Hydroxyprolyl-Glycine in 24 H Urine Shows Higher Correlation with Meat Consumption than Prolyl-Hydroxyproline, a Major Collagen Peptide in Urine and Blood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Human Trial 1
2.3. Human Trial 2
2.4. Mouse Skin Culture
2.5. Determination of Collagen Peptides
2.6. Amino Acid Analyses
2.7. Statistical Analyses
3. Results
3.1. Urinary Collagen Peptides
3.2. Blood Collagen Peptide Levels After Ingestion of Collagen-Rich Foods
3.3. Collagen Peptides Released from Cultured Mouse Skin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langguth, P.; Bohner, V.; Heizmann, J.; Merkle, H.P.; Wolffram, S.; Amidon, G.L.; Yamashita, S. The challenge of proteolytic enzymes in intestinal peptide delivery. J. Control. Release 1997, 46, 39–57. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Nakatogawa, M.; Shimizu, A.; Sato, Y.; Shigemura, Y. Comparison of gelatin and low-molecular weight gelatin hydrolysate ingestion on hydroxyproline (Hyp), pro-Hyp and Hyp-Gly concentrations in human blood. Food Chem. 2022, 369, 130869. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Nikoo, M.; Boran, G.; Zhou, P.; Regenstein, J.M. Collagen and gelatin. Annu. Rev. Food. Sci. Technol. 2015, 6, 527–557. [Google Scholar] [CrossRef]
- Proksch, E.; Segger, D.; Degwert, J.; Schunck, M.; Zague, V.; Oesser, S. Oral supplementation of specific collagen peptides has beneficial effects on human skin physiology: A double-blind, placebo-controlled study. Skin Pharmacol. Physiol. 2014, 27, 47–55. [Google Scholar] [CrossRef]
- Proksch, E.; Schunck, M.; Zague, V.; Segger, D.; Degwert, J.; Oesser, S. Oral intake of specific bioactive collagen peptides reduces skin wrinkles and increases dermal matrix synthesis. Skin Pharmacol. Physiol. 2014, 27, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sugihara, F.; Suzuki, K.; Inoue, N.; Venkateswarathirukumara, S. A double-blind, placebo-controlled, randomised, clinical study on the effectiveness of collagen peptide on osteoarthritis. J. Sci. Food Agric. 2014, 95, 702–707. [Google Scholar] [CrossRef]
- Sugihara, F.; Inoue, N.; Venkateswarathirukumara, S. Ingestion of bioactive collagen hydrolysates enhanced pressure ulcer healing in a randomized double-blind placebo-controlled clinical study. Sci. Rep. 2018, 8, 11403. [Google Scholar] [CrossRef]
- Yamanaka, H.; Okada, S.; Sanada, H. A multicenter, randomized, controlled study of the use of nutritional supplements containing collagen peptides to facilitate the healing of pressure ulcers. J. Nutr. Intermed. Metab. 2017, 8, 51–59. [Google Scholar] [CrossRef]
- Consumer Affairs Agency List of Permitted Items [Jpn]. Available online: https://www.caa.go.jp/policies/policy/food_labeling/foods_for_special_dietary_uses/assets/food_labeling_cms206_20230807_02.pdf (accessed on 7 May 2024).
- Iwai, K.; Hasegawa, T.; Taguchi, Y.; Morimatsu, F.; Sato, K.; Nakamura, Y.; Higashi, A.; Kido, Y.; Nakabo, Y.; Ohtsuki, K. Identification of food-derived collagen peptides in human blood after oral ingestion of gelatin hydrolysates. J. Agric. Food Chem. 2005, 53, 6531–6536. [Google Scholar] [CrossRef]
- Shigemura, Y.; Suzuki, A.; Kurokawa, M.; Sato, Y.; Sato, K. Changes in composition and content of food-derived peptide in human blood after daily ingestion of collagen hydrolysate for 4 weeks. J. Sci. Food Agric. 2018, 98, 1944–1950. [Google Scholar] [CrossRef]
- Shigemura, Y.; Akaba, S.; Kawashima, E.; Park, E.Y.; Nakamura, Y.; Sato, K. Identification of a novel food-derived collagen peptide, hydroxyprolyl-glycine, in human peripheral blood by pre-column derivatisation with phenyl isothiocyanate. Food Chem. 2011, 129, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Shigemura, Y.; Iwai, K.; Morimatsu, F.; Iwamoto, T.; Mori, T.; Oda, C.; Taira, T.; Park, E.Y.; Nakamura, Y.; Sato, K. Effect of prolyl-hydroxyproline (Pro-Hyp), a food-derived collagen peptide in human blood, on growth of fibroblasts from mouse skin. J. Agric. Food Chem. 2009, 57, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Ohara, H.; Ichikawa, S.; Matsumoto, H.; Akiyama, M.; Fujimoto, N.; Kobayashi, T.; Tajima, S. Collagen-derived dipeptide, proline-hydroxyproline, stimulates cell proliferation and hyaluronic acid synthesis in cultured human dermal fibroblasts. J. Dermatol. 2010, 37, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, S.; Mano, H.; Sampei, C.; Shimizu, J.; Wada, M. Chondroprotective effect of the bioactive peptide prolyl-hydroxyproline in mouse articular cartilage in vitro and in vivo. Osteoarthr. Cartil. 2009, 17, 1620–1627. [Google Scholar] [CrossRef] [PubMed]
- Kusubata, M.; Koyama, Y.I.; Tometsuka, C.; Shigemura, Y.; Sato, K. Detection of endogenous and food-derived collagen dipeptide prolylhydroxyproline (Pro-Hyp) in allergic contact dermatitis-affected mouse ear. Biosci. Biotechnol. Biochem. 2015, 79, 1356–1361. [Google Scholar] [CrossRef]
- Jimi, S.; Sato, K.; Kimura, M.; Suzumiya, J.; Hara, S.; De Francesco, F.; Ohjimi, H. G-CSF Administration accelerates cutaneous wound healing accompanied with increased Pro-Hyp production in Db/Db mice. Clin. Res. Dermatol. 2017, 4, 1–9. [Google Scholar] [CrossRef]
- Mazzi, G.; Fioravanzo, F.; Burti, E. New marker of bone resorption: Hydroxyproline-containing peptide high-performance liquid chromatographic assay without hydrolysis as an alternative to hydroxyproline determination: A Preliminary Report. J. Chromatogr. B Biomed. Sci. Appl. 1996, 678, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Asai, T.; Takahashi, A.; Ito, K.; Uetake, T.; Matsumura, Y.; Ikeda, K.; Inagaki, N.; Nakata, M.; Imanishi, Y.; Sato, K. Amount of collagen in the meat contained in Japanese daily dishes and the collagen peptide content in human blood after ingestion of cooked fish meat. J. Agric. Food Chem. 2019, 67, 2831–2838. [Google Scholar] [CrossRef]
- Bröker, M.E.E.; Lalmahomed, Z.S.; Roest, H.P.; van Huizen, N.A.; Dekker, L.J.M.; Calame, W.; Verhoef, C.; IJzermans, J.N.M.; Luider, T.M. Collagen peptides in urine: A new promising biomarker for the detection of colorectal liver metastases. PLoS ONE 2013, 8, e70918. [Google Scholar] [CrossRef]
- Taga, Y.; Iwasaki, Y.; Shigemura, Y.; Mizuno, K. Improved in vivo tracking of orally administered collagen hydrolysate using stable isotope labeling and LC–MS techniques. J. Agric. Food Chem. 2019, 67, 4671–4678. [Google Scholar] [CrossRef]
- Yamamoto, S.; Deguchi, K.; Onuma, M.; Numata, N.; Sakai, Y. Absorption and urinary excretion of peptides after collagen tripeptide ingestion in humans. Biol. Pharm. Bull. 2016, 39, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Asai, T.T.; Oikawa, F.; Yoshikawa, K.; Inoue, N.; Sato, K. Food-derived collagen peptides, prolyl-hydroxyproline (Pro-Hyp), and hydroxyprolyl-glycine (Hyp-Hly) enhance growth of primary cultured mouse skin fibroblast using fetal bovine serum free from hydroxyprolyl peptide. Int. J. Mol. Sci. 2020, 21, 229. [Google Scholar] [CrossRef]
- Science and Technology Agency. Standard Tables of Food Composition in Japan-2015-(Seventh Revised Edition); National Printing Bureau: Tokyo, Japan, 2015. (In Japanese)
- Bidlingmeyer, B.A.; Cohen, S.A.; Tarvin, T.L. Rapid analysis of amino acids using Pre-column derivatization. J. Chromatogr. 1984, 336, 93–104. [Google Scholar] [CrossRef]
- Ministry of Health Labour and Welfare (Japan) Japan the National Health and Nutrition Survey in Japan 2019. Available online: https://ghdx.healthdata.org/record/japan-national-health-and-nutrition-survey-2019 (accessed on 22 July 2023).
- Kibrick, A.C.; Hashiro, C.Q.; Schutz, R.S.; Walters, M.I.; Milhorat, A.T. Prolylhydroxyproline in urine: Its determination and observations in muscular dystrophy. Clin. Chim. Acta 1964, 10, 344–351. [Google Scholar] [CrossRef]
- Inoue, H.; Iguch, H.; Kouno, A.; Tsuruta, Y. Fluorometric determination of N-terminal prolyl dipeptides, proline and hydroxyproline in human serum by pre-column high-performance liquid chromatography using 4-(5,6-Dimethoxy-2-Phthalimidinyl)-2-Methoxyphenylsulfonyl chloride. J. Chromatogr. B 2001, 757, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Good, D.M.; Zürbig, P.; Argilés, À.; Bauer, H.W.; Behrens, G.; Coon, J.J.; Dakna, M.; Decramer, S.; Delles, C.; Dominiczak, A.F.; et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol. Cell. Proteom. 2010, 9, 2424–2437. [Google Scholar] [CrossRef]
- Latosinska, A.; Siwy, J.; Faguer, S.; Beige, J.; Mischak, H.; Schanstra, J.P. Value of urine peptides in assessing kidney and cardiovascular disease. Proteom. Clin. Appl. 2021, 15, 2000027. [Google Scholar] [CrossRef]
- Sato, K.; Jimi, S.; Kusubata, M. Generation of bioactive prolyl-hydroxyproline (Pro-Hyp) by oral administration of collagen hydrolysate and degradation of endogenous collagen. Int. J. Food. Sci. Technol. 2019, 54, 1976–1980. [Google Scholar] [CrossRef]
- Bingham, S.A. Urine Nitrogen as a Biomarker for the Validation of Dietary Protein Intake. J. Nutr. 2003, 1, 921S–924S. [Google Scholar] [CrossRef]
- Cuparencu, C.; Praticó, G.; Hemeryck, L.Y.; Sri Harsha, P.S.C.; Noerman, S.; Rombouts, C.; Xi, M.; Vanhaecke, L.; Hanhineva, K.; Brennan, L.; et al. Biomarkers of Meat and Seafood Intake: An Extensive Literature Review. Genes Nutr. 2019, 14, 35. [Google Scholar] [CrossRef]
- Demarquoy, J.; Georges, B.; Rigault, C.; Royer, M.C.; Clairet, A.; Soty, M.; Lekounoungou, S.; Le Borgne, F. Radioisotopic Determination of L-Carnitine Content in Foods Commonly Eaten in Western Countries. Food Chem. 2004, 86, 137–142. [Google Scholar] [CrossRef]
- Gormley, T.R.; Neumann, T.; Fagan, J.D.; Brunton, N.P. Taurine Content of Raw and Processed Fish Fillets/Portions. Eur. Food Res. Technol. 2007, 225, 837–842. [Google Scholar] [CrossRef]
- Flancbaum, L.; Fitzpatrick, J.C.; Brotman, D.N.; Marcoux, A.M.; Kasziba, E.; Fisher, H. The Presence and Significance of Carnosine in Histamine-Containing Tissues of Several Mammalian Species. Agents Actions 1990, 31, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Van Doren, S.R. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol. 2015, 44–46, 224–231. [Google Scholar] [CrossRef]
- Wijanarti, S.; Gu, R.; Chen, L.; Liu, W.; Cai, M.; Suzuki, R.; Sato, K. Substrate specificity of exopeptidases in small intestinal mucosa determines the structure of food-derived collagen peptides in rat lumen and blood. J. Food Bioact. 2024, 26, 29–41. [Google Scholar] [CrossRef]
nmol/24 h Urine | Spearman’s Correlation Coefficient | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Median | (IQR) | Pro-Hyp | Ala-Hyp | Gly-Pro-Hyp | Phe-Hyp | Leu-Hyp | Hyp-Gly | Ile-Hyp | Pro-Hyp-Gly | Ala-Hyp-Gly | Ser-Hyp-Gly | |
Pro-Hyp | 18,400 | (6522–32,310) | 1.00 | 0.78 | 0.83 | 0.89 | 0.82 | 0.42 | 0.86 | 0.83 | 0.90 | 0.88 |
Ala-Hyp | 1136 | (789–1830) | 1.00 | 0.83 | 0.89 | 0.94 | 0.45 | 0.93 | 0.78 | 0.87 | 0.82 | |
Gly-Pro-Hyp | 856 | (599–1219) | 1.00 | 0.87 | 0.83 | 0.28 | 0.80 | 0.68 | 0.79 | 0.71 | ||
Phe-Hyp | 840 | (502–1,32) | 1.00 | 0.96 | 0.43 | 0.94 | 0.87 | 0.91 | 0.85 | |||
Leu-Hyp | 594 | (391–801) | 1.00 | 0.51 | 0.96 | 0.87 | 0.87 | 0.81 | ||||
Hyp-Gly | 514 | (398–1215) | 1.00 | 0.61 | 0.61 | 0.49 | 0.48 | |||||
Ile-Hyp | 483 | (287–647) | 1.00 | 0.88 | 0.94 | 0.88 | ||||||
Pro-Hyp-Gly | 244 | (144–284) | 1.00 | 0.85 | 0.84 | |||||||
Ala-Hyp-Gly | 235 | (97–313) | 1.00 | 0.95 | ||||||||
Ser-Hyp-Gly | 164 | (73–312) | 1.00 |
Spearman’s Correlation Coefficient | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Median (IQR) | Pro-Hyp | Ala-Hyp | Gly-Pro-Hyp | Phe-Hyp | Leu-Hyp | Hyp-Gly | Ile-Hyp | Pro-Hyp-Gly | Ala-Hyp-Gly | Ser-Hyp-Gly | |
Physical characteristic | |||||||||||
Body weight (kg) | 50.0 (45.3–54.5) | −0.01 | 0.09 | 0.09 | 0.12 | 0.15 | 0.15 | 0.08 | 0.09 | 0.02 | −0.01 |
BMI (kg/m2) | 19.7 (18.8–21.4) | 0.16 | 0.19 | 0.16 | 0.02 | 0.23 | 0.10 | 0.26 | 0.18 | 0.14 | 0.16 |
PAL | 1.57 (1.46–1.92) | 0.17 | 0.29 | 0.20 | 0.27 | 0.31 | 0.23 | 0.27 | 0.21 | 0.19 | 0.16 |
Nutrient intake and meat consumption | |||||||||||
-For a few months before urine collection | |||||||||||
Energy (kcal/day) | 1592 (1391–1870) | 0.01 | 0.03 | −0.05 | −0.02 | 0.07 | 0.30 | 0.13 | 0.14 | 0.13 | 0.17 |
Protein (g/day) | 54.2 (45.1–67.9) | −0.06 | 0.04 | −0.02 | −0.04 | 0.02 | 0.19 | 0.09 | −0.01 | 0.08 | 0.02 |
Meat (g/day) | 102.9 (65.7–125.7) | −0.07 | 0.06 | −0.01 | −0.05 | 0.03 | 0.14 | 0.07 | 0.01 | 0.01 | −0.04 |
-On the day of urine collection | |||||||||||
Energy (kcal/day) | 1418 (1189–1714) | 0.06 | 0.10 | 0.01 | 0.03 | 0.077 | 0.24 | 0.16 | 0.09 | 0.17 | 0.15 |
Protein (g/day) | 60.2 (40.7–71.4) | 0.07 | 0.14 | −0.04 | 0.10 | 0.18 | 0.53 | 0.26 | 0.31 | 0.22 | 0.27 |
Meat (g/day) | 100 (24.2–156.0) | 0.41 | 0.46 | 0.23 | 0.39 | 0.49 | 0.75 | 0.55 | 0.64 | 0.47 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asai, T.T.; Miyauchi, S.; Wijanarti, S.; Sekino, A.; Suzuki, A.; Maruya, S.; Mannari, T.; Tsuji, A.; Toyama, K.; Nakata, R.; et al. Hydroxyprolyl-Glycine in 24 H Urine Shows Higher Correlation with Meat Consumption than Prolyl-Hydroxyproline, a Major Collagen Peptide in Urine and Blood. Nutrients 2024, 16, 3574. https://doi.org/10.3390/nu16203574
Asai TT, Miyauchi S, Wijanarti S, Sekino A, Suzuki A, Maruya S, Mannari T, Tsuji A, Toyama K, Nakata R, et al. Hydroxyprolyl-Glycine in 24 H Urine Shows Higher Correlation with Meat Consumption than Prolyl-Hydroxyproline, a Major Collagen Peptide in Urine and Blood. Nutrients. 2024; 16(20):3574. https://doi.org/10.3390/nu16203574
Chicago/Turabian StyleAsai, Tomoko T., Satoshi Miyauchi, Sri Wijanarti, Ayaka Sekino, Akiko Suzuki, Sachiko Maruya, Takayo Mannari, Ai Tsuji, Kenji Toyama, Rieko Nakata, and et al. 2024. "Hydroxyprolyl-Glycine in 24 H Urine Shows Higher Correlation with Meat Consumption than Prolyl-Hydroxyproline, a Major Collagen Peptide in Urine and Blood" Nutrients 16, no. 20: 3574. https://doi.org/10.3390/nu16203574
APA StyleAsai, T. T., Miyauchi, S., Wijanarti, S., Sekino, A., Suzuki, A., Maruya, S., Mannari, T., Tsuji, A., Toyama, K., Nakata, R., Ogura, Y., Takamura, H., Sato, K., Takachi, R., & Matsuda, S. (2024). Hydroxyprolyl-Glycine in 24 H Urine Shows Higher Correlation with Meat Consumption than Prolyl-Hydroxyproline, a Major Collagen Peptide in Urine and Blood. Nutrients, 16(20), 3574. https://doi.org/10.3390/nu16203574