Protective Effects of Plum on Liver and Gut Injury in Metabolic Dysfunction-Associated Fatty Liver Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Ethics and Treatment
2.2. Preparation of Oriental Plum Powder
2.3. The Oral Glucose Tolerance Test
2.4. Enzyme-Linked Immunosorbent Assay
2.5. Histological Analysis
2.6. Measurements of Serum Alanine Transaminase (ALT), Endotoxin, and Hepatic Triglyceride (TG) Levels
2.7. Immunoblot Analysis
2.8. Statistical Analysis
3. Results
3.1. Metabolic Consequences in MASLD Mice
3.2. FDP Attenuated the Levels of Increased TG and Oxidative Stress Proteins in MASLD Mice
3.3. FDP Attenuated the Increased Hepatic Fibrosis in MASLD Mice
3.4. FDP Restored Gut Junctional Complex Proteins in MASLD Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, W.-K.; Chuah, K.-H.; Rajaram, R.B.; Lim, L.-L.; Ratnasingam, J.; Vethakkan, S.R. Metabolic dysfunction-associated steatotic liver disease (MASLD): A state-of-the-art review. J. Obes. Metab. Syndr. 2023, 32, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Hagström, H.; Vessby, J.; Ekstedt, M.; Shang, Y. 99% of patients with NAFLD meet MASLD criteria and natural history is therefore identical. J. Hepatol. 2024, 80, e76–e77. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.-Y.; Zheng, M.-H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 2024, 35, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Kalhori, A.; Rafraf, M.; Navekar, R.; Ghaffari, A.; Jafarabadi, M.A. Effect of turmeric supplementation on blood pressure and serum levels of sirtuin 1 and adiponectin in patients with nonalcoholic fatty liver disease: A double-blind, randomized, placebo-controlled trial. Prev. Nutr. Food Sci. 2022, 27, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Byrne, C.D.; Tilg, H. MASLD: A systemic metabolic disorder with cardiovascular and malignant complications. Gut 2024, 73, 691–702. [Google Scholar] [CrossRef]
- Miao, L.; Xu, J.; Targher, G.; Byrne, C.D.; Zheng, M.-H. Old and new classes of glucose-lowering agents as treatments for non-alcoholic fatty liver disease: A narrative review. Clin. Mol. Hepatol. 2022, 28, 725–738. [Google Scholar] [CrossRef]
- Keam, S.J. Resmetirom: First Approval. Drugs 2024, 84, 1–7. [Google Scholar] [CrossRef]
- Kokkorakis, M.; Boutari, C.; Hill, M.A.; Kotsis, V.; Loomba, R.; Sanyal, A.J.; Mantzoros, C.S. Resmetirom, the first approved drug for the management of metabolic dysfunction-associated steatohepatitis: Trials, opportunities, and challenges. Metab.-Clin. Exp. 2024, 154, 155835. [Google Scholar] [CrossRef]
- Golabi, P.; Paik, J.M.; AlQahtani, S.; Younossi, Y.; Tuncer, G.; Younossi, Z.M. Burden of non-alcoholic fatty liver disease in Asia, the Middle East and North Africa: Data from Global Burden of Disease 2009–2019. J. Hepatol. 2021, 75, 795–809. [Google Scholar] [CrossRef]
- Huang, C.-Z.; Tung, Y.-T.; Hsia, S.-M.; Wu, C.-H.; Yen, G.-C. The hepatoprotective effect of Phyllanthus emblica L. fruit on high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in SD rats. Food Funct. 2017, 8, 842–850. [Google Scholar] [CrossRef]
- Kim, S.-A.; Shin, S. Fruit and vegetable consumption and non-alcoholic fatty liver disease among Korean adults: A prospective cohort study. J. Epidemiol. Community Health 2020, 74, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Alami, F.; Alizadeh, M.; Shateri, K. The effect of a fruit-rich diet on liver biomarkers, insulin resistance, and lipid profile in patients with non-alcoholic fatty liver disease: A randomized clinical trial. Scand. J. Gastroenterol. 2022, 57, 1238–1249. [Google Scholar] [CrossRef] [PubMed]
- Lampe, J.W. Health effects of vegetables and fruit: Assessing mechanisms of action in human experimental studies. Am. J. Clin. Nutr. 1999, 70, 475S–490S. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Naska, A.; Antoniou, A.; Friel, S.; Trygg, K.; Turrini, A. Vegetable and fruit: The evidence in their favour and the public health perspective. Int. J. Vitam. Nutr. Res. 2003, 73, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Yu, M.-H.; Lee, I.-S. Inhibitory effects of methanol extract of plum (Prunus salicina L., cv. “Soldam”) fruits against benzo (α) pyrene-induced toxicity in mice. Food Chem. Toxicol. 2008, 46, 3407–3413. [Google Scholar] [CrossRef]
- Ubah, C.O.; Asuquo, O.R.; Oko, G.E.; Ewaa, O.I.; Eluwa, M.A. Evaluating the effects of methanolic leaf extract of neem plant and hog plum on the liver histology of zidovudine induced-oxidative stress Wistar rats. J. Complement. Altern. Med. Res. 2019, 6, 1–6. [Google Scholar] [CrossRef]
- Kim, H.J.; Eom, J.Y.; Choi, S.H.; Seo, H.J.; Kwun, I.S.; Chun, I.J.; Sung, J.; Lim, J.H.; Kim, J.; Song, B.J. Plum prevents intestinal and hepatic inflammation in the acute and chronic models of dextran sulfate sodium-induced mouse colitis. Mol. Nutr. Food Res. 2022, 66, 2101049. [Google Scholar] [CrossRef]
- Priyadi, H.; Trimurtini, I.; Pontjosudargo, F.A. The influence of plum (Prunus salicina Lindl.) extract to liver MDA levels in rats induced by high fat diet. In Proceedings of the 13th Annual Scientific Conference of Medical Faculty, Universitas Jenderal Achmad Yani (ASCMF 2022); Atlantis Press: Amsterdam, The Netherlands, 2022; pp. 134–138. [Google Scholar]
- Ayub, H.; Nadeem, M.; Mohsin, M.; Ambreen, S.; Khan, F.a.; Oranab, S.; Rahim, M.a.; Zubair khalid, M.; Zongo, E.; Zarlasht, M.; et al. A comprehensive review on the availability of bioactive compounds, phytochemicals, and antioxidant potential of plum (Prunus domestica). Int. J. Food Prop. 2023, 26, 2388–2406. [Google Scholar] [CrossRef]
- Askarpour, M.; Ghalandari, H.; Setayesh, L.; Ghaedi, E. Plum supplementation and lipid profile: A systematic review and meta-analysis of randomised controlled trials. J. Nutr. Sci. 2023, 12, e6. [Google Scholar] [CrossRef]
- Mukohda, M.; Mizuno, R.; Ozaki, H. Emerging evidence for a cardiovascular protective effect of concentrated Japanese plum juice. Hypertens. Res. 2023, 46, 2428–2429. [Google Scholar] [CrossRef]
- Park, Y.-S.; Kim, H.-W.; Hwang, J.-H.; Eom, J.-Y.; Kim, D.-H.; Park, J.; Tae, H.-J.; Lee, S.; Yoo, J.-G.; Kim, J.-I.; et al. Plum-derived exosome-like nanovesicles induce differentiation of osteoblasts and reduction of osteoclast activation. Nutrients 2023, 15, 2107. [Google Scholar] [CrossRef] [PubMed]
- Bahrin, A.A.; Moshawih, S.; Dhaliwal, J.S.; Kanakal, M.M.; Khan, A.; Lee, K.S.; Goh, B.H.; Goh, H.P.; Kifli, N.; Ming, L.C. Cancer protective effects of plums: A systematic review. Biomed. Pharmacother. 2022, 146, 112568. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Yu, S.; Ahrén, B. Study on administration of 1, 5-anhydro-D-fructose in C57BL/6J mice challenged with high-fat diet. BMC Endocr. Disord. 2010, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.E.; Mezey, E.; Hardwick, J.P.; Salem, N., Jr.; Clemens, D.L.; Song, B.J. Increased ethanol-inducible cytochrome P450-2E1 and cytochrome P450 isoforms in exosomes of alcohol-exposed rodents and patients with alcoholism through oxidative and endoplasmic reticulum stress. Hepatol. Commun. 2017, 1, 675–690. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-E.; Song, B.-J. Pomegranate prevents binge alcohol-induced gut leakiness and hepatic inflammation by suppressing oxidative and nitrative stress. Redox Biol. 2018, 18, 266–278. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kim, D.-H.; Gil, M.-C.; Kwon, H.-J.; Seo, W.; Kim, D.-K.; Cho, Y.-E. Pomegranate-derived exosome-like nanovesicles alleviate binge alcohol-induced leaky gut and liver injury. J. Med. Food 2023, 26, 739–748. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Pezzino, S.; Sofia, M.; Faletra, G.; Mazzone, C.; Litrico, G.; La Greca, G.; Latteri, S. Gut–Liver axis and non-alcoholic fatty liver disease: A vicious circle of dysfunctions orchestrated by the gut microbiome. Biology 2022, 11, 1622. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, B.; Shi, Y.; Liu, L.; Zhao, J. Systemic metabolic Abnormalities: Key drivers of complications and mortality in MASLD. J. Hepatol. 2024, 80, e246–e248. [Google Scholar] [CrossRef]
- van Erpecum, K.J.; Dalekos, G.N. New horizons in the diagnosis and management of patients with MASLD. Eur. J. Intern. Med. 2024, 122, 1–2. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Kounatidis, D.; Psallida, S.; Vythoulkas-Biotis, N.; Adamou, A.; Zachariadou, T.; Kargioti, S.; Karampela, I.; Dalamaga, M. NAFLD/MASLD and the gut–liver axis: From pathogenesis to treatment options. Metabolites 2024, 14, 366. [Google Scholar] [CrossRef] [PubMed]
- Lebeaupin, C.; Vallée, D.; Hazari, Y.; Hetz, C.; Chevet, E.; Bailly-Maitre, B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol. 2018, 69, 927–947. [Google Scholar] [CrossRef] [PubMed]
- Mouries, J.; Brescia, P.; Silvestri, A.; Spadoni, I.; Sorribas, M.; Wiest, R.; Mileti, E.; Galbiati, M.; Invernizzi, P.; Adorini, L.; et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J. Hepatol. 2019, 71, 1216–1228. [Google Scholar] [CrossRef]
- Hetz, C.; Zhang, K.; Kaufman, R.J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 2020, 21, 421–438. [Google Scholar] [CrossRef] [PubMed]
- Kounatidis, D.; Vallianou, N.; Evangelopoulos, A.; Vlahodimitris, I.; Grivakou, E.; Kotsi, E.; Dimitriou, K.; Skourtis, A.; Mourouzis, I. SGLT-2 inhibitors and the inflammasome: What’s next in the 21st century? Nutrients 2023, 15, 2294. [Google Scholar] [CrossRef] [PubMed]
- Noratto, G.; Martino, H.S.; Simbo, S.; Byrne, D.; Mertens-Talcott, S.U. Consumption of polyphenol-rich peach and plum juice prevents risk factors for obesity-related metabolic disorders and cardiovascular disease in Zucker rats. J. Nutr. Biochem. 2015, 26, 633–641. [Google Scholar] [CrossRef]
- Rendina, E.; Lim, Y.F.; Marlow, D.; Wang, Y.; Clarke, S.L.; Kuvibidila, S.; Lucas, E.A.; Smith, B.J. Dietary supplementation with dried plum prevents ovariectomy-induced bone loss while modulating the immune response in C57BL/6J mice. J. Nutr. Biochem. 2012, 23, 60–68. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-S.; Hong, S.-M.; Kim, D.-K.; Cho, Y.-E. Protective Effects of Plum on Liver and Gut Injury in Metabolic Dysfunction-Associated Fatty Liver Disease. Nutrients 2024, 16, 3760. https://doi.org/10.3390/nu16213760
Kim J-S, Hong S-M, Kim D-K, Cho Y-E. Protective Effects of Plum on Liver and Gut Injury in Metabolic Dysfunction-Associated Fatty Liver Disease. Nutrients. 2024; 16(21):3760. https://doi.org/10.3390/nu16213760
Chicago/Turabian StyleKim, Ji-Su, Sun-Mee Hong, Do-Kyun Kim, and Young-Eun Cho. 2024. "Protective Effects of Plum on Liver and Gut Injury in Metabolic Dysfunction-Associated Fatty Liver Disease" Nutrients 16, no. 21: 3760. https://doi.org/10.3390/nu16213760
APA StyleKim, J. -S., Hong, S. -M., Kim, D. -K., & Cho, Y. -E. (2024). Protective Effects of Plum on Liver and Gut Injury in Metabolic Dysfunction-Associated Fatty Liver Disease. Nutrients, 16(21), 3760. https://doi.org/10.3390/nu16213760