model, the experimental cohort displayed conspicuous eosinophilia along-
side pronounced tubular vacuolization. Analogous eosinophilic modifications, coupled
with a degree of tubular vacuolization, were discernible within the allopurinol cohort,
the benzbromarone cohort, and the LPO cohort, coinciding with a concurrent relaxation
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of tissue architecture. Conversely, there was an absence of noteworthy morphological
aberrations concerning tubular cell integrity and tissue structure within the MPO and HPO
cohorts when juxtaposed with the pristine control cohort.
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Figure 7. H/E-stained pathological sections of mouse kidney tissue (400×).

3.9. Western Blot Analysis of Kidney Tissues

The expression level of urate transporters in the kidney tissue for each group of mice
was obtained by Western Blot, as shown in Figure 8A. The relative content of the protein
sample can be obtained by comparing the gray value of the protein index with the gray
value of the internal reference band. By analyzing these data, the expression level of urate
transporter in the kidney tissue of HUA mice was explored. Compared with the normal
group, the expression of ABCG2 protein in the model group was significantly decreased
(## p < 0.01), while the expression intensity of ABCG2 protein in the PO group was dose-
dependent, and there was no significant difference in the expression level between the
high-dose group and the normal group, indicating that PO can increase the excretion of UA
in mice by promoting the expression of ABCG2 protein (Figure 8B). Compared with the
model group, GLUT9 protein levels were significantly down-regulated in the allopurinol
group, benzbromarone group, MPO group, and HPO group (** p < 0.01) (Figure 8C). Com-
pared with the control group, the expression of URAT1 protein in the model group was
significantly up-regulated (## p < 0.01), while benzbromarone, as an inhibitor of URAT1 pro-
tein, significantly down-regulated its expression level. In addition, the PO administration
group showed a dose-dependent downward trend, and there was no statistical difference
in the expression level of URAT1 protein between the HPO group and the control group
(Figure 8D).
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Figure 8. (A) Western Blot analysis of kidney tissues after drug administration in each group of
mice. (B) ABCG2 protein expression level. (C) GLUT9 protein expression level. (D) URAT1 protein
expression level. ## p < 0.01 compared with the control group. * p < 0.05 and ** p < 0.01, compared
with the model. ns (no significance).

3.10. Effects of PO on Urate Transport Proteins

IHC analysis was performed on the kidney tissue sections of mice in each experimental
group. The brown specific staining area observed by the microscope indicated the positive
reaction of antigen–antibody binding, while the light yellow area represented the back-
ground color. According to the staining area and depth, the intensity of antigen–antibody
binding can be intuitively reflected.

As shown in Figure 9A–C, the renal cortex region showed different degrees of positive
reaction. URAT1 protein was widely expressed in renal tubular cells, and the expression
levels of the benzbromarone group and HPO group were significantly lower than that of
the model group. The ABCG2 protein was widely expressed in the cytoplasm of the renal
tubular epithelial cells in each group. Compared with the model group, the control group
and the HPO group had stronger positive localization.
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Figure 9. IHC analysis of renal tissues after drug administration in each group of mice (200×).
(A) ABCG2 protein IHC expression level. (B) GLUT9 protein IHC expression level. (C) URAT1
protein IHC expression level. ### p < 0.001 vs. control. * p < 0.05 and *** p < 0.001, vs. model. Positive
area values were analyzed by Image.
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IHC results showed that the ABCG2 protein was widely distributed in the kidney of
PO-treated mice, covering the renal cortex and renal tubular cells, and was more dense than
that of the HUA model mice in the control group. This indicates that the ABCG2 protein
can maintain the homeostasis of UA in the body by promoting UA excretion. In the IHC
test results of the HPO group, the expression intensity levels of the URAT1 and GLUT9
proteins were the same as those shown in the Western Blot results, further confirming that
the HPO group indeed exerted a significant regulatory effect on the urate transporters.

4. Discussion

Currently, allopurinol, benzbromarone, febuxostat, and other drugs are extensively
utilized in the clinical management of HUA [19,57]. Nevertheless, due to varying degrees
of adverse reactions associated with these agents, there is a growing interest in natural
remedies with diminished side effects [58,59]. Studies have found that many plants that
people eat daily have been found to have uric acid-lowering effects [60]. In addition, some
traditional Chinese herbal medicines have been shown to have some effect in alleviating
hyperuricemia, especially in the protection of liver and kidney function [61]. Among
them, many plant-based active ingredients such as flavonoids, phenolic acids, saponins,
etc., have been shown to reduce uric acid levels in a variety of ways without obvious side
effects [62,63]. In summary, plant-derived functional foods and their active ingredients have
shown potential in the treatment of hyperuricemia. These findings provide a treatment
plan with small side effects, good therapeutic effects, and easier acceptance for people, and
one which may become a safe and effective natural alternative therapy for hyperuricemia.

Studies have shown that the same plant in different habitats may have different
pharmacological effects, and the theory of dao-di herbs is also mentioned in the field of
traditional Chinese medicine [64,65]. In order to further study the active substances and
pharmacological effects of PO, we meticulously procured fresh PO samples from four
provinces in China with great climate differences, including Sichuan, Henan, Guangdong,
and Jilin, for subsequent extraction and purification. Employing LC-MS technology along-
side the XOD enzymatic reaction system enabled thorough identification and comparative
analysis. Notably, findings revealed a marginally superior XOD inhibition efficacy in
Sichuan specimens compared to samples of the plant collected from other habitats. Studies
have reported that different conditions of cultivation and crop management lead to changes
in PO’s active ingredients [27,66]. At the same time, our findings also reveal that different
geographical and climatic conditions may be one of the reasons for the changes in bioactive
substances in PO, which also confirms the dao-di herbs theory in the field of traditional
Chinese medicine.

Furthermore, subsequent to the analysis of Liquid Chromatography-Mass Spectrom-
etry (LC-MS) identification outcomes and the review of pertinent literature, berberine
and stachydrine were discerned within Sichuan-derived PO. Subsequently, we verified
the presence of these two components in PO by standard control. This is the first time
that berberine and stachydrine were identified from PO. Many studies have shown that
berberine [55,67–69] and stachydrine [56,70–72] have a variety of physiological activities,
which lays a theoretical foundation for further study of the effective components of PO
and the related mechanism of network pharmacology. At the same time, the results of
molecular docking showed that berberine had strong docking activity with XOD, and
the studies reported in [73,74] also showed that berberine had the effect of reducing uric
acid. Therefore, we speculated that berberine was one of the active substances of PO in the
reduction of uric acid.

With the development of modern society, people‘s eating habits have gradually shown
a trend of high levels of purine [75]. Studies have shown that the risk of hyperuricemia
is positively correlated with red meat, seafood, alcohol, and fructose intake [76]. In order
to more accurately replicate the physiological conversion of exogenous purines into UA
within the human body, we employed the technique of gavaging yeast paste to establish an
experimental model of HUA mice [54]. In addition, we selected the XOD inhibitor allopuri-
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nol and the uric acid-promoting drug benzbromarone as two positive drug groups to better
study the uric acid-lowering mechanism of PO. By assessing serum biochemical indices in
the murine bloodstream, we observed a gradual normalization of serum-UA levels in mice
administered medium (1 g/kg) and high (2 g/kg) doses of PO after one week (** p < 0.01),
with no statistical variance compared to either the allopurinol or benzbromarone groups.
Furthermore, compared with the model group, the content levels of SCr and BUN also
decreased significantly (** p < 0.01), and the BUN level in the HPO group was more similar
to that in the control group, which indicated that PO had weaker hepatorenal toxicity than
did allopurinol or benzbromarone. Studies have shown that elevated serum-UA levels are
a risk factor for decreased renal function, and elevated UA levels can lead to a series of
immune and inflammatory responses [77,78]. Our in vivo results showed that PO extract
effectively inhibited XOD activity, and potential renal tissue damage caused by elevated
UA levels was effectively alleviated in mice.

At present, XOD inhibitors and uric acid excretory drugs are often used in clinical
treatment of gout patients, but these drugs can also cause certain forms of damage to
the kidney [79,80]. Allopurinol can inhibit XOD activity and prevent the conversion of
hypoxanthine and xanthine to UA [81]. Benzbromarone can promote UA excretion by
inhibiting URAT1 transporters [82]. In vivo experiments and serum XOD activity analysis
showed that the XOD activity of the HPO group (** p < 0.01) was significantly reduced,
and there was no significant difference from the allopurinol group, indicating that the HPO
group had good XOD inhibition performance. Through histological examination utilizing
H/E staining of murine renal tissues, the model group exhibited notable pathological
alterations, including eosinophilic degeneration resultant from urate accumulation and
pronounced dilatation of renal tubules. Conversely, the MPO and HPO groups displayed
no discernible morphological aberrations within renal tubular cells or tissue architecture,
which indicated that the PO extract had no obvious nephrotoxicity. The above results
show that PO extract is safer than allopurinol and benzbromarone and has better clinical
application value.

Studies have shown that various urate transporters in the kidney are involved in
the regulation of serum-UA levels [83]. Investigation into hyperuricemia-induced renal
tissue in mice revealed that PO exerts efficacious synergistic regulation over UA excretion
protein ABCG2 and urate transporters URAT1 and GLUT9, thereby preserving murine
UA homeostasis. Consequently, we posit that PO has the dual capacity to attenuate UA
synthesis by suppressing XOD activity and to diminish UA reabsorption while facilitat-
ing its excretion by modulating the overexpression of urate transporters and bolstering
UA excretion proteins. In general, PO effectively reduces serum-UA levels through the
synergistic effects of various components, targets, and pathways, thereby maintaining
UA homeostasis.

5. Conclusions

In this study, we first screened the PO from Sichuan, determining that it demonstrated
the best in vitro XOD inhibitory activity among the plant samples from the four habitats,
and berberine and stachydrine were isolated and identified from this PO for the first time.
This finding reveals that different geographical and climatic conditions may be one of
the reasons for the changes of bioactive substances in PO. Then ABCG2, URAT1, and
other proteins were screened out as research targets by network pharmacology. Molecular
docking prediction and in vitro verification showed that berberine had strong docking
activity with XOD. Finally, in vivo results showed that PO could inhibit excessive uric
acid production and promote uric acid excretion by inhibiting XOD activity, inhibiting the
expression of uric acid transporters (GLUT9, URAT1) and promoting the expression of
uric acid excretion protein (ABCG2), and thereby effectively reducing serum-UA levels in
mouse models. In addition, compared with positive drugs, PO extracts showed less nephro-
toxicity and increased safety. In summary, our study showed the potential of purslane to
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reduce uric acid, and provided a theoretical basis for the development of the edible wild
plant purslane.

6. Patents

An extraction method of effective components of purslane and its application in
reducing uric acid. Bo Gao; Yiming Zhang; Fei Ye; Ming Kang; Zhenlong Ge; Shengying
Zhu; Yanjing Feng; Hao Chang. ZL 2024 1 0543667.X.
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