Micronutrient Deficiency and Muscular Status in Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Patient Assessment Scale and Disease Definition
2.4. Blood Analysis
2.5. Bioelectrical Impedance Analysis
2.6. Statistical Methods
2.7. Ethics Statement
3. Results
3.1. Demographic Characteristics of Patients
3.2. Micronutrient Deficiency
3.3. Muscular Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flynn, S.; Eisenstein, S. Inflammatory Bowel Disease Presentation and Diagnosis. Surg. Clin. N. Am. 2019, 99, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Bruner, L.P.; White, A.M.; Proksell, S. Inflammatory Bowel Disease. Prim. Care 2023, 50, 411–427. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Bernstein, C.N. Environmental risk factors for inflammatory bowel disease. United Eur. Gastroenterol. J. 2022, 10, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Weisshof, R.; Chermesh, I. Micronutrient deficiencies in inflammatory bowel disease. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 576–581. [Google Scholar] [CrossRef]
- Scaldaferri, F.; Pizzoferrato, M.; Lopetuso, L.R.; Musca, T.; Ingravalle, F.; Sicignano, L.L.; Mentella, M.; Miggiano, G.; Mele, M.C.; Gaetani, E.; et al. Nutrition and IBD: Malnutrition and/or Sarcopenia? A Practical Guide. Gastroenterol. Res. Pract. 2017, 2017, 8646495. [Google Scholar] [CrossRef]
- Muscaritoli, M.; Anker, S.D.; Argilés, J.; Aversa, Z.; Bauer, J.M.; Biolo, G.; Boirie, Y.; Bosaeus, I.; Cederholm, T.; Costelli, P.; et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 2010, 29, 154–159. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Abellan van Kan, G.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef]
- Stein, J.; Hartmann, F.; Dignass, A.U. Diagnosis and management of iron deficiency anemia in patients with IBD. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 599–610. [Google Scholar] [CrossRef]
- Marra, M.; Sammarco, R.; De Lorenzo, A.; Iellamo, F.; Siervo, M.; Pietrobelli, A.; Donini, L.M.; Santarpia, L.; Cataldi, M.; Pasanisi, F.; et al. Assessment of Body Composition in Health and Disease Using Bioelectrical Impedance Analysis (BIA) and Dual Energy X-Ray Absorptiometry (DXA): A Critical Overview. Contrast Media Mol. Imaging 2019, 2019, 3548284. [Google Scholar] [CrossRef]
- Bryant, R.V.; Trott, M.J.; Bartholomeusz, F.D.; Andrews, J.M. Systematic review: Body composition in adults with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2013, 38, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Zalizko, P.; Roshofa, T.H.; Meija, L.; Bodnieks, E.; Pukitis, A. The role of body muscle mass as an indicator of activity in inflammatory bowel disease patients. Clin. Nutr. ESPEN 2020, 40, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, Y.S.; Lee, S.H.; Lee, H.M.; Yoon, W.E.; Kim, S.H.; Myung, H.J.; Moon, J.S. Evaluation of nutritional status using bioelectrical impedance analysis in patients with inflammatory bowel disease. Intest. Res. 2022, 20, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, Y.J.; Rhee, K.H.; Kim, Y.H.; Hong, S.N.; Kim, K.H.; Seo, S.I.; Cha, J.M.; Park, S.Y.; Jeong, S.K.; et al. A 30-year Trend Analysis in the Epidemiology of Inflammatory Bowel Disease in the Songpa-Kangdong District of Seoul, Korea in 1986–2015. J. Crohn’s Colitis 2019, 13, 1410–1417. [Google Scholar] [CrossRef]
- Kwak, M.S.; Cha, J.M.; Lee, H.H.; Choi, Y.S.; Seo, S.I.; Ko, K.J.; Park, D.I.; Kim, S.H.; Kim, T.J. Emerging trends of inflammatory bowel disease in South Korea: A nationwide population-based study. J. Gastroenterol. Hepatol. 2019, 34, 1018–1026. [Google Scholar] [CrossRef]
- Han, D.-S.; Chang, K.-V.; Li, C.-M.; Lin, Y.-H.; Kao, T.-W.; Tsai, K.-S.; Wang, T.-G.; Yang, W.-S. Skeletal muscle mass adjusted by height correlated better with muscular functions than that adjusted by body weight in defining sarcopenia. Sci. Rep. 2016, 6, 19457. [Google Scholar] [CrossRef]
- Dhaliwal, A.; Quinlan, J.I.; Overthrow, K.; Greig, C.; Lord, J.M.; Armstrong, M.J.; Cooper, S.C. Sarcopenia in Inflammatory Bowel Disease: A Narrative Overview. Nutrients 2021, 13, 656. [Google Scholar] [CrossRef]
- Jabłońska, B.; Mrowiec, S. Nutritional Status and Its Detection in Patients with Inflammatory Bowel Diseases. Nutrients 2023, 15, 1991. [Google Scholar] [CrossRef]
- Fletcher, J.; Brown, M.; Hewison, M.; Swift, A.; Cooper, S.C. Prevalence of vitamin D deficiency and modifiable risk factors in patients with Crohn’s disease: A prospective observational study. J. Adv. Nurs. 2023, 79, 205–214. [Google Scholar] [CrossRef]
- Ko, K.H.; Kim, Y.S.; Lee, B.K.; Choi, J.H.; Woo, Y.M.; Kim, J.Y.; Moon, J.S. Vitamin D deficiency is associated with disease activity in patients with Crohn’s disease. Intest. Res. 2019, 17, 70–77. [Google Scholar] [CrossRef]
- Lee, C.H.; Yoon, H.; Oh, D.J.; Lee, J.M.; Choi, Y.J.; Shin, C.M.; Park, Y.S.; Kim, N.; Lee, D.H.; Kim, J.S. The prevalence of sarcopenia and its effect on prognosis in patients with Crohn’s disease. Intest. Res. 2020, 18, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Peyrin-Biroulet, L.; Bouguen, G.; Laharie, D.; Pellet, G.; Savoye, G.; Gilletta, C.; Michiels, C.; Buisson, A.; Fumery, M.; Trochu, J.N.; et al. Iron Deficiency in Patients with Inflammatory Bowel Diseases: A Prospective Multicenter Cross-Sectional Study. Dig. Dis. Sci. 2022, 67, 5637–5646. [Google Scholar] [CrossRef] [PubMed]
- Khakoo, N.S.; Ioannou, S.; Khakoo, N.S.; Vedantam, S.; Pearlman, M. Impact of Obesity on Inflammatory Bowel Disease. Curr. Gastroenterol. Rep. 2022, 24, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Bhagavathula, A.S.; Clark, C.C.T.; Rahmani, J.; Chattu, V.K. Impact of Body Mass Index on the Development of Inflammatory Bowel Disease: A Systematic Review and Dose-Response Analysis of 15.6 Million Participants. Healthcare 2021, 9, 35. [Google Scholar] [CrossRef]
- Kim, J.H.; Oh, C.M.; Yoo, J.H. Obesity and novel management of inflammatory bowel disease. World J. Gastroenterol. 2023, 29, 1779–1794. [Google Scholar] [CrossRef]
- Fitzpatrick, J.A.; Melton, S.L.; Yao, C.K.; Gibson, P.R.; Halmos, E.P. Dietary management of adults with IBD—The emerging role of dietary therapy. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 652–669. [Google Scholar] [CrossRef]
- Raman, M.; Ghosh, S. Diet and Nutrition in IBD-Progress and Gaps. Nutrients 2019, 11, 1740. [Google Scholar] [CrossRef]
- Owczarek, D.; Rodacki, T.; Domagała-Rodacka, R.; Cibor, D.; Mach, T. Diet and nutritional factors in inflammatory bowel diseases. World J. Gastroenterol. 2016, 22, 895–905. [Google Scholar] [CrossRef]
Variables | IBD (n = 105) | Ulcerative Colitis (n = 51) | Crohn’s Disease (n = 54) | p-Value |
---|---|---|---|---|
Age | 37 ± 18 (11–86) | 45 ± 16.4 | 29 ± 16.1 | <0.001 * |
Sex, female | 51 (51.4%) | 29 (56.9%) | 22 (40.7%) | 0.099 |
BMI (Kg/m2) | 22.0 ± 3.7 | 22.8 ± 3.3 | 21.2 ± 3.8 | 0.030 * |
Family history of IBD | 5 (4.8%) | 4 (7.8%) | 1 (1.9%) | 0.197 |
Nonsmoker | 89 (84.8%) | 43 (84.3%) | 46 (85.2%) | 0.649 |
Current smoker | 8 (7.6%) | 3 (5.9%) | 5 (9.3%) | |
Ex-smoker | 8 (7.6%) | 5 (9.8%) | 3 (5.6%) | |
Alcohol (Current) | 22 (22.9%) | 14 (27.5%) | 10 (18.5%) | 0.276 |
Type 2 DM | 2 (1.9%) | 1 (1.9%) | 1 (1.9%) | 1.000 |
Hypertension | 6 (5.7%) | 4 (7.8%) | 2 (3.7%) | 0.428 |
Hyperlipidemia | 9 (8.6%) | 8 (15.9%) | 1 (1.9%) | 0.014 * |
Disease duration (months) | 77.5 ± 68.3 | 79.4 ± 72.6 | 75.6 ± 64.6 | 0.778 |
Medication | ||||
5-ASA | 76 (72.4%) | 45 (88.2%) | 31 (57.4%) | <0.001 * |
Steroid | 15 (14.3%) | 11 (21.6%) | 4 (7.4%) | 0.051 |
Immunomodulators | 43 (40.7%) | 10 (19.6%) | 33 (61.1%) | <0.001 * |
Biologics | 35 (33.7%) | 12 (23.5%) | 23 (43.4%) | 0.032 * |
Disease activity | ||||
Remission | 68 (64.8%) | 31 (60.8%) | 37 (68.5%) | 0.782 |
Mild | 18 (17.1%) | 10 (19.6%) | 8 (14.8%) | |
Moderate | 16 (15.2%) | 8 (15.7%) | 8 (14.8%) | |
Severe | 3 (2.9%) | 2 (3.9%) | 1 (1.8%) |
Variables | IBD (n = 105) | Ulcerative Colitis (n = 51) | Crohn’s Disease (n = 54) | p-Value |
---|---|---|---|---|
Hemoglobin (Female: 12.1–15.1, Male: 13.8–17.2 g/dL) | 13.1 ± 1.8 | 13.2 ± 1.8 | 13.0 ± 1.9 | 0.574 |
Total protein (6.7–8.3 g/dL) | 7.1 ± 0.5 | 7.1 ± 0.4 | 7.2 ± 0.6 | 0.436 |
Albumin (3.8–5.3 mg/dL) | 4.1 ± 0.4 | 4.1 ± 0.3 | 4.1 ± 0.4 | 0.888 |
Total blood calcium (8.4~10.2 mg/dL) | 8.9 ± 0.4 | 8.8 ± 0.4 | 8.9 ± 0.4 | 0.981 |
Iron (43~172 µg/dL) | 72.7 ± 44.1 | 82.8 ± 44.0 | 63.3 ± 42.5 | 0.024 * |
Ferritin (Female: 24~307 ng/mL, Male: 24~336 ng/mL) | 77.7 ± 106.4 | 63.4 ± 59.2 | 90.6 ± 135.1 | 0.197 |
Phosphate (2.5~4.5 mg/dL) | 3.60 ± 0.64 | 3.53 ± 0.64 | 3.66 ± 0.65 | 0.279 |
Folic acid (3.1~20.5 ng/mL) | 8.97 ± 4.50 | 9.60 ± 3.80 | 8.38 ± 5.03 | 0.166 |
Magnesium (Female 19–2.5, Male 1.8–2.6 mg/dL) | 2.11 ± 0.17 | 2.15 ± 0.19 | 2.08 ± 0.15 | 0.036 * |
25-OH vitamin D (<20 ng/mL, deficiency) | 19.5 ± 10.2 | 20.1 ± 10.6 | 19.0 ± 9.9 | 0.567 |
Vitamin B 12 (187~883 pg/mL) | 661.4 ± 319.6 | 722.6 ± 327.5 | 607.1 ± 305.1 | 0.068 |
Zinc (66~ 110 µg/dL) | 76.4 ± 16.3 | 77.2 ± 11.5 | 75.7 ± 20.0 | 0.631 |
Variables | IBD (n = 105) | Ulcerative Colitis (n = 51) | Crohn’s Disease (n = 54) | p-Value |
---|---|---|---|---|
Skeletal muscle mass (kg) | 20.9 ± 5.9 | 22.7 ± 6.2 | 19.2 ± 5.5 | 0.005 * |
Muscle mass (kg) | 43.3 ± 9.1 | 44.0 ± 9.5 | 42.6 ± 8.7 | 0.444 |
SMI (%): (SMM/weight) × 100 | 34.3 ± 5.1 | 35.8 ± 5.5 | 32.8 ± 4.7 | 0.004 * |
SMM/Height2 (kg/m2) | 7.6 ± 1.7 | 8.2 ± 1.9 | 7.0 ± 1.5 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Song, H.J.; Kang, M.S.; Jun, H.; Kim, H.U.; Kang, K.S.; Lee, D. Micronutrient Deficiency and Muscular Status in Inflammatory Bowel Disease. Nutrients 2024, 16, 3763. https://doi.org/10.3390/nu16213763
Han J, Song HJ, Kang MS, Jun H, Kim HU, Kang KS, Lee D. Micronutrient Deficiency and Muscular Status in Inflammatory Bowel Disease. Nutrients. 2024; 16(21):3763. https://doi.org/10.3390/nu16213763
Chicago/Turabian StyleHan, Joonhee, Hyun Joo Song, Min Sook Kang, Hogyung Jun, Heung Up Kim, Ki Soo Kang, and Donghyoun Lee. 2024. "Micronutrient Deficiency and Muscular Status in Inflammatory Bowel Disease" Nutrients 16, no. 21: 3763. https://doi.org/10.3390/nu16213763
APA StyleHan, J., Song, H. J., Kang, M. S., Jun, H., Kim, H. U., Kang, K. S., & Lee, D. (2024). Micronutrient Deficiency and Muscular Status in Inflammatory Bowel Disease. Nutrients, 16(21), 3763. https://doi.org/10.3390/nu16213763