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Abstract: Background: Colorectal cancer (CRC) stands as one of the most prevalent cancer types
and among the most frequent causes of cancer-related death globally. Acacia concinna (AC) is a
medicinal and edible plant that exhibits a multitude of biological properties, including anticancer
properties. This study aimed to investigate the impact of the AC extract on apoptosis induction
and the underlying mechanisms associated with this effect in KRAS-mutated human colon HCT116
cells. Methods: The effect of AC extract on cell cytotoxicity was evaluated using MTT assay. Nuclear
morphological changes were visualized with Hoechst 33342 staining, while mitochondrial membrane
potential (MMP) was assessed via JC-1 staining. Flow cytometry was employed for cell cycle
analysis, and intracellular ROS levels were determined using DCFH-DA staining. Results: The
results showed that HCT116 cells exposed to AC extract showed reduced cell growth and prompted
apoptosis, as indicated by an increase in chromatin condensation, apoptotic bodies, the sub-G1
apoptotic cell population, and disrupted MMP. Expression levels of apoptosis mediator proteins
determined by Western blot analysis showed an increase in pro-apoptotic proteins (Bak and Bax)
while decreasing anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1), leading to caspase-7 activation
and PARP inactivation. AC extract was also found to enhance intracellular reactive oxygen species
(ROS) levels and stimulate endoplasmic reticulum (ER) stress. Furthermore, AC extract increases the
phosphorylation of ERK1/2, p38, and c-Jun while downregulating PI3K, Akt, β-catenin, and their
downstream target proteins. Conclusions: These results demonstrate that AC extract could inhibit
cancer cell growth via ROS-induced ER stress associated with apoptosis and regulate the MAPK,
PI3K/Akt, and Wnt/β-catenin signaling pathways in HCT116 cells. Therefore, AC extract may be a
novel candidate for natural anticancer resources for colon cancer treatment.

Keywords: Acacia concinna; apoptosis; colon cancer; KRAS mutant

1. Introduction

Colorectal cancer (CRC) is a malignancy that develops in the colon or rectum, typically
arising due to a multi-step process during which cells acquire a series of mutations [1].
Activating mutations in the oncogene Kirsten rat sarcoma (KRAS) are common, and present
in up to 40% of CRC patients. These mutations are associated with enhanced cell survival
and proliferation as well as reduced apoptosis, and often contribute to resistance against
both conventional and targeted chemotherapies [2,3]. CRC is the second most common
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cause of cancer-related deaths worldwide and the third most diagnosed type of cancer [4].
According to GLOBOCAN 2020, approximately 1.15 million new cases of colon cancer
and 0.58 million deaths were estimated worldwide. The incidences and mortality rates of
CRC are constantly increasing due to lifestyle and other factors, with predictions of new
cases rising to 1.92 million by 2040 [5]. CRC is primarily treated by surgical removal in the
early stages; however, many cases are diagnosed at later stages, leading to chemotherapy
treatment in advanced cases. The common chemotherapy drugs used to treat CRC, often in
combination, include 5-fluorouracil (5-FU), oxaliplatin, and irinotecan. Nevertheless, the
efficacy of chemotherapy drugs is limited due to their side effects on normal cells and the
emergence of drug resistance in cancer cells [6]. Thus, the search for new anticancer agents
is necessary for effective cancer treatment.

Currently, plant-derived phytochemicals offering health benefits and disease preven-
tion, including cancer, have been extensively investigated for their potential as anticancer
drugs [7]. Acacia concinna is a traditional medicinal plant belonging to the Fabaceae family
and is widely found in Asian countries, including India, Sri Lanka, Myanmar, and Thailand.
It has various common names, such as Soap-Pod and Shikakai, and is well-known as
“Sompoi” in Thai [8,9]. A. concinna is used as a shampoo and in traditional medicine for its
anti-dermatophyte and antimicrobial properties in treating skin disorders [10,11]. The plant
contains various chemical components, predominantly saponins, flavonoids, and monoter-
penoids [9,12], and exhibits numerous pharmacological properties, including antioxidant,
anti-tyrosinase activity [10], and anticancer activity [13,14]. However, the mechanisms
underlying the anticancer effects of A. concinna extract on colon cancer remain unknown.

Apoptosis is a type of programmed cell death occurring during normal processes such
as embryonic development, aging, and the removal of damaged cells, thereby maintaining
cellular homeostasis [15]. Morphological characteristics of apoptosis include cell shrinkage,
chromatin condensation, membrane blebbing, nuclear fragmentation, and the creation
of apoptotic bodies, which are phagocytosed by neighboring cells or phagocytes. This
process does not trigger any inflammatory reactions and is not harmful to the host [16,17].
The morphological changes occur consecutively to apoptotic signaling events in response
to stimuli such as DNA damage and ER stress. During apoptosis, the permeability of
mitochondria was disrupted due to the action of the pro-apoptotic Bcl-2 family protein and
the consequent release of cytochrome c, leading to caspase-3/7 activation, which in turn
cleave several key enzymes, such as poly (ADP-ribose) polymerase (PARP), resulting in irre-
versible apoptosis cell death [18,19]. Thus, apoptosis serves as a major mechanism of cancer
therapy and has become a famous target in various treatment strategies. Additionally,
many anticancer drugs exert their anticancer effects by inducing apoptosis [20,21].

Various signaling pathways affect apoptosis. The mitogen-activated protein kinase
(MAPK) pathways include three main sub-families: extracellular regulated kinase (ERK),
p38 kinase (p38), and Jun N-terminal kinase (JNK), which regulate a variety of biological
functions, including cell growth, differentiation, and death. According to previous research,
ERK1/2, p38, and JNK are important modulators of both pro-apoptotic and anti-apoptotic
protein activities [22]. Meanwhile, the phosphoinositide 3-kinase (PI3K)/protein kinase B
(PKB, Akt) pathway is involved in cell survival by inhibiting apoptosis via suppressing the
expression of pro-apoptotic signals such as FOXO and Bad [23]. In addition, activated Akt
has the capability to stimulate the Wnt/β-catenin pathway [24]. Meanwhile, activation of
the Wnt/β-catenin pathway results in the suppression of apoptosis by inhibiting caspase
family activity, releasing cytochrome c, and decreasing the Bax/Bcl-2 expression ratio [25].

Therefore, in this study, we investigate the effects of A. concinna extract on cytotoxicity
and apoptosis induction in the KRAS-mutated human colon HCT116 cell line and the
underlying molecular mechanism by checking various cellular signaling pathways like ER
stress, MAPK, PI3K/Akt, and Wnt/β-catenin. This study presented the potential anti-colon
cancer activity of A. concinna that may be developed as an anticancer drug or combined
with other drugs for colon cancer therapies in the future.
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2. Materials and Methods
2.1. Materials

The materials for maintenance of cells; RPMI 1640 medium (Roswell Park Memorial In-
stitute), penicillin-streptomycin, trypsin-EDTA, and FBS (fetal bovine serum) were acquired
from HiMedia (HiMedia, Laboratories, Mumbai, India). MTT or 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide was purchased from Sigma-Aldrich (St. Louis,
MO, USA), while Hoechst 33342 dye [2′-(4-Ethoxyphenyl)-6-(4-methyl-1-piperazinyl)-
1H,3′H-2,5′-bibenzimidazole] was obtained from Thermo Fisher Scientific (InvitrogenTM,
Thermo Fisher Scientific Inc., Waltham, MA, USA). JC-1 dye (5,5′,6,6′-Tetrachloro-1,1′,3,3-
tetraethylbenzimidazolylcarbocyanine iodide) was purchased from Sigma-Aldrich (Merck
KGaA, Darmstadt, Germany). DCFH-DA dye (dichlorodihydrofluorescein diacetate),
Guava Cell Cycle® reagent, Immobilon™ Western Chemiluminescent HRP Substrate, and
an anti-β-actin antibody were purchased from Merck Millipore (Merck Millipore Corp.,
Darmstadt, Germany). The antibodies used in Western blot analysis including anti-mouse/-
rabbit primary antibody and HRP-conjugated secondary antibodies, were purchased from
Cell Signaling (Cell Signaling Technology, Danvers, MA, USA) and Thermo Fisher Scientific,
Inc. (InvitrogenTM, Waltham, MA, USA).

2.2. Plant Extraction

A. concinna pods were purchased from the Thai Lanna Herbal Industry, Chiang Mai
province, Thailand, in September 2018. The pods were dried and ground into powder.
Then, the powder (50 g) was extracted by maceration in 95% ethanol (500 mL) for 3 days in
the dark at room temperature. After that, the extract was filtered through filter cloth and
Whatman® Qualitative Filter Paper No. 4, followed by evaporation to remove ethanol by
using a rotary vacuum evaporator. The ethanol extract of A. concinna (AC) was dried using
a vacuum desiccator to give the extract 11.36 g (22.72%). The AC extract was then stored at
−20 ◦C in the dark until used in the experiment. The AC extract was dissolved in DMSO.

2.3. NMR and MS Analysis

The main components of the AC ethanol extract were characterized by liquid chro-
matography coupled to electrospray ionization mass spectrometry (LC-ESI-MS), proton
nuclear magnetic resonance (1H NMR), carbon nuclear magnetic resonance (13C NMR),
gradient correlation spectroscopy (gCOSY), gradient heteronuclear single quantum cor-
relation (gHSQC), gradient heteronuclear multiple bond correlation (gHMBC), and diffu-
sion ordered spectroscopy (DOSY). LC-ESI-MS analyses were run on a Thermo Scientific
Dionex UltiMate 3000 Ultra-High Performance Liquid Chromatography system equipped
with an electrospray ionization (ESI) source, an on-line degasser, a quaternary pump, a
thermostatted column compartment, and an autosampler. Mass spectrometric detection
was performed by a Bruker micrOTOF II. Separation was achieved on a C18 column
2.1 × 150 mm, 3 µm (Thermo Scientific, Waltham, MA, USA). The mobile phases consisting
of solvent A (0.1% formic acid in water) and solvent B (acetonitrile) were used for the
gradient elution. The 1H and 13C NMR spectra were recorded on a 500 MHz Bruker Avance
NMR spectrometer, in DMSO-d6 as solvent, and referenced to the solvent peak at 2.50 and
39.5 ppm, respectively.

2.4. Cell Culture and Maintenance

The human colon cancer cell line, HCT116 was obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA). Cells were cultured in RPMI 1640 Medium
containing 10% FBS, penicillin (100 U/mL), and streptomycin (100 µg/mL). The cells were
maintained in a CO2 incubator at 37 ◦C under 5% carbon dioxide (CO2) and saturated
humidity (95%). Sub-culturing of the cells was performed every 2–3 days.



Nutrients 2024, 16, 3764 4 of 17

2.5. MTT Assay

The cytotoxicity of AC extract was evaluated using the MTT assay. Cells were seeded
in 96-well culture plates and incubated overnight. Following incubation, the cells were
then treated with AC extract at 0, 25, 50, 100, 200, 300, 400, and 500 µg/mL, while the
control cells received 0.25% DMSO for 24 h. Subsequently, the supernatant was removed,
and MTT solution (0.5 mg/mL) was added. The culture plates were then incubated for
2 h at 37 ◦C. Following incubation, DMSO was applied to solubilize the formazan crystals.
The absorbance was then measured at 570 nm using a microplate reader (Multiskan Sky
Microplate Spectrophotometer, Waltham, MA, USA). Cell viability percentages (%) were
calculated in comparison to the control group, and the IC50 values were performed in
GraphPad Prism 9 Software (GraphPad Prism Software, Inc., San Diego, CA, USA).

2.6. Nuclear Morphological Changes Detection

Hoechst 33342 staining was performed to assess chromatin condensation. Briefly, cells
were seeded and treated with AC extract at 0, 50, 100, 200, and 250 µg/mL, whereas the
control cells received 0.25% DMSO for 24 h. The cells were then incubated for 30 min after
being stained with Hoechst 33342 fluorescent dye. The images were visualized by using a
fluorescence microscope (DP73+IX71 Olympus, Tokyo, Japan).

2.7. Measurement of Mitochondrial Membrane Potential (MMP)

JC-1 staining was utilized to evaluate the effect of AC extract on MMP. Cells were
seeded and treated with AC extract at 0, 50, 100, 200, and 250 µg/mL, and the control group
received 0.25% DMSO for 9 h, then the cells were incubated with JC-1 fluorescence dye at
room temperature for 10 min. The images were examined under a fluorescence microscope
(DP73+IX71 Olympus, Tokyo, Japan).

2.8. Cell Cycle Analysis

Flow cytometry was utilized to assess the impact of AC extract on cell cycle distribu-
tion. In brief, HCT116 cells were seeded and treated with AC extract at 0, 50, 100, 200, and
250 µg/mL. The control group received 0.25% DMSO for 12 h. After collecting the cells,
70% cold ethanol was used to fix the cells, and they were subsequently stained with Guava
Cell Cycle® reagent (Merck Millipore Corporation, Merck KGaA, Darmstadt, Germany).
The stained cells were then assessed for DNA content using the Guava EasyCyteTM flow
cytometer and GuavaSoftTM software version 3.2 (Merck Millipore Corporation, Merck
KGaA, Darmstadt, Germany).

2.9. Intracellular ROS Measurement

HCT116 cells were seeded and treated with AC extract at 0, 50, 100, 200, and 250 µg/mL,
and the control group received 0.25% DMSO. They were then incubated with 20 µM DCFH-
DA fluorescence dye at 37 ◦C for 30 min. After incubation, stained cells were examined
using a fluorescence microscope (DP73+IX71, Olympus, Tokyo, Japan).

2.10. Western Blot Analysis

Protein expression was evaluated by Western blot analysis. The cells were collected,
and RIPA lysis buffer (250 mM NaCl, 50 mM Tris-HCl, pH 7.5, 5 mM EDTA, 0.5% Triton
X-100, protease inhibitor cocktail, and 10 mM PMSF) was utilized for extracting the total
protein from the cells. Following SDS-PAGE separation, the protein mixture was transferred
to PVDF (polyvinylidene fluoride) membranes. The membranes were subsequently blocked
with blocking buffer for 1 h, incubated with primary antibodies targeting the specific
proteins of interest at 4 ◦C overnight, and incubated with HRP-conjugated secondary
antibodies for 1 h, respectively. The immunoreactivity protein bands were exposed by
using chemiluminescent HRP substrate (ECL) and visualized using a gel documentary
machine (AllianceQ9 advanced, Cambridge, UK). ImageJ software version 1.53e was used
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to quantify the intensity of the protein bands, and the results were presented as the ratio
relative to the intensity of β-actin.

2.11. Statistical Analysis

The data were expressed as the mean ± standard deviation (SD). Statistically signifi-
cant differences between groups were evaluated using one-way analysis variance (ANOVA),
and Tukey’s post hoc test was then employed. Statistical analysis was performed using
SPSS statistical software package version 20.0 (IBM Crop., Albany, NY, USA). Statistical
significance was defined as p < 0.05 and 0.01.

3. Results
3.1. NMR and MS Analysis of AC Extract

The LC-ESI-MS spectrum of the AC ethanol extract indicated the presence of flavonoids
in comparison with the previous report on Acacia pod extracts [26]. The main peaks
showed [M + Na]+ ion with m/z 325.2 and [M + H]+ ion with m/z 319.2 corresponding to
pentahydroxyflavone and hexahydroxyflavone, respectively. In order to obtain more data
on chemical compositions in the AC ethanol extract, 1D and 2D NMR spectroscopic analyses
were performed. Even though the signals in the 1H NMR spectrum (Figure 1A) overlapped,
some information was discernible. The presence of angular methyl and methylene protons,
sugar protons, and olefinic protons signals in the range of δ 0.7–2.4, 3.0–5.0, and 5.5–6.5,
respectively, could be observed. The 13C NMR (Figure 1B) indicated anomeric carbons,
olefinic carbons, and carbonyl carbons signals in the region of 93–112, 121–145, and 162–215,
respectively. Comparing the NMR data with the previous report [13] suggested that acacic
acid-type saponins were in the extract. The HMBC experimental data indicated that the
methylene proton signal observed at δ 2.17 (H-22) correlated with the carbonyl carbon
signal at δ 174.5 (C-28). Moreover, the methine proton signal at δ 5.25 (H-21), olefinic proton
signal at δ 6.70 (H-3′), and methylene proton signal at δ 4.12 (H-9′) correlated with the
carbonyl carbon signal at δ 166.1 (C-1′). This clearly indicates that the extract contained
acacic acid-type saponins (Figure 1C).

3.2. AC Extract Reduces Cell Viability in HCT116 Cells

First, we determined whether AC extract can inhibit the proliferation of HCT116 cells by
using the MTT assay. We found that AC extract significantly reduced cell viability on HCT116
cells with an IC50 value of 166.0 ± 0.44 µg/mL (Figure 2). In addition, we tested the effect of AC
extract in normal cells (HaCat cells), and the IC50 value was 371.7 ± 1.477 µg/mL (Figure S3).
This result suggested that AC extract could inhibit the proliferation of HCT116 cells.

3.3. AC Extract Induces Apoptosis in HCT116 Cells

Most anticancer drugs have properties that induce apoptosis [20]; thus, we next
determine whether the proliferation inhibitory effect is associated with apoptosis induction.
The nuclear morphological changes and MMP detection, which are major characteristics of
apoptosis, were carried out using Hoechst 33342 and JC-1 staining, respectively. As shown
in Figure 3A, after treatment for 24 h, the AC-treated cells have smaller, brighter nuclei than
the control group, indicating nuclear and cytoplasmic condensation in a dose-dependent
manner. Cell shrinkage as well as apoptotic bodies were also observed. Additionally, AC
extract could induce the loss of MMP in the HCT116 cells demonstrated by the reduced
red fluorescence of JC-1 dye (Figure 3B). This result revealed that AC treatment led to
mitochondrial dysfunction. Taken together, our findings demonstrate that AC extract
inhibited the proliferation of HCT116 cells through apoptosis induction.



Nutrients 2024, 16, 3764 6 of 17Nutrients 2024, 16, x FOR PEER REVIEW 6 of 18 
 

 
 

Figure 1. NMR spectra of the AC ethanol extract in DMSO-d6: (A) 1H NMR spectrum; (B) 13C NMR
spectrum; (C) HMBC correlations.



Nutrients 2024, 16, 3764 7 of 17

Nutrients 2024, 16, x FOR PEER REVIEW 7 of 18 
 

 

Figure 1. NMR spectra of the AC ethanol extract in DMSO-d6: (A) 1H NMR spectrum; (B) 13C NMR 
spectrum; (C) HMBC correlations. 

3.2. AC Extract Reduces Cell Viability in HCT116 Cells 
First, we determined whether AC extract can inhibit the proliferation of HCT116 cells 

by using the MTT assay. We found that AC extract significantly reduced cell viability on 
HCT116 cells with an IC50 value of 166.0 ± 0.44 µg/mL (Figure 2). In addition, we tested 
the effect of AC extract in normal cells (HaCat cells), and the IC50 value was 371.7 ± 1.477 
µg/mL (Figure S3). This result suggested that AC extract could inhibit the proliferation of 
HCT116 cells. 

 
Figure 2. AC extract inhibited cell proliferation in HCT116 cells. The cells were treated with different 
concentrations of AC extract for 24 h and examined using the MTT assay. The cell viability is pre-
sented as a percentage compared to the control cells. ** p < 0.01, indicating significant differences 
compared to the control. 

3.3. AC Extract Induces Apoptosis in HCT116 Cells 
Most anticancer drugs have properties that induce apoptosis [20]; thus, we next de-

termine whether the proliferation inhibitory effect is associated with apoptosis induction. 
The nuclear morphological changes and MMP detection, which are major characteristics 
of apoptosis, were carried out using Hoechst 33342 and JC-1 staining, respectively. As 
shown in Figure 3A, after treatment for 24 h, the AC-treated cells have smaller, brighter 
nuclei than the control group, indicating nuclear and cytoplasmic condensation in a dose-
dependent manner. Cell shrinkage as well as apoptotic bodies were also observed. Addi-
tionally, AC extract could induce the loss of MMP in the HCT116 cells demonstrated by 
the reduced red fluorescence of JC-1 dye (Figure 3B). This result revealed that AC treat-
ment led to mitochondrial dysfunction. Taken together, our findings demonstrate that AC 
extract inhibited the proliferation of HCT116 cells through apoptosis induction. 

Figure 2. AC extract inhibited cell proliferation in HCT116 cells. The cells were treated with different
concentrations of AC extract for 24 h and examined using the MTT assay. The cell viability is
presented as a percentage compared to the control cells. ** p < 0.01, indicating significant differences
compared to the control.

Nutrients 2024, 16, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 3. Effect of AC extract on the induction of apoptosis in HCT116 cells. (A) Nuclear morpho-
logical changes were assessed by staining cells with Hoechst 33342 and observed by fluorescence 
microscopy (20×). The red arrows indicated nuclear condensation and apoptotic bodies. (B) The loss 
of MMP in the cells was evaluated using JC-1 staining and observed by fluorescence microscopy 
(20×). The green fluorescence indicated the loss of MMP. (C) The histogram represented the percent 
of nuclear-condensed cells relative to the control cells. (D) The histogram represented the relative 
intensity of red fluorescence compared to the control cells. ** p < 0.01, indicating significant differ-
ences compared to the control. 

3.4. AC Extract Increased Population of HCT116 Cells in Sub-G1 Phase 
The apoptosis-inducing effect of AC extract in HCT116 cells was confirmed by cell 

cycle analysis. The histograms in Figure 4 show the cell cycle distribution of HCT116 cells, 
implying that treatment of the cells with AC extract led to an increase sub-G1 population, 
indicating the presence of apoptotic cells. The percentages of cells significantly increased 
from 0.18% observed in the control cells to 1.23, 2.15, 3.06, and 3.57% at concentrations of 
50, 100, 200, and 250 µg/mL of AC extract, respectively. These findings clearly demon-
strated that AC extract induced apoptosis in HCT116 cells. 

Figure 3. Effect of AC extract on the induction of apoptosis in HCT116 cells. (A) Nuclear morphological
changes were assessed by staining cells with Hoechst 33342 and observed by fluorescence microscopy
(20×). The red arrows indicated nuclear condensation and apoptotic bodies. (B) The loss of MMP in
the cells was evaluated using JC-1 staining and observed by fluorescence microscopy (20×). The green
fluorescence indicated the loss of MMP. (C) The histogram represented the percent of nuclear-condensed
cells relative to the control cells. (D) The histogram represented the relative intensity of red fluorescence
compared to the control cells. ** p < 0.01, indicating significant differences compared to the control.
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3.4. AC Extract Increased Population of HCT116 Cells in Sub-G1 Phase

The apoptosis-inducing effect of AC extract in HCT116 cells was confirmed by cell
cycle analysis. The histograms in Figure 4 show the cell cycle distribution of HCT116 cells,
implying that treatment of the cells with AC extract led to an increase sub-G1 population,
indicating the presence of apoptotic cells. The percentages of cells significantly increased
from 0.18% observed in the control cells to 1.23, 2.15, 3.06, and 3.57% at concentrations of 50,
100, 200, and 250 µg/mL of AC extract, respectively. These findings clearly demonstrated
that AC extract induced apoptosis in HCT116 cells.

Nutrients 2024, 16, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 4. Effect of AC extract on cell cycle distribution in HCT116 cells. (A) The histograms represent 
the DNA content analysis performed by flow cytometry. (B) The graphical representation compared 
the relative sub-G1 level to the control cells. ** p < 0.01, indicating significant differences compared 
to the control. 

3.5. AC Extract Induced Intracellular ROS Production 
The accumulation of ROS has been associated with the disruption of MMP [27] con-

sidered a trigger for the mitochondrial apoptotic pathway. While our results showed that 
AC extract caused a loss of MMP, for this reason, the level of intracellular ROS was meas-
ured using DCFH-DA staining. As shown in Figure 5, AC extract significantly increased 
the level of intracellular ROS in HCT116 cells after 2 h of incubation with AC extract as 
compared to the control cells. 
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the control.

3.5. AC Extract Induced Intracellular ROS Production

The accumulation of ROS has been associated with the disruption of MMP [27] consid-
ered a trigger for the mitochondrial apoptotic pathway. While our results showed that AC
extract caused a loss of MMP, for this reason, the level of intracellular ROS was measured
using DCFH-DA staining. As shown in Figure 5, AC extract significantly increased the level
of intracellular ROS in HCT116 cells after 2 h of incubation with AC extract as compared to
the control cells.
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in the cells. (B) The relative DCF fluorescence intensity compared to the control cells. ** p < 0.01,
indicating significant differences compared to the control.

3.6. Effect of AC Extract on Apoptotic-Related Protein Expression

To explicate the molecular mechanisms of AC extract-induced apoptosis, the ex-
pression of several key apoptotic-related proteins was examined. The treatment with
AC extract for 24 h induced a significant decrease in the anti-apoptotic proteins B-cell
leukemia/lymphoma 2 (Bcl-2), B-cell lymphoma-extra-large (Bcl-xL), and myeloid leukemia
1 (Mcl-1), while a significant increase in the pro-apoptotic proteins Bcl2-associated X protein
(Bax) and Bcl-2-antagonist/killer (Bak) resulted in the activation of the cleaved form of
cysteine-dependent aspartate-specific protease (caspase-7). Furthermore, the level of a DNA
repair enzyme, cleaved-PARP (inactive form), was also increased in AC-treated HCT116
cells (Figure 6). Therefore, these results indicated that the mechanism of apoptosis induc-
tion in HCT116 cells by AC extract was involved in the activation of caspase-dependent
apoptosis via the mitochondrial pathways.

3.7. Effect of AC Extract on ER Stress

A previous study indicated that an increase in ROS levels can cause ER stress and
lead to cell death [28]. We therefore conducted Western blot analysis to further elucidate
the possible apoptotic pathway induced by AC extract associated with the ER stress. As
shown in Figure 7, AC extract upregulated the expression of glucose-regulated protein
78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic
initiation factor 2 alpha (eIF2α) pathway, leading to the increased C/EBP homologous
protein (CHOP) in HCT116 cells. Moreover, AC extract increased the level of p-IRE1α
(inositol-requiring enzyme 1 α). The protein expression patterns observed in AC-treated
cells were similar to those in tunicamycin (Tm)-treated cells, a widely recognized inducer
of ER stress. These results suggested that AC extract induced ER stress, which may be
closely related to apoptosis induction in HCT116 cells.
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3.8. Effect of AC Extract on MAPK Signaling Pathway

The MAPK pathway downstream of KRAS plays a major role in cell differentiation,
proliferation, and apoptosis [22]. Therefore, we studied the protein levels of this pathway.
The results, shown in Figure 8, indicated that AC extract increased the ratio of the phospho-
rylated form to the total form of ERK1/2, p38, and c-Jun proteins. These results revealed
that AC extract may inhibit HCT116 cell growth by regulating the MAPK pathway.



Nutrients 2024, 16, 3764 11 of 17

Nutrients 2024, 16, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 7. Effect of AC extract on ER stress-related proteins in HCT116 cells. The cells were treated 
with AC extract or Tm (10 µg/mL). (A) The protein expression was examined by Western blot anal-
ysis. (B) The relative band intensity compared to the control group. * p < 0.05 and ** p < 0.01, indi-
cating significant differences compared to the control. 

3.8. Effect of AC Extract on MAPK Signaling Pathway 
The MAPK pathway downstream of KRAS plays a major role in cell differentiation, 

proliferation, and apoptosis [22]. Therefore, we studied the protein levels of this pathway. 
The results, shown in Figure 8, indicated that AC extract increased the ratio of the phos-
phorylated form to the total form of ERK1/2, p38, and c-Jun proteins. These results re-
vealed that AC extract may inhibit HCT116 cell growth by regulating the MAPK pathway. 

 
Figure 8. Effect of AC extract on MAPK pathway in HCT116 cells. (A) The protein expression was 
detected by Western blot analysis. (B) The relative band intensity compared to the control group. * 
p < 0.05 and ** p < 0.01, indicating significant differences compared to the control. 

3.9. Effect of AC Extract on PI3K/Akt and Wnt/β-Catenin Signaling Pathways 
It is well-known that PI3K/Akt serves as a key signaling transduction pathway for 

regulating cellular survival and inhibiting apoptosis, downstream of KRAS [23]. Thereby, 
the effect of AC extract on this pathway in HCT116 cells was detected. The results found 
that AC extract decreased the levels of PI3K, p-PDK1 (3-phosphoinositide-dependent ki-
nase 1), p-Akt (Ser473), and p-Akt (Thr308) (Figure 9A,B). The PI3K/Akt pathway 

Figure 8. Effect of AC extract on MAPK pathway in HCT116 cells. (A) The protein expression was
detected by Western blot analysis. (B) The relative band intensity compared to the control group.
* p < 0.05 and ** p < 0.01, indicating significant differences compared to the control.

3.9. Effect of AC Extract on PI3K/Akt and Wnt/β-Catenin Signaling Pathways

It is well-known that PI3K/Akt serves as a key signaling transduction pathway for
regulating cellular survival and inhibiting apoptosis, downstream of KRAS [23]. Thereby,
the effect of AC extract on this pathway in HCT116 cells was detected. The results found
that AC extract decreased the levels of PI3K, p-PDK1 (3-phosphoinositide-dependent kinase
1), p-Akt (Ser473), and p-Akt (Thr308) (Figure 9A,B). The PI3K/Akt pathway contributes
to the triggering of the Wnt/β-catenin pathway [24]; therefore, we next investigated
the expression of this pathway. As shown in Figure 9C, AC extract downregulated the
expressions of phospho-glycogen synthase kinase-3 beta (p-GSK-3β), the inactive form of
GSK-3β, thereby enhancing β-catenin degradation, as evidenced by decreased β-catenin
and their downstream target (c-Myc, survivin) expression. Thus, our results suggested
that AC extract could induce apoptosis by suppressing the Wnt/β-catenin pathway by
restraining the upstream kinase activity of the PI3/Akt pathway.
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4. Discussion

Considerable research suggests the potential impact of bioactive compounds in the
prevention and treatment of cancer [29]. Moreover, bioactive compounds from plants or
herbs are generally safe and low toxic; this is an alternative approach to avoiding the side
effects of synthetic medicines [30]. In this study, we determined whether AC extract has
anticancer properties in human colon cancer cells. This study illustrated that AC extract
exhibited a significant anti-proliferative effect in HCT116 cells. In a previous study using
kinmoonosides A-C, novel saponins isolated from a methanolic extract of A. concinna
pods also exhibited a significant cytotoxic effect against human HT-1080 fibrosarcoma
cells [13], supporting our results and indicating that AC extract has anticancer potential in
cancer cells.

Phytochemicals are bioactive compounds derived from plants that offer health benefits,
including the prevention of diabetes, obesity, and cancer. These phytochemical compounds
contain several groups, such as polyphenols, carotenoids, and saponins [31]. Flavonoids
are a large family of polyphenols that exhibit anticancer effects by modulating multiple
mechanisms of action such as apoptosis induction, cell cycle arrest, and invasiveness [32].
In this study, the phytochemical compounds of the AC extract detected as the flavonoid
(Figure S1) were analyzed by NMR and MS. The main peaks of the MS profile of AC extract
corresponded to pentahydroxyflavone, hexahydroxyflavone, and acacic acid-type saponins
in comparison with the previous reports of Acacia pods extracts [13,26,33]. A previous
study found that the methanolic extract from the A. concinna plant was found to contain
flavonoids and phenols and showed cytotoxicity on human breast cancer cells, MCF-7 [11].
In addition, the extract containing triterpenoid saponins showed cytotoxicity against HT-
1080 fibrosarcoma cells [13]. Therefore, the anticancer effect of the AC extract may be due
to the flavonoids and saponins presented. However, further studies are necessary to isolate,
purify, and test the active compounds of AC extract to assess their anticancer activity.

The main goals of cancer treatment are the inhibition of cancer cell growth and the
elimination of cancer cells while providing low toxicity to normal cells. It is commonly
known that most many chemotherapeutic agents can kill cancer cells by activating apop-
totic pathways [21]. Therefore, we hypothesized that the inhibitory effect of AC extract
on HCT116 cells may involve apoptosis induction. Our study revealed that AC extract
selectively induced apoptosis in HCT116 cells indicated by chromatin condensation and
loss of MMP as well as increased sub-G1 populations. The loss of MMP is recognized as
a key step in the mitochondrial or intrinsic apoptosis pathway. The loss of MMP occurs
by activation of pro-apoptotic protein. This event results in the activation of numerous
caspases and cleavage of downstream death effector proteins [34]. The Western blot anal-
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ysis of AC-treated cells confirmed such a hypothesis. We discovered that AC extract
increased the protein expression of cleaved caspase-7 responsible for cleaving downstream
substrates, PARP. The activation of effector caspases is well known to be responsible for
the hallmarks of apoptosis cells, such as DNA fragmentation [35]. AC-treated cells also
increased cleaved-PARP levels, which prevented the cancer cells from repairing damage
required for their survival, and finally caused irreversible apoptosis cell death and complete
elimination [18,19]. We also confirmed that AC extract regulated Bcl-2 family members,
which initiated the apoptosis process in HCT116 cells via the intrinsic pathway. Accord-
ing to previous studies, morin (3,5,7,2′,4′-pentahydroxyflavone) stimulates caspases-8, -9,
and -3, causes PARP cleavage, and modulates the Fas receptor and Bcl-2 family members,
suggesting that it induces both the extrinsic and intrinsic apoptosis pathways in HCT 116
cells [36].

Several studies have suggested that elevated intracellular levels of ROS can trigger ER
stress, potentially leading to mitochondrial dysfunction and ultimately initiating apopto-
sis [28,37]. Interestingly, AC extract has been found to induce intracellular ROS generation
and ER stress by upregulating the expression of GRP78, p-eIF2α, CHOP, and p-IRE1α.
Increased levels of GRP78/BiP have been reported to activate PERK by autophosphory-
lation and homomultimerization. Activated PERK subsequently phosphorylates eIF2α,
leading to the activation of ATF4 and its downstream targets [38,39]. Normally, mild ER
stress conditions can restore ER homeostasis through the unfolded protein response (UPR).
Nevertheless, prolonged ER stress can trigger apoptosis via increased CHOP expression,
which is mainly regulated through the PERK/eIF-2α/ATF-6 pathway [40]. The activation
of CHOP is regarded as a key event for ER stress-induced apoptosis. Studies have shown
that CHOP triggered apoptosis by suppressing anti-apoptosis proteins such as Bcl-2 and
Mcl-1 and by enhancing the expression of the pro-apoptosis protein Bim. Subsequently,
Bim regulated Bax and Bak, leading to disruption of the permeabilization of the mitochon-
drial outer membrane [41]. Previous investigation has shown that quercetin, a bioactive
flavonoid induced apoptosis in human cervical cancer cells (HeLa) by ER stress induction.
The levels of caspase-3, GRP78, p-PERK, c-ATF6, IRE1, and CHOP showed a progres-
sive increase corresponding to the rising concentration of quercetin [42]. Another study
showed that quercetin induced cell apoptosis, intracellular ROS production, and ER stress
in prostate cancer cells (PC-3) [43]. In addition, a synthetic derivative of quercetin called
TEF (5,3′-dihydroxy-3,7,4′-triethoxyflavone) also induced apoptosis and ER stress via the
IRE1-α and mito-JNK pathways in HCT-116 cells [44]. Our results were consistent with
their observations and demonstrated that AC extract induced ER stress via the GRP78/eIF-
2α/CHOP pathway. Additionally, activated IRE1 can activate MAPK pathways including
p38 and JNK, which regulate Bcl-2 family proteins [39,45]. Taken together, these results
demonstrate that AC extract induced ER stress-mediated apoptosis in HCT116 cells.

KRAS-mutant CRC cancer is linked to decreased survival and increased tumor aggres-
siveness [46]. Designing drugs that directly target mutant KRAS constitutes a significant
challenge. Thus, an alternative strategy is to target downstream pathways such as the
MAPK and Akt pathways [2]. Both p38 and JNK respond to both extracellular and intra-
cellular stresses. Activation of p38 promotes cell apoptosis via the regulation of a variety
of Bcl-2 family proteins, such as Bax, and the activating caspase family [47]. We reported
that the expression of p-p38 and p-c-Jun were increased upon treatment with AC extract.
c-Jun is one of the transcription factor AP-1 family members that can be phosphorylated
by JNK. The activation of JNK may stimulate apoptosis by upregulating the transcription
of pro-apoptotic genes such as the Fas/FasL pathway through c-Jun/AP-1 [48]. Previous
studies have indicated that quercetin triggers apoptosis by activating the JNK pathway in
KRAS-mutant colorectal cancer cells [2]. It has also been reported that the activation of
ERK1/2 is linked to the induction of apoptosis. Kim S et al. 2019 reported the anti-tumor
and apoptotic effects are elicited by quercetin through the regulation of MAPK pathways
by increasing the levels of Bax, cleaved-PARP, p-JNK, p-p38, and p-ERK1/2, while reduc-
ing Bcl-2 in A375SM melanoma cells [49]. In the present study, AC extract increased the
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expression of p-ERK1/2 in HCT116 cells. Hence, AC-induced apoptosis in HCT116 cells
may be related to MAPK pathway activation.

The PI3K/Akt pathway is widely recognized for regulating cell survival, cell prolif-
eration, and cancer drug resistance. Mutations and activation of protein members within
the PI3K/Akt/mTOR pathway are commonly found in cancer [50]. Several studies have
indicated that plant extracts can inhibit this pathway, resulting in decreased cell prolifer-
ation and increased apoptosis. For instance, quercetin has shown anticancer effects via
induced cell death in JAR and JEG3 choriocarcinoma cell lines through PI3K pathways
by inhibiting p-Akt, p-P70S6K, and p-S6 proteins [51]. These findings correlated with our
research, wherein we observed that AC extract reduced the expression of PI3K/Akt protein
in HCT116 cells.

Increased Wnt/β-catenin signaling pathway activity is linked to carcinogenesis in
CRC [52]. β-catenin is a key component of this pathway, which is regulated by a destruction
complex. GSK3-β is part of the destruction complex that phosphorylates β-catenin in the
cytosol leading to its degradation via the ubiquitin-proteasome system. GSK3β activation is
regulated by Akt which phosphorylates GSK3β, thereby inactivating it and preventing the
formation of the destruction complex [24,52–54]. As reported, we demonstrated that AC
extract can inhibit both the PI3K/Akt and the Wnt/β-catenin pathway, which are crucial
for tumor initiation and development. [55]. Similarly, quercetin has the potential to enhance
apoptosis in human GBM T98G cells by inhibiting the Wnt3a/β-catenin pathway and the
Akt/NF-κB signaling pathway [56].

5. Conclusions

In conclusion, this study suggested that AC extract can be considered a natural source
of anticancer agents for colon cancer treatment. Our findings indicated that AC extract
suppressed cell proliferation and apoptosis induction in HCT116 cells through various
signaling pathways, including activation of the intrinsic caspase pathway, ROS-induced
ER stress, and the MAPK pathway, while inhibiting the PI3K/Akt and Wnt/β-catenin
pathways. This is the first report on the mechanism of apoptosis induction of AC extract in
HCT116 cells. Therefore, further investigation may be required to explore the relationship
between pathways to comprehensively understand the inhibitory effects of AC extract on
HCT116 cells.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu16213764/s1, Figure S1: Total ion chromatogram by positive mode
electrospray ionization mass (A). 1H-NMR spectrum with expansion of AC extract in DMSO-d6 (B).;
Figure S2: The dried pods of Acacia concinna (A) were ground into powder (B) for extraction. The crude
extract of A. concinna (C) was kept in the refrigerator, in the dark, until used in the experiment.; Figure
S3: Effect of AC extract on cell viability in HaCat cells by MTT assay. The cell line was treated with
various concentrations of AC extract for 24 h. The results were the mean values ± SD.
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