The Frequency of Meal-Replacement Products Drinking and All-Cause, CVD, and Cancer Mortality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. The Frequency of MR Drinking
2.3. Mortality Data
2.4. Demographic Characteristics, Disease Histories, and Lifestyles
2.5. Statistical Methods
3. Results
3.1. Main Results
3.2. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Min, J.; Kim, S.Y.; Shin, I.S.; Park, Y.B.; Lim, Y.W. The Effect of Meal Replacement on Weight Loss According to Calorie-Restriction Type and Proportion of Energy Intake: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Acad. Nutr. Diet. 2021, 121, 1551–1564. [Google Scholar] [CrossRef] [PubMed]
- Mustad, V.A.; Hegazi, R.A.; Hustead, D.S.; Budiman, E.S.; Rueda, R.; Maki, K.; Powers, M.; Mechanick, J.I.; Bergenstal, R.M.; Hamdy, O. Use of a diabetes-specific nutritional shake to replace a daily breakfast and afternoon snack improves glycemic responses assessed by continuous glucose monitoring in people with type 2 diabetes: A randomized clinical pilot study. BMJ Open Diabetes Res. Care 2020, 8, e001258. [Google Scholar] [CrossRef]
- Gulati, S.; Misra, A.; Tiwari, R.; Sharma, M.; Pandey, R.M.; Yadav, C.P. Effect of high-protein meal replacement on weight and cardiometabolic profile in overweight/obese Asian Indians in North India. Br. J. Nutr. 2017, 117, 1531–1540. [Google Scholar] [CrossRef] [PubMed]
- Hemmingsson, E.; Johansson, K.; Eriksson, J.; Sundström, J.; Neovius, M.; Marcus, C. Weight loss and dropout during a commercial weight-loss program including a very-low-calorie diet, a low-calorie diet, or restricted normal food: Observational cohort study. Am. J. Clin. Nutr. 2012, 96, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Ditschuneit, H.H. Do meal replacement drinks have a role in diabetes management? In Nestlé Nutrition Institute Workshop Series: Clinical & Performance Program; Bantle, J.P., Slama, G., Eds.; Karger: Basel, Switzerland, 2006; Volume 11, pp. 171–181. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; van Mierlo, C.A.; van der Knaap, H.C.; Heo, M.; Frier, H.I. Weight management using a meal replacement strategy: Meta and pooling analysis from six studies. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 537–549. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, W.; Sun-Waterhouse, D.; Zou, Q.; Yan, M.; Liu, X.; Lan, D.; Wang, Y. Assessing the nutritional quality of lipid components in commercial meal replacement shakes using an in vitro digestion model. Curr. Res. Food Sci. 2023, 7, 100568. [Google Scholar] [CrossRef]
- Abdalgwad, R.; Rafey, M.F.; Foy, S.; Newell, M.; Davenport, C.; O’Keeffe, D.T.; Finucane, F.M. Long-Term Changes in Weight in Patients With Severe and Complicated Obesity After Completion of a Milk-Based Meal Replacement Programme. Front. Nutr. 2020, 7, 551068. [Google Scholar] [CrossRef]
- Akter, S.; Mizoue, T.; Nanri, A.; Goto, A.; Noda, M.; Sawada, N.; Yamaji, T.; Iwasaki, M.; Inoue, M.; Tsugane, S. Low carbohydrate diet and all cause and cause-specific mortality. Clin. Nutr. 2021, 40, 2016–2024. [Google Scholar] [CrossRef]
- Kim, H.; Hu, E.A.; Rebholz, C.M. Ultra-processed food intake and mortality in the USA: Results from the Third National Health and Nutrition Examination Survey (NHANES III, 1988-1994). Public Health Nutr. 2019, 22, 1777–1785. [Google Scholar] [CrossRef]
- Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; De Curtis, A.; Persichillo, M.; Sofi, F.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Ultra-processed food consumption is associated with increased risk of all-cause and cardiovascular mortality in the Moli-sani Study. Am. J. Clin. Nutr. 2021, 113, 446–455. [Google Scholar] [CrossRef]
- Borreani, J.; Llorca, E.; Quiles, A.; Hernando, I. Designing dairy desserts for weight management: Structure, physical properties and in vitro gastric digestion. Food Chem. 2017, 220, 137–144. [Google Scholar] [CrossRef] [PubMed]
- National Health and Nutrition Examination Survey. Available online: https://www.cdc.gov/nchs/nhanes/index.htm (accessed on 13 November 2022).
- Liu, B.; Jia, C. Effects of profession on urinary PAH metabolite levels in the US population. Int. Arch. Occup. Environ. Health 2016, 89, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Guenther, P.M.; Casavale, K.O.; Reedy, J.; Kirkpatrick, S.I.; Hiza, H.A.; Kuczynski, K.J.; Kahle, L.L.; Krebs-Smith, S.M. Update of the Healthy Eating Index: HEI-2010. J. Acad. Nutr. Diet. 2013, 113, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Noronha, J.C.; Nishi, S.K.; Braunstein, C.R.; Khan, T.A.; Blanco Mejia, S.; Kendall, C.W.C.; Kahleová, H.; Rahelić, D.; Salas-Salvadó, J.; Leiter, L.A.; et al. The Effect of Liquid Meal Replacements on Cardiometabolic Risk Factors in Overweight/Obese Individuals With Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes Care 2019, 42, 767–776. [Google Scholar] [CrossRef]
- Banna, J.C.; McCrory, M.A.; Fialkowski, M.K.; Boushey, C. Examining Plausibility of Self-Reported Energy Intake Data: Considerations for Method Selection. Front. Nutr. 2017, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research. Meal Replacement Products Market Size, Share & Trends Report. Meal Replacement Products Market Size, Share & Trends Analysis Report By Product (Powder, Ready-to-Drink, Protein Bar), By Distribution Channel, By Region, And Segment Forecasts, 2019–2025. Available online: https://www.grandviewresearch.com/industry-analysis/meal-replacement-products-market (accessed on 2 December 2022).
- Halle, M.; Röhling, M.; Banzer, W.; Braumann, K.M.; Kempf, K.; McCarthy, D.; Schaller, N.; Predel, H.G.; Scholze, J.; Führer-Sakel, D.; et al. Meal replacement by formula diet reduces weight more than a lifestyle intervention alone in patients with overweight or obesity and accompanied cardiovascular risk factors-the ACOORH trial. Eur. J. Clin. Nutr. 2021, 75, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Coleman, C.D.; Kiel, J.R.; Mitola, A.H.; Langford, J.S.; Davis, K.N.; Arterburn, L.M. Effectiveness of a Medifast meal replacement program on weight, body composition and cardiometabolic risk factors in overweight and obese adults: A multicenter systematic retrospective chart review study. Nutr. J. 2015, 14, 77. [Google Scholar] [CrossRef]
- Basciani, S.; Costantini, D.; Contini, S.; Persichetti, A.; Watanabe, M.; Mariani, S.; Lubrano, C.; Spera, G.; Lenzi, A.; Gnessi, L. Safety and efficacy of a multiphase dietetic protocol with meal replacements including a step with very low calorie diet. Endocrine 2015, 48, 863–870. [Google Scholar] [CrossRef]
- Noronha, J.C.; Nishi, S.K.; Khan, T.A.; Blanco Mejia, S.; Kendall, C.W.C.; Kahleová, H.; Rahelić, D.; Salas-Salvadó, J.; Leiter, L.A.; Lean, M.E.J.; et al. Weight management using meal replacements and cardiometabolic risk reduction in individuals with pre-diabetes and features of metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Obes. Rev. 2024, 25, e13751. [Google Scholar] [CrossRef]
- López Barrón, G.; Bacardí Gascón, M.; De Lira García, C.; Jiménez Cruz, A. La eficacia a largo plazo de los reemplazos dietéticos en la pérdida de peso: Revisión sistemática [Meal replacement efficacy on long-term weight loss: A systematic review]. Nutr. Hosp. 2011, 26, 1260–1265. [Google Scholar] [CrossRef]
- Apovian, C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care 2016, 22, s176–s185. [Google Scholar] [PubMed]
- Flegal, K.M.; Graubard, B.I.; Williamson, D.F.; Cooper, R.S. Reverse causation and illness-related weight loss in observational studies of body weight and mortality. Am. J. Epidemiol. 2011, 173, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Miclotte, L.; Van de Wiele, T. Food processing, gut microbiota and the globesity problem. Crit. Rev. Food Sci. Nutr. 2020, 60, 1769–1782. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A. Characterization of the Degree of Food Processing in Relation With Its Health Potential and Effects. Adv. Food Nutr. Res. 2018, 85, 79–129. [Google Scholar] [CrossRef] [PubMed]
- Ko, G.J.; Rhee, C.M.; Kalantar-Zadeh, K.; Joshi, S. The Effects of High-Protein Diets on Kidney Health and Longevity. J. Am. Soc. Nephrol. 2020, 31, 1667–1679. [Google Scholar] [CrossRef]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef]
- Major, R.W.; Cheng, M.R.I.; Grant, R.A.; Shantikumar, S.; Xu, G.; Oozeerally, I.; Brunskill, N.J.; Gray, L.J. Cardiovascular disease risk factors in chronic kidney disease: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0192895. [Google Scholar] [CrossRef]
The Frequency of MR Drinking | P 1 | ||||
---|---|---|---|---|---|
Seldom | Monthly | Weekly | Daily | ||
Sample size | 5821 (86.0) | 365 (5.4) | 384 (5.7) | 200 (2.9) | |
Age (mean (SD)) | 51.3 (19.0) | 48.9 (19.0) | 47.5 (19.5) | 52.6 (20.6) | <0.001 |
Female (%) | 3113 (53.5) | 211 (57.8) | 213 (55.5) | 100 (50.0) | 0.243 |
BMI (%) | 0.003 | ||||
<25 kg/m2 | 1719 (29.5) | 112 (30.7) | 140 (36.5) | 77 (38.5) | |
>=25 kg/m2 | 4018 (69.0) | 246 (67.4) | 237 (61.7) | 117 (58.5) | |
Not defined | 84 (1.4) | 7 (1.9) | 7 (1.8) | 6 (3.0) | |
Physical activity (%) | <0.001 | ||||
No | 2309 (39.7) | 124 (34.0) | 127 (33.1) | 88 (44.0) | |
Moderate | 1515 (26.0) | 87 (23.8) | 78 (20.3) | 38 (19.0) | |
Vigorous | 1993 (34.2) | 154 (42.2) | 179 (46.6) | 74 (37.0) | |
Not defined | 4 (0.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Education (%) | 0.514 | ||||
<High school | 1517 (26.1) | 92 (25.2) | 93 (24.2) | 60 (30.0) | |
High school | 1482 (25.5) | 80 (21.9) | 94 (24.5) | 48 (24.0) | |
>High school | 2818 (48.4) | 192 (52.6) | 197 (51.3) | 92 (46.0) | |
Not defined | 4 (0.1) | 1 (0.3) | 0 (0.0) | 0 (0.0) | |
Family income (%) | 0.308 | ||||
<25,000 dollars per year | 2016 (34.6) | 124 (34.0) | 149 (38.8) | 85 (42.5) | |
25,000–75,000 dollars per year | 2499 (42.9) | 164 (44.9) | 156 (40.6) | 73 (36.5) | |
>75,000 dollars per year | 1099 (18.9) | 64 (17.5) | 63 (16.4) | 33 (16.5) | |
Not defined | 207 (3.6) | 13 (3.6) | 16 (4.2) | 9 (4.5) | |
Ethnic groups (%) | 0.004 | ||||
Mexican American | 1031 (17.7) | 72 (19.7) | 87 (22.7) | 40 (20.0) | |
Non-Hispanic Black | 1091 (18.7) | 93 (25.5) | 84 (21.9) | 43 (21.5) | |
Non-Hispanic White | 3293 (56.6) | 178 (48.8) | 187 (48.7) | 103 (51.5) | |
Others | 406 (7.0) | 22 (6.0) | 26 (6.8) | 14 (7.0) | |
Occupation (%) | 0.331 | ||||
Agriculture | 50 (0.9) | 1 (0.3) | 4 (1.0) | 2 (1.0) | |
Extractive, construction, and repair occupations | 333 (5.7) | 16 (4.4) | 25 (6.5) | 11 (5.5) | |
Management | 326 (5.6) | 21 (5.8) | 25 (6.5) | 11 (5.5) | |
Operators, Fabricators, and Labor | 464 (8.0) | 34 (9.3) | 34 (8.9) | 18 (9.0) | |
Service | 609 (10.5) | 46 (12.6) | 47 (12.2) | 21 (10.5) | |
Professional Specialty | 534 (9.2) | 42 (11.5) | 34 (8.9) | 8 (4.0) | |
Support | 766 (13.2) | 51 (14.0) | 55 (14.3) | 21 (10.5) | |
Not defined | 2739 (47.1) | 154 (42.2) | 160 (41.7) | 108 (54.0) | |
History of diseases | |||||
CVD (%) | 771 (13.2) | 39 (10.7) | 44 (11.5) | 36 (18.0) | 0.004 |
Cancer (%) | 580 (10.0) | 27 (7.4) | 35 (9.1) | 20 (10.0) | 0.291 |
Diabetes (%) | 795 (13.7) | 37 (10.1) | 26 (6.8) | 26 (13.0) | 0.017 |
Hypertension (%) | 2547 (43.8) | 136 (37.3) | 136 (35.4) | 77 (38.5) | <0.001 |
COPD (%) | 275 (4.7) | 13 (3.6) | 14 (3.6) | 13 (6.5) | 0.697 |
Hyperlipidemia (%) | 3567 (61.3) | 226 (61.9) | 201 (52.3) | 111 (55.5) | 0.020 |
Nutrients intake 2 | |||||
Energy (kcal, mean ± sd) | 2053.8 (815.5) | 2092.8 (1 004.5) | 2044.1 (877.9) | 2034.6 (859.3) | 0.813 |
Protein (g, mean ± sd) | 79.7 (33.7) | 79.5 (40.0) | 82.0 (39.1) | 82.1 (39.7) | 0.474 |
Total sugars (g, mean ± sd) | 116.1 (66.2) | 122.0 (74.1) | 119.8 (71.2) | 127.5 (72.4) | 0.035 |
Fat (g, mean ± sd) | 77.5 (37.2) | 78.2 (44.2) | 75.2 (37.8) | 71.9 (37.2) | 0.128 |
Fiber (g, mean ± sd) | 15.9 (8.1) | 15.7 (8.9) | 15.9 (8.6) | 15.5 (9.0) | 0.917 |
Healthy Eating Index (mean ± sd) 2 | 48.7 (14.5) | 48.6 (14.7) | 49.1 (14.2) | 50.2 (14.5) | 0.449 |
Number of Events (Incidence Density 1) | Age and Sex Adjusted | Multivariate Adjusted 2 | ||||
---|---|---|---|---|---|---|
HR(95% CI) | P | HR(95% CI) | P | |||
All-cause mortality | Seldom | 1427 (18.4) | 1.00 | 1.00 | ||
Monthly | 84 (17.6) | 1.19 (0.96–1.49) | 0.117 | 1.26 (1.01–1.58) | 0.039 | |
Weekly | 91 (18.1) | 1.43 (1.16–1.77) | 0.001 | 1.54 (1.24–1.91) | <0.001 | |
Daily | 66 (27.6) | 1.68 (1.31–2.14) | <0.001 | 1.52 (1.17–1.97) | 0.002 | |
Ptrend < 0.001 | Ptrend < 0.001 | |||||
CVD mortality | Seldom | 499 (6.4) | 1.00 | 1.00 | ||
Monthly | 26 (5.4) | 1.07 (0.72–1.59) | 0.741 | 1.11 (0.74–1.65) | 0.614 | |
Weekly | 27 (5.4) | 1.24 (0.84–1.83) | 0.274 | 1.37 (0.92–2.03) | 0.123 | |
Daily | 25 (10.5) | 1.76 (1.18–2.64) | 0.006 | 1.70 (1.11–2.61) | 0.016 | |
Ptrend = 0.004 | Ptrend = 0.008 | |||||
Cancer mortality | Seldom | 300 (3.9) | 1.00 | 1.00 | ||
Monthly | 20 (4.2) | 1.37 (0.87–2.16) | 0.175 | 1.49 (0.94–2.36) | 0.087 | |
Weekly | 17 (3.4) | 1.24 (0.78–2.02) | 0.398 | 1.30 (0.79–2.13) | 0.300 | |
Daily | 8 (3.4) | 0.97 (0.48–1.96) | 0.929 | 0.89 (0.43–1.83) | 0.747 | |
Ptrend = 0.889 | Ptrend = 0.972 |
Seldom | Monthly | Weekly | Daily | |||
---|---|---|---|---|---|---|
HR (95%CI) 1 | HR (95%CI) 1 | HR (95%CI) 1 | P for Interaction 2 | |||
Age | 0.422 | |||||
<=60 years old | 1.00 | 1.69 (1.04–2.75) | 1.43 (0.88–2.34) | 0.95 (0.47–1.94) | ||
>60 years old | 1.00 | 1.18 (0.92–1.52) | 1.55 (1.22–1.98) | 1.70 (1.29–2.24) | ||
Sex | 0.003 | |||||
Female | 1.00 | 0.97 (0.70–1.35) | 1.68 (1.26–2.24) | 2.01 (1.40–2.90) | ||
Male | 1.00 | 1.81 (1.33–2.45) | 1.36 (0.97–1.91) | 1.24 (0.85–1.81) | ||
BMI | 0.541 | |||||
<25 kg/m2 | 1.00 | 1.62 (1.11–2.37) | 1.61 (1.13–2.31) | 1.64 (1.12–2.39) | ||
>=25 kg/m2 | 1.00 | 1.08 (0.80–1.46) | 1.54 (1.15–2.06) | 1.47 (1.00–2.17) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Li, A.; Yang, H.; Xiao, M.; Song, M.; Shao, Z.; Jiao, R.; Pang, Y.; Gao, W.; Huang, T.; et al. The Frequency of Meal-Replacement Products Drinking and All-Cause, CVD, and Cancer Mortality. Nutrients 2024, 16, 3770. https://doi.org/10.3390/nu16213770
Zhao Y, Li A, Yang H, Xiao M, Song M, Shao Z, Jiao R, Pang Y, Gao W, Huang T, et al. The Frequency of Meal-Replacement Products Drinking and All-Cause, CVD, and Cancer Mortality. Nutrients. 2024; 16(21):3770. https://doi.org/10.3390/nu16213770
Chicago/Turabian StyleZhao, Yuxuan, Aolin Li, Haiming Yang, Meng Xiao, Mingyu Song, Zilun Shao, Rong Jiao, Yuanjie Pang, Wenjing Gao, Tao Huang, and et al. 2024. "The Frequency of Meal-Replacement Products Drinking and All-Cause, CVD, and Cancer Mortality" Nutrients 16, no. 21: 3770. https://doi.org/10.3390/nu16213770
APA StyleZhao, Y., Li, A., Yang, H., Xiao, M., Song, M., Shao, Z., Jiao, R., Pang, Y., Gao, W., Huang, T., Lv, J., Li, L., Yu, C., & Sun, D. (2024). The Frequency of Meal-Replacement Products Drinking and All-Cause, CVD, and Cancer Mortality. Nutrients, 16(21), 3770. https://doi.org/10.3390/nu16213770