Protective Effects of Probiotics on Runners’ Mood: Immunometabolic Mechanisms Post-Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Aspects
2.2. Sample Size
2.3. Study Design
2.4. Body Composition
2.5. Determination of VO2peak
2.6. Blood Collection
2.7. Blood Measurements
2.8. Assessment of Mood
2.9. Eating Pattern
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanson, N.J.; Buckworth, J.; Templin, T.J. Running performance and changes in mood following prolonged aerobic exercise. J. Sports Sci. 2020, 38, 938–944. [Google Scholar]
- Chekroud, S.R.; Gueorguieva, R.; Zheutlin, A.B.; Paulus, M.; Krumholz, H.M.; Krystal, J.H.; Chekroud, A.M. Association between physical exercise and mental health in 1· 2 million individuals in the USA between 2011 and 2015: A cross-sectional study. Lancet Psychiatry 2018, 5, 739–746. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.W.; Eickhoff, J.C.; Northouse, L.L. Psychological impact of endurance sports: The marathon runner’s paradox. Sports Med. 2020, 50, 1751–1761. [Google Scholar]
- Brownsberger, J.; Edwards, A.; Crowther, R.; Cottrell, D. Impact of mental fatigue on self-paced exercise. Int. J. Sports Med. 2013, 34, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- McNair, D.; Lorr, M.; Droppelman, L. Profile of Moods States Manual; Educational and Industrial Testing Service. Inc.: San Diego, CA, USA, 1971. [Google Scholar]
- Salvador, A.F.; de Lima, K.A.; Kipnis, J. Neuromodulation by the immune system: A focus on cytokines. Nat. Rev. Immunol. 2021, 21, 526–541. [Google Scholar] [CrossRef] [PubMed]
- Wegierska, A.E.; Charitos, I.A.; Topi, S.; Potenza, M.A.; Montagnani, M.; Santacroce, L. The Connection Between Physical Exercise and Gut Microbiota: Implications for Competitive Sports Athletes. Sports Med. 2022, 52, 2355–2369. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, R.; Li, L. Effects of Probiotic Supplementation on Exercise and the Underlying Mechanisms. Foods 2023, 12, 1787. [Google Scholar] [CrossRef]
- Ordille, A.J.; Phadtare, S. Intensity-specific considerations for exercise for patients with inflammatory bowel disease. Gastroenterol. Rep. 2023, 11, goad004. [Google Scholar] [CrossRef]
- Abboud, M.; Rizk, R.; AlAnouti, F.; Papandreou, D.; Haidar, S.; Mahboub, N. The health effects of vitamin D and probiotic co-supplementation: A systematic review of randomized controlled trials. Nutrients 2020, 13, 111. [Google Scholar] [CrossRef]
- Przewłócka, K.; Folwarski, M.; Kaczmarczyk, M.; Skonieczna-Żydecka, K.; Palma, J.; Bytowska, Z.K.; Kujach, S.; Kaczor, J.J. Combined probiotics with vitamin D3 supplementation improved aerobic performance and gut microbiome composition in mixed martial arts athletes. Front. Nutr. 2023, 10, 1256226. [Google Scholar] [CrossRef]
- Terry, P.C.; Lane, A.M.; Fogarty, G.J. Construct validity of the Profile of Mood States—Adolescents for use with adults. Psychol. Sport Exerc. 2003, 4, 125–139. [Google Scholar] [CrossRef]
- Rohlfs, I.C.P.d.M.; Rotta, T.M.; Luft, C.D.B.; Andrade, A.; Krebs, R.J.; Carvalho, T.d. Brunel Mood Scale (BRUMS): An instrument for early detection of overtraining syndrome. Rev. Bras. Med. Esporte 2008, 14, 176–181. [Google Scholar] [CrossRef]
- Donati Zeppa, S.; Agostini, D.; Gervasi, M.; Annibalini, G.; Amatori, S.; Ferrini, F.; Sisti, D.; Piccoli, G.; Barbieri, E.; Sestili, P. Mutual interactions among exercise, sport supplements and microbiota. Nutrients 2019, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Strasser, B.; Geiger, D.; Schauer, M.; Gostner, J.M.; Gatterer, H.; Burtscher, M.; Fuchs, D. Probiotic supplements beneficially affect tryptophan–kynurenine metabolism and reduce the incidence of upper respiratory tract infections in trained athletes: A randomized, double-blinded, placebo-controlled trial. Nutrients 2016, 8, 752. [Google Scholar] [CrossRef]
- Tavares-Silva, E.; Leite, G.S.F.; Batatinha, H.; Resende, A.; de Aquino Lemos, V.; Marques, C.G.; Lancha-Jr, A.H.; Neto, J.R.; Thomatieli-Santos, R. Thirty days of double-strain probiotic supplementation increases monocyte phagocytosis in marathon runners. Br. J. Nutr. 2024, 132, 298–308. [Google Scholar] [CrossRef]
- Seifert, S.; Rodriguez Gómez, M.; Watzl, B.; Holzapfel, W.H.; Franz, C.M.; Vizoso Pinto, M.G. Differential effect of Lactobacillus johnsonii BFE 6128 on expression of genes related to TLR pathways and innate immunity in intestinal epithelial cells. Probiotics Antimicrob. Proteins 2010, 2, 211–217. [Google Scholar] [CrossRef]
- Sayer, A. How Many People Have Run A Marathon?: A Global Analysis. In Marathon Handbook; 2024; Volume 03/10/2024. Available online: https://marathonhandbook.com/how-many-people-have-run-a-marathon/ (accessed on 10 October 2024).
- Lane, A.M.; Beedie, C.J.; Stevens, M.J.; Uphill, M.; Devonport, T.J. The BASES Expert Statement on emotion regulation in sport. J. Sports Sci. 2012, 30, 1189–1195. [Google Scholar] [CrossRef]
- Montenegro-Bonilla, A.; Becerra-Patiño, B.A.; Pino-Ortega, P.; Hernández-Beltrán, V.; Gamonales, J.M. Influence of Emotional Intelligence on Sports Performance: A Systematic Review. Cuad. Psicol. Deporte 2024, 24, 34–52. [Google Scholar] [CrossRef]
- Khemila, S.; Romdhani, M.; Abedelmalek, S.; Chtourou, H.; Souissi, M.A.; BenTouati, E.; Souissi, N. The effect of time of day and high intensity exercise on cognitive performances of elite adolescent karate athletes. Chronobiol. Int. 2022, 39, 1542–1553. [Google Scholar] [CrossRef]
- Skillen, R.A.; Testa, M.; Applegate, E.A.; Heiden, E.A.; Fascetti, A.J.; Casazza, G.A. Effects of an amino acid carbohydrate drink on exercise performance after consecutive-day exercise bouts. Int. J. Sport. Nutr. Exerc. Metab. 2008, 18, 473–492. [Google Scholar] [CrossRef]
- Salleh, R.M.; Kuan, G.; Aziz, M.N.A.; Rahim, M.R.A.; Rahayu, T.; Sulaiman, S.; Kusuma, D.W.Y.; Adikari, A.; Razam, M.S.M.; Radhakrishnan, A.K.; et al. Effects of Probiotics on Anxiety, Stress, Mood and Fitness of Badminton Players. Nutrients 2021, 13, 1783. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.R.; Allen, A.P.; Temko, A.; Hutch, W.; Kennedy, P.J.; Farid, N.; Murphy, E.; Boylan, G.; Bienenstock, J.; Cryan, J.F.; et al. Lost in translation? The potential psychobiotic Lactobacillus rhamnosus (JB-1) fails to modulate stress or cognitive performance in healthy male subjects. Brain Behav. Immun. 2017, 61, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Benton, D.; Williams, C.; Brown, A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur. J. Clin. Nutr. 2007, 61, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Agirman, G.; Yu, K.B.; Hsiao, E.Y. Signaling inflammation across the gut-brain axis. Science 2021, 374, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Chistyakov, D.V.; Astakhova, A.A.; Sergeeva, M.G. Resolution of inflammation and mood disorders. Exp. Mol. Pathol. 2018, 105, 190–201. [Google Scholar] [CrossRef]
- Kim, C.S.; Cha, L.; Sim, M.; Jung, S.; Chun, W.Y.; Baik, H.W.; Shin, D.M. Probiotic Supplementation Improves Cognitive Function and Mood with Changes in Gut Microbiota in Community-Dwelling Older Adults: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 32–40. [Google Scholar] [CrossRef]
- Browning, K.N.; Verheijden, S.; Boeckxstaens, G.E. The Vagus Nerve in Appetite Regulation, Mood, and Intestinal Inflammation. Gastroenterology 2017, 152, 730–744. [Google Scholar] [CrossRef]
- Kaufmann, C.C.; Wegberger, C.; Tscharre, M.; Haller, P.M.; Piackova, E.; Vujasin, I.; Kassem, M.; Tentzeris, I.; Freynhofer, M.K.; Jäger, B.; et al. Effect of marathon and ultra-marathon on inflammation and iron homeostasis. Scand. J. Med. Sci. Sports 2021, 31, 542–552. [Google Scholar] [CrossRef]
- Mündermann, A.; Geurts, J.; Hügle, T.; Nickel, T.; Schmidt-Trucksäss, A.; Halle, M.; Hanssen, H. Marathon performance but not BMI affects post-marathon pro-inflammatory and cartilage biomarkers. J. Sports Sci. 2017, 35, 711–718. [Google Scholar] [CrossRef]
- Schreiber, C.; Tamir, S.; Golan, R.; Weinstein, A.; Weinstein, Y. The effect of probiotic supplementation on performance, inflammatory markers and gastro-intestinal symptoms in elite road cyclists. J. Int. Soc. Sports Nutr. 2021, 18, 36. [Google Scholar] [CrossRef]
- Karl, J.P.; Hatch, A.M.; Arcidiacono, S.M.; Pearce, S.C.; Pantoja-Feliciano, I.G.; Doherty, L.A.; Soares, J.W. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Front. Microbiol. 2018, 9, 2013. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.L.; Holscher, H.D. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv. Nutr. 2021, 12, 2190–2215. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Hoffman-Goetz, L. Exercise and the immune system: Regulation, integration, and adaptation. Physiol. Rev. 2000, 80, 1055–1081. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Steensberg, A.; Fischer, C.; Keller, C.; Ostrowski, K.; Schjerling, P. Exercise and cytokines with particular focus on muscle-derived IL-6. Exerc. Immunol. Rev. 2001, 7, 18–31. [Google Scholar] [PubMed]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9, 46–56. [Google Scholar] [CrossRef]
- Lamprecht, M.; Bogner, S.; Schippinger, G.; Steinbauer, K.; Fankhauser, F.; Hallstroem, S.; Schuetz, B.; Greilberger, J.F. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2012, 9, 45. [Google Scholar] [CrossRef]
- Peng, X.; Luo, Z.; He, S.; Zhang, L.; Li, Y. Blood-Brain Barrier Disruption by Lipopolysaccharide and Sepsis-Associated Encephalopathy. Front. Cell Infect. Microbiol. 2021, 11, 768108. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, Y.L.; Yang, H.; Wang, Y.H.; Du, G.H. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway. Int. Immunopharmacol. 2018, 56, 29–35. [Google Scholar] [CrossRef]
- Alexandrov, P.N.; Hill, J.M.; Zhao, Y.; Bond, T.; Taylor, C.M.; Percy, M.E.; Li, W.; Lukiw, W.J. Aluminum-induced generation of lipopolysaccharide (LPS) from the human gastrointestinal (GI)-tract microbiome-resident Bacteroides fragilis. J. Inorg. Biochem. 2020, 203, 110886. [Google Scholar] [CrossRef]
- Ouabbou, S.; He, Y.; Butler, K.; Tsuang, M. Inflammation in Mental Disorders: Is the Microbiota the Missing Link? Neurosci. Bull. 2020, 36, 1071–1084. [Google Scholar] [CrossRef]
- Foster, C.G.; Landowski, L.M.; Sutherland, B.A.; Howells, D.W. Differences in fatigue-like behavior in the lipopolysaccharide and poly I:C inflammatory animal models. Physiol. Behav. 2021, 232, 113347. [Google Scholar] [CrossRef] [PubMed]
- Noda, M.; Ifuku, M.; Hossain, M.S.; Katafuchi, T. Glial Activation and Expression of the Serotonin Transporter in Chronic Fatigue Syndrome. Front. Psychiatry 2018, 9, 589. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.H.; Jones, J.F.; Drake, D.F.; Tian, H.; Unger, E.R.; Pagnoni, G. Decreased basal ganglia activation in subjects with chronic fatigue syndrome: Association with symptoms of fatigue. PLoS ONE 2014, 9, e98156. [Google Scholar] [CrossRef] [PubMed]
Variable | Placebo | Probiotic | p-Value |
---|---|---|---|
Age (years) | 38.28 ± 3.09 | 41.57 ± 3.20 | 0.075 |
Body mass (kg) | 78.43 ± 8.40 | 71.24 ± 3.55 | 0.059 |
Height (cm) | 179.36 ± 5.23 | 175.82 ± 3.01 | 0.14 |
BMI (kg/m2) | 24.90 ± 1.81 | 23.08 ± 1.83 | 0.08 |
Fat mass (kg) | 16.03 ± 6.29 | 10.95 ± 2.29 | 0.06 |
Fat-free mass (kg) | 64.47 ± 8.49 | 60.77 ± 4.27 | 0.32 |
Marathon time (min) | 243.0 ± 33.73 | 252.87 ± 39.77 | 0.62 |
Average Speed (km/h) | 10.73 ± 1.53 | 10.41 ± 1.48 | 0.70 |
VO2Peak (kg/mL/min) | 54.53 ± 6.88 | 56.92 ± 8.35 | 0.57 |
Maximum HR (Bpm) | 182.16 ± 10.05 | 178.70 ± 3.45 | 0.40 |
TCV (kcal) | 1994.46 ± 365.73 | 2434.69 ± 505.53 | 0.08 |
Carbohydrate (%) | 47.77 ± 4.24 | 47.88 ± 16.98 | 0.98 |
Carbohydrate (g) | 237.46 ± 61.11 | 294.52 ± 122.76 | 0.29 |
Proteins (%) | 18.92 ± 1.62 | 17.53 ± 4.07 | 0.42 |
Proteins (g) | 92.66 ± 7.10 | 105.95 ±38.37 | 0.38 |
Lipids (%) | 33.28 ± 2.76 | 34.56 ± 12.96 | 0.80 |
Lipids (g) | 74.88 ± 10.65 | 92.52 ± 51.14 | 0.38 |
Men (n) | 7 | 7 | - |
Women (n) | 0 | 0 | - |
Smokers (n) | 0 | 0 | - |
Obese (n) | 0 | 0 | - |
Diabetics (n) | 0 | 0 | - |
Hypertensive (n) | 0 | 0 | - |
Other chronic diseases (n) | 0 | 0 | - |
Variable | Placebo Group | Probiotic Group | ||
---|---|---|---|---|
Before | After | Before | After | |
Tension | 5.17 ± 4.45 | 0.66 ± 1.03 a | 4.57 ± 3.74 | 0.71 ± 1.11 a |
Vigor | 12.2 ± 2.71 | 5.50 ± 2.88 a | 11.0 ± 4.73 | 8.14 ± 4.06 |
Anger | 0.00 ± 0.00 | 0.33 ± 0.51 | 0.28 ± 0.75 | 0.28 ± 0.48 |
Depression | 0.00 ± 0.00 | 0.16 ± 0.40 | 0.14 ± 0.37 | 0.85 ± 1.21 |
Fatigue | 1.17 ± 2.40 | 9.00 ± 3.10 a | 2.71 ± 3.73 | 8.43 ± 4.43 a |
Confusion | 1.00 ± 0.89 | 0.16 ± 0.40 | 0.71 ± 1.50 | 1.57 ± 3.05 |
TMD | −4.83 ± 7.28 | 4.83 ± 4.67 a | −2.57 ± 5.86 | 3.71 ± 10.00 |
Placebo | Probiotic | |||
---|---|---|---|---|
Before | After | Before | After | |
IL-2 (pg/mL) | 0.53 ± 0.11 | 0.53 ± 0.10 | 3.36 ± 3.0 | 2.38 ± 2.0 |
IL-4 (pg/mL) | 1.07 ± 0.26 | 1.65 ± 0.50 | 1.16 ± 0.70 | 2.12 ± 1.3 |
IL-2/IL-4 | 0.54 ± 0.05 | 0.47 ± 0.12 | 1.15 ±0.5 | 0.76 ± 0.16 ab |
IL-10 (pg/mL) | 0.47 ± 0.09 | 28.83 ± 18.97 a | 0.36 ± 0.10 | 10.20 ± 7.70 |
TNF-α (pg/mL) | 2.06 ± 0.16 | 3.33 ± 0.65 | 2.48 ± 0.80 | 4.31 ± 1.2 a |
TNF-α/IL-10 | 5.07 ± 0.7 | 1.53 ± 0.49 a | 6.58 ± 1.71 | 2.66 ± 1.02 a |
IL-6 (pg/mL) | 7.42 ± 4.53 | 7.74 ± 5.02 | 19.67 ± 10.0 | 17.45 ± 9.80 |
LPS (pg/mL) | 50.8 ± 31.6 | 52.0 ± 20.4 | 51.3 ± 20.8 | 29.9 ± 13.9 ab |
Glucose (mg/dl) | 124.33 ± 33.84 | 150.38 ± 42.55 | 145.99 ± 20.18 | 152.67 ± 29.99 |
Glutamine (nmol/mL) | 52.55 ± 22.6 | 33.50 ± 5.90 | 41.16 ± 16.70 | 37.70 ± 11.70 |
Serotonin (ng/mL) | 331.47 ± 94.88 | 286.66 ± 101.47 | 395.72 ± 86.71 | 381.14 ± 93.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares-Silva, E.; de Aquino Lemos, V.; de França, E.; Silvestre, J.; dos Santos, S.A.; Ravacci, G.R.; Thomatieli-Santos, R.V. Protective Effects of Probiotics on Runners’ Mood: Immunometabolic Mechanisms Post-Exercise. Nutrients 2024, 16, 3761. https://doi.org/10.3390/nu16213761
Tavares-Silva E, de Aquino Lemos V, de França E, Silvestre J, dos Santos SA, Ravacci GR, Thomatieli-Santos RV. Protective Effects of Probiotics on Runners’ Mood: Immunometabolic Mechanisms Post-Exercise. Nutrients. 2024; 16(21):3761. https://doi.org/10.3390/nu16213761
Chicago/Turabian StyleTavares-Silva, Edgar, Valdir de Aquino Lemos, Elias de França, Jean Silvestre, Samile Amorim dos Santos, Graziela Rosa Ravacci, and Ronaldo Vagner Thomatieli-Santos. 2024. "Protective Effects of Probiotics on Runners’ Mood: Immunometabolic Mechanisms Post-Exercise" Nutrients 16, no. 21: 3761. https://doi.org/10.3390/nu16213761
APA StyleTavares-Silva, E., de Aquino Lemos, V., de França, E., Silvestre, J., dos Santos, S. A., Ravacci, G. R., & Thomatieli-Santos, R. V. (2024). Protective Effects of Probiotics on Runners’ Mood: Immunometabolic Mechanisms Post-Exercise. Nutrients, 16(21), 3761. https://doi.org/10.3390/nu16213761