Efficacy and Mechanism of Schisandra chinensis Fructus Water Extract in Alzheimer’s Disease: Insights from Network Pharmacology and Validation in an Amyloid-β Infused Animal Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Bioactive Components in SCF and Associated Genes
2.2. Constructing the “Drug–Component–Disease–Target” Network
2.3. Screening Key Targets Based on Network Analysis and Protein–Protein Interactions
2.4. Pathway and Functional Enrichment Analyses
2.5. SCF Production
2.6. AD-Induced Animal Model and Experimental Design
2.7. Y-Maze, Passive Avoidance, and Water Maze Tests
2.8. Quantitative Real-Time PCR
2.9. Brain Immunohistochemistry Analysis
2.10. Statistical Analysis
3. Results
3.1. Results of the Network Analysis
3.1.1. Identification of SCF Active Compounds and Their Targets
3.1.2. Identification of AD-Related Target
3.1.3. Drug–Ingredient–Disease–Target Network Analysis
3.1.4. Protein–Protein Interaction (PPI) Network and Pathway Analysis
3.2. Results of SCF’s Anti-AD Effect in AD-Induced Rats
3.2.1. Gomisin and Schisandrin Content in SCF
3.2.2. Changes in Body Weight and Glucose Metabolism
3.2.3. Lipid Parameters in the Blood and Hippocampus
3.2.4. Aβ Deposition and Memory Deficit
3.2.5. Markers of Neuroinflammation in the Blood and Hippocampus
3.2.6. BDNF and CTNF Expression in the Hippocampus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Knopman, D.S.; Amieva, H.; Petersen, R.C.; Chételat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer disease. Nat. Rev. Dis. Primers 2021, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- de Nazareth, A.M. Type 2 diabetes mellitus in the pathophysiology of Alzheimer’s disease. Dement. Neuropsychol. 2017, 11, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.R.; Huang, J.B.; Yang, S.L.; Hong, F.F. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules 2022, 27, 1816. [Google Scholar] [CrossRef] [PubMed]
- Haam, J.; Yakel, J.L. Cholinergic modulation of the hippocampal region and memory function. J. Neurochem. 2017, 142, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Koya, J.; Reznik, S.E. Insulin Resistance Exacerbates Alzheimer Disease via Multiple Mechanisms. Front. Neurosci. 2021, 15, 687157. [Google Scholar] [CrossRef]
- Suresh, S.; Singh, S.A.; Rushendran, R.; Vellapandian, C.; Prajapati, B. Alzheimer’s disease: The role of extrinsic factors in its development, an investigation of the environmental enigma. Front. Neurol. 2023, 14, 1303111. [Google Scholar] [CrossRef]
- Muzio, L.; Viotti, A.; Martino, G. Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Front. Neurosci. 2021, 15, 742065. [Google Scholar] [CrossRef]
- van Arendonk, J.; Neitzel, J.; Steketee, R.M.E.; van Assema, D.M.E.; Vrooman, H.A.; Segbers, M.; Ikram, M.A.; Vernooij, M.W. Diabetes and hypertension are related to amyloid-beta burden in the population-based Rotterdam Study. Brain 2023, 146, 337–348. [Google Scholar] [CrossRef]
- Ahmad, F.; Karan, A.; Sharma, R.; Sharma, N.S.; Sundar, V.; Jayaraj, R.; Mukherjee, S.; DeCoster, M.A. Evolving therapeutic interventions for the management and treatment of Alzheimer’s disease. Ageing Res. Rev. 2024, 95, 102229. [Google Scholar] [CrossRef]
- Soheili, M.; Karimian, M.; Hamidi, G.; Salami, M. Alzheimer’s disease treatment: The share of herbal medicines. Iran. J. Basic. Med. Sci. 2021, 24, 123–135. [Google Scholar] [CrossRef]
- Kwon, D.Y.; Kim, D.S.; Yang, H.J.; Park, S. The lignan-rich fractions of Fructus Schisandrae improve insulin sensitivity via the PPAR-γ pathways in in vitro and in vivo studies. J. Ethnopharmacol. 2011, 135, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Sowndhararajan, K.; Deepa, P.; Kim, M.; Park, S.J.; Kim, S. An overview of neuroprotective and cognitive enhancement properties of lignans from Schisandra chinensis. Biomed. Pharmacother. 2018, 97, 958–968. [Google Scholar] [CrossRef] [PubMed]
- Noor, F.; Tahir ul Qamar, M.; Ashfaq, U.A.; Albutti, A.; Alwashmi, A.S.S.; Aljasir, M.A. Network Pharmacology Approach for Medicinal Plants: Review and Assessment. Pharmaceuticals 2022, 15, 572. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Liu, L.; Zhou, J.; Zhang, T.; Daily, J.W.; Park, S. Bioactive Components of Houttuynia cordata Thunb and Their Potential Mechanisms Against COVID-19 Using Network Pharmacology and Molecular Docking Approaches. J. Med. Food 2022, 25, 355–366. [Google Scholar] [CrossRef]
- Zhang, T.; Li, C.; Yue, Y.; Yang, H.-J.; Ryu, M.S.; Wu, X.; Jeong, D.Y.; Park, S. Fermented red pepper paste (kochujang) modulates glucose metabolism and gut microbiota in parasympathetic suppression: Network pharmacology and In vivo study. Food Biosci. 2024, 61, 104531. [Google Scholar] [CrossRef]
- Ko, B.-S.; Ryuk, J.A.; Hwang, J.T.; Zhang, T.; Wu, X.; Park, S. Ojayeonjonghwan, an oriental medicine composed of five seeds, protects against vasomotor and neurological disorders in estrogen-deficient rats. Exp. Biol. Med. 2019, 244, 193–206. [Google Scholar] [CrossRef]
- Yang, H.J.; Hwang, J.T.; Kwon, D.Y.; Kim, M.J.; Kang, S.; Moon, N.R.; Park, S. Yuzu extract prevents cognitive decline and impaired glucose homeostasis in beta-amyloid-infused rats. J. Nutr. 2013, 143, 1093–1099. [Google Scholar] [CrossRef]
- Peinnequin, A.; Mouret, C.; Birot, O.; Alonso, A.; Mathieu, J.; Clarençon, D.; Agay, D.; Chancerelle, Y.; Multon, E. Rat pro-inflammatory cytokine and cytokine related mRNA quantification by real-time polymerase chain reaction using SYBR green. BMC Immunol. 2004, 5, 3. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, X.; Yuan, H.; Huang, S.; Park, S. Mitigation of Memory Impairment with Fermented Fucoidan and λ-Carrageenan Supplementation through Modulating the Gut Microbiota and Their Metagenome Function in Hippocampal Amyloid-β Infused Rats. Cells 2022, 11, 2301. [Google Scholar] [CrossRef]
- Park, S.; Moon, N.R.; Kang, S.; Kim, D.S. Ferulic acid and vinpocetine intake improves memory function by enhancing insulin sensitivity and reducing neuroinflammation and oxidative stress in type 2 diabetic animals with induced Alzheimer’s disease. J. Funct. Foods 2022, 95, 105180. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, L.; Yang, H. Schisandra chinensis Fructus and Its Active Ingredients as Promising Resources for the Treatment of Neurological Diseases. Int. J. Mol. Sci. 2018, 19, 1970. [Google Scholar] [CrossRef] [PubMed]
- Sobstyl, E.; Szopa, A.; Ekiert, H.; Gnat, S.; Typek, R.; Choma, I.M. Effect directed analysis and TLC screening of Schisandra chinensis fruits. J. Chromatogr. A 2020, 1618, 460942. [Google Scholar] [CrossRef] [PubMed]
- Giridharan, V.V.; Thandavarayan, R.A.; Bhilwade, H.N.; Ko, K.M.; Watanabe, K.; Konishi, T. Schisandrin B, attenuates cisplatin-induced oxidative stress, genotoxicity and neurotoxicity through modulating NF-κB pathway in mice. Free Radic. Res. 2012, 46, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Lei, M.; Ma, G.; Ouyang, C.; Yang, X.; Liu, C.; Chen, Q.; Liu, X. Schisandrin A Alleviates Spatial Learning and Memory Impairment in Diabetic Rats by Inhibiting Inflammatory Response and Through Modulation of the PI3K/AKT Pathway. Mol. Neurobiol. 2023, 61, 2514–2529. [Google Scholar] [CrossRef]
- Han, Y.; Yang, H.; Li, L.; Du, X.; Sun, C. Schisanhenol improves learning and memory in scopolamine-treated mice by reducing acetylcholinesterase activity and attenuating oxidative damage through SIRT1-PGC-1α-Tau signaling pathway. Int. J. Mol. Sci. 2019, 129, 110–118. [Google Scholar] [CrossRef]
- Jeong, E.J.; Lee, H.K.; Lee, K.Y.; Jeon, B.J.; Kim, D.H.; Park, J.H.; Song, J.H.; Huh, J.; Lee, J.H.; Sung, S.H. The effects of lignan-riched extract of Shisandra chinensis on amyloid-β-induced cognitive impairment and neurotoxicity in the cortex and hippocampus of mouse. J. Ethnopharmacol. 2013, 146, 347–354. [Google Scholar] [CrossRef]
- Egashira, N.; Kurauchi, K.; Iwasaki, K.; Mishima, K.; Orito, K.; Oishi, R.; Fujiwara, M. Schizandrin reverses memory impairment in rats. Phytother. Res. 2008, 22, 49–52. [Google Scholar] [CrossRef]
- Hu, D.; Li, C.; Han, N.; Miao, L.; Wang, D.; Liu, Z.; Wang, H.; Yin, J. Deoxyschizandrin isolated from the fruits of Schisandra chinensis ameliorates Aβ1–42-induced memory impairment in mice. Planta Medica 2012, 78, 1332–1336. [Google Scholar] [CrossRef]
- Mao, X.; Liao, Z.; Guo, L.; Xu, X.; Wu, B.; Xu, M.; Zhao, X.; Bi, K.; Jia, Y. Schisandrin C Ameliorates Learning and Memory Deficits by Aβ1–42-induced Oxidative Stress and Neurotoxicity in Mice. Phytother. Res. 2015, 29, 1373–1380. [Google Scholar] [CrossRef]
- Woodling, N.S.; Colas, D.; Wang, Q.; Minhas, P.; Panchal, M.; Liang, X.; Mhatre, S.D.; Brown, H.; Ko, N.; Zagol-Ikapitte, I.; et al. Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer’s disease model mice. Brain 2016, 139, 2063–2081. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Liu, S.; Zou, H.; Zhou, W.; Fu, H.; Wei, J.; Zhang, J.; Zeng, H.; Tan, T.; Zhou, W.; et al. Inflammatory mechanisms of Ginkgo Biloba extract in improving memory functions through lncRNA-COX2/NF-κB pathway in mice with status epilepticus. CNS Neurosci. Ther. 2023, 29, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Guo, Z.; Wu, Y.; Wang, J.; Yang, Y.; Zhu, Z.; Wang, D. The crucial role that hippocampus Cyclooxygenase-2 plays in memory. Eur. J. Neurosci. 2023, 58, 4123–4136. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sluter, M.N.; Yu, Y.; Jiang, J. Prostaglandin E receptors as targets for ischemic stroke: Novel evidence and molecular mechanisms of efficacy. Pharmacol. Res. 2021, 163, 105238. [Google Scholar] [CrossRef] [PubMed]
Variables | AD-Con | AD-SCF | Normal-C |
---|---|---|---|
Body weight (g) | 304 ± 6.3 | 312 ± 11 | 313 ± 9.4 |
Weight gain for 5 weeks (g) | 102 ± 8.3 | 109 ± 7.9 | 111 ± 9.7 |
Epididymal fat pads (g/kg bw) | 3.5 ± 0.6 a | 2.8 ± 0.6 b | 2.7 ± 0.6 b |
Retroperitoneal fat/body weight (g/kg bw) | 4.9 ± 0.8 a | 3.5 ± 0.6 b | 3.5 ± 0.5 b |
Visceral fat (g/kg bw) | 8.4 ± 1.1 a | 6.2 ± 1.0 b | 6.1 ± 1.0 b |
Food intake (g) | 19.4 ± 2.4 | 19.9 ± 2.5 | 19.3 ± 2.5 |
SC intake (mg/kg bw/day) | 0 ± 0 | 199 ± 25 | 0 ± 0 |
Fasting serum glucose (mg/dL) | 116 ± 7.66 a | 101 ± 5.66 b | 92.4 ± 4.23 c |
Fasting serum insulin (ng/mL) | 1.22 ± 0.15 a | 1.12 ± 0.14 ab | 1.05 ± 0.11 b |
HOMA-IR | 6.33 ± 0.75 a | 5.02 ± 0.62 b | 4.31 ± 0.58 c |
Variables | AD-Con | AD-SCF | Normal-C |
---|---|---|---|
Serum triglyceride (mg/dL) | 84.6 ± 7.6 a | 72.6 ± 7.5 b | 73.8 ± 6.9 b |
Serum total cholesterol (mg/dL) | 122 ± 9.4 a | 117 ± 7.9 ab | 112.8 ± 6.9 b |
Serum TNF-α (pg/mL) | 70.3 ± 7.1 a | 60.2 ± 6.5 b | 52.4 ± 5.3 c |
Serum IL-1β (pg/mL) | 22.4 ± 2.3 a | 17.5 ± 2.0 b | 16.9 ± 1.9 b |
Serum lipid peroxide (MDA nmol/mL) | 3.24 ± 0.35 a | 1.47 ± 0.25 b | 1.53 ± 0.27 b |
Hippocampal triglyceride (mg/g) | 123 ± 14 a | 86.2 ± 10 b | 89.4 ± 9.6 b |
Hippocampal cholesterol (mg/g) | 12.5 ± 1.8 a | 8.6 ± 1.0 b | 8.3 ± 0.9 b |
Hippocampal glycogen (mg/g) | 6.9 ± 2.1 b | 13.6 ± 2.9 a | 12.7 ± 2.5 a |
Variables | AD-Con | AD-SCF | Normal-C |
---|---|---|---|
Lipid peroxides (MDA μmol/g) | 0.44 ± 0.09 a | 0.29 ± 0.05 b | 0.32 ± 0.05 b |
Acetylcholinesterase activity (U/g protein) | 0.19 ± 0.04 a | 0.08 ± 0.03 b | 0.09 ± 0.02 b |
TNF-α protein levels (pg/mL) | 542 ± 44.3 a | 402 ± 36.3 b | 395 ± 33.2 b |
IL-1β protein levels (pg/mL) | 175 ± 19.2 a | 131 ± 12.8 b | 139 ± 13.2 b |
PTGS-2 protein levels (pg/mL) | 54.6 ± 4.5 a | 27.6 ± 3.5 b | 25.3 ± 2.3 b |
Relative mRNA expression of TNF-α (AU) | 1.0 ± 0 a | 0.72 ± 0.10 b | 0.68 ± 0.08 b |
Relative mRNA expression of IL-1β (AU) | 1.0 ± 0 a | 0.67 ± 0.08 b | 0.73 ± 0.09 b |
Relative mRNA expression of IL-6 (AU) | 1.0 ± 0 a | 0.75 ± 0.09 b | 0.71 ± 0.08 b |
Relative mRNA expression of PTGS-2 (COX-2; AU) | 1.0 ± 0 a | 0.82 ± 0.08 b | 0.78 ± 0.08 b |
Relative mRNA expression of BDNF (AU) | 1.0 ± 0 bc | 1.53 ± 0.21 b | 1.74 ± 0.19 a |
Relative mRNA expression of CNTF (AU) | 1.0 ± 0 b | 1.42 ± 0.28 a | 1.36 ± 0.27 a |
Relative mRNA expression of Tau (AU) | 1.0 ± 0 a | 0.78 ± 0.09 b | 0.57 ± 0.07 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.-J.; Zhang, T.; Kim, M.-J.; Hur, H.-J.; Wu, X.; Jang, D.-J.; Park, S. Efficacy and Mechanism of Schisandra chinensis Fructus Water Extract in Alzheimer’s Disease: Insights from Network Pharmacology and Validation in an Amyloid-β Infused Animal Model. Nutrients 2024, 16, 3751. https://doi.org/10.3390/nu16213751
Yang H-J, Zhang T, Kim M-J, Hur H-J, Wu X, Jang D-J, Park S. Efficacy and Mechanism of Schisandra chinensis Fructus Water Extract in Alzheimer’s Disease: Insights from Network Pharmacology and Validation in an Amyloid-β Infused Animal Model. Nutrients. 2024; 16(21):3751. https://doi.org/10.3390/nu16213751
Chicago/Turabian StyleYang, Hye-Jeong, Ting Zhang, Min-Jung Kim, Haeng-Jeon Hur, Xuangao Wu, Dai-Ja Jang, and Sunmin Park. 2024. "Efficacy and Mechanism of Schisandra chinensis Fructus Water Extract in Alzheimer’s Disease: Insights from Network Pharmacology and Validation in an Amyloid-β Infused Animal Model" Nutrients 16, no. 21: 3751. https://doi.org/10.3390/nu16213751
APA StyleYang, H. -J., Zhang, T., Kim, M. -J., Hur, H. -J., Wu, X., Jang, D. -J., & Park, S. (2024). Efficacy and Mechanism of Schisandra chinensis Fructus Water Extract in Alzheimer’s Disease: Insights from Network Pharmacology and Validation in an Amyloid-β Infused Animal Model. Nutrients, 16(21), 3751. https://doi.org/10.3390/nu16213751