Protein Consumption and Risk of CVD Among U.S. Adults: The Multi-Ethnic Study of Atherosclerosis (MESA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Dietary Assessment
2.3. Estimation of Protein Intake and Diversity
2.4. Ascertainment of CVD
2.5. Assessment of Covariates
2.6. Statistical Analysis
3. Results
3.1. Correlations Between Protein Exposures
3.2. Associations Between Total Protein Intake, Protein Source Diversity, and Cardiovascular Disease Risk
3.3. Associations Between Animal Protein Intake and Diversity, and Cardiovascular Disease Risk
3.4. Associations Between Plant Protein Intake and Diversity, and Cardiovascular Disease Risk
3.5. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Murphy, S.L.; Kochanek, K.D.; Arias, E. Mortality in the United States, 2021; National Center for Health Statistics: Hyattsville, MD, USA, 2022. [Google Scholar] [CrossRef]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. Heart disease and stroke statistics—2023 update: A report from the American Heart Association. Circulation 2023, 147, e93–e621. [Google Scholar] [PubMed]
- Nelson, S.; Whitsel, L.; Khavjou, O.; Phelps, D.; Leib, A. Projections of Cardiovascular Disease Prevalence and Costs; RTI International: Research Triangle Park, NC, USA, 2016. [Google Scholar]
- Siervo, M.; Lara, J.; Chowdhury, S.; Ashor, A.; Oggioni, C.; Mathers, J.C. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: A systematic review and meta-analysis. Br. J. Nutr. 2015, 113, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Marshall, S.; Petocz, P.; Duve, E.; Abbott, K.; Cassettari, T.; Blumfield, M.; Fayet-Moore, F. The effect of replacing refined grains with whole grains on cardiovascular risk factors: A systematic review and meta-analysis of randomized controlled trials with GRADE clinical recommendation. J. Acad. Nutr. Diet. 2020, 120, 1859–1883.e31. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Li, J.; Hu, F.B.; Salas-Salvadó, J.; Tobias, D.K. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: An updated meta-analysis and systematic review of controlled trials. Am. J. Clin. Nutr. 2018, 108, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, A.J.; Suter-Zimmermann, K.; Bucher, H.C.; Shai, I.; Tuttle, K.R.; Estruch, R.; Briel, M. Meta-analysis comparing Mediterranean to low-fat diets for modification of cardiovascular risk factors. Am. J. Med. 2011, 124, 841–851.e2. [Google Scholar] [CrossRef]
- Huang, H.; Chen, G.; Liao, D.; Zhu, Y.; Xue, X. Effects of berries consumption on cardiovascular risk factors: A meta-analysis with trial sequential analysis of randomized controlled trials. Sci. Rep. 2016, 6, 23625. [Google Scholar] [CrossRef]
- Grosso, G.; Marventano, S.; Yang, J.; Micek, A.; Pajak, A.; Scalfi, L.; Galvano, F.; Kales, S.N. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Crit. Rev. Food Sci. Nutr. 2017, 57, 3218–3232. [Google Scholar] [CrossRef]
- Rodríguez-Monforte, M.; Flores-Mateo, G.; Sánchez, E. Dietary patterns and CVD: A systematic review and meta-analysis of observational studies. Br. J. Nutr. 2015, 114, 1341–1359. [Google Scholar] [CrossRef]
- Threapleton, D.E.; Greenwood, D.C.; Evans, C.E.L.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Cade, J.E.; Gale, C.P.; Burley, V.J. Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2013, 347, f6879. [Google Scholar] [CrossRef]
- Zhan, J.; Liu, Y.J.; Cai, L.B.; Xu, F.R.; Xie, T.; He, Q.Q. Fruit and vegetable consumption and risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 1650–1663. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, Y.; Feng, Y.; Yang, X.; Li, Y.; Wu, Y.; Yuan, L.; Zhang, J.; Li, T.; Huang, H.; et al. Consumption of whole grains and refined grains and associated risk of cardiovascular disease events and all-cause mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2023, 117, 149–159. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; December 2020. Available online: https://www.dietaryguidelines.gov (accessed on 29 June 2022).
- National Research Council (US) Committee on Diet and Health. Diet and health: Implications for Reducing Chronic Disease Risk; National Academies Press: Washington, DC, USA, 1989. [Google Scholar]
- Vogtschmidt, Y.D.; Raben, A.; Faber, I.; de Wilde, C.; Lovegrove, J.A.; Givens, D.I.; Pfeiffer, A.F.; Soedamah-Muthu, S.S. Is protein the forgotten ingredient: Effects of higher compared to lower protein diets on cardiometabolic risk factors. A systematic review and meta-analysis of randomised controlled trials. Atherosclerosis 2021, 328, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Rossi, M.; Campbell, K.L.; Sencion, G.L.; Ärnlöv, J.; Cederholm, T.; Sjögren, P.; Risérus, U.; Lindholm, B.; Carrero, J.J. Excess protein intake relative to fiber and cardiovascular events in elderly men with chronic kidney disease. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, M.; Mente, A.; Zhang, X.; Swaminathan, S.; Li, W.; Mohan, V.; Iqbal, R.; Kumar, R.; Wentzel-Viljoen, E.; Rosengren, A.; et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet 2017, 390, 2050–2062. [Google Scholar] [CrossRef] [PubMed]
- Prentice, R.L.; Huang, Y.; Kuller, L.H.; Tinker, L.F.; Van Horn, L.; Stefanick, M.L.; Sarto, G.; Ockene, J.; Johnson, K.C. Biomarker-calibrated energy and protein consumption and cardiovascular disease risk among postmenopausal women. Epidemiology 2011, 22, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Bild, D.E.; Bluemke, D.A.; Burke, G.L.; Detrano, R.; Diez Roux, A.V.; Folsom, A.R.; Greenland, P.; JacobsJr, D.R.; Kronmal, R.; Liu, K.; et al. Multi-ethnic study of atherosclerosis: Objectives and design. Am. J. Epidemiol. 2002, 156, 871–881. [Google Scholar] [CrossRef]
- Block, G.; Hartman, A.M.; Dresser, C.M.; Carroll, M.D.; Gannon, J.; Gardner, L. A data-based approach to diet questionnaire design and testing. Am. J. Epidemiol. 1986, 124, 453–469. [Google Scholar] [CrossRef]
- Nettleton, J.A.; Polak, J.F.; Tracy, R.; Burke, G.L.; Jacobs Jr, D.R. Dietary patterns and incident cardiovascular disease in the Multi-Ethnic Study of Atherosclerosis. Am. J. Clin. Nutr. 2009, 90, 647–654. [Google Scholar] [CrossRef]
- Block, G.; Woods, M.; Potosky, A.; Clifford, C. Validation of a self-administered diet history questionnaire using multiple diet records. J. Clin. Epidemiol. 1990, 43, 1327–1335. [Google Scholar] [CrossRef]
- Nettleton, J.A.; Steffen, L.M.; Mayer-Davis, E.J.; Jenny, N.S.; Jiang, R.; Herrington, D.M.; Jacobs Jr, D.R. Dietary patterns are associated with biochemical markers of inflammation and endothelial activation in the Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Clin. Nutr. 2006, 83, 1369–1379. [Google Scholar] [CrossRef]
- Nettleton, J.A.; Steffen, L.M.; Palmas, W.; Burke, G.L.; Jacobs, D.R., Jr. Associations between microalbuminuria and animal foods, plant foods, and dietary patterns in the Multiethnic Study of Atherosclerosis. Am. J. Clin. Nutr. 2008, 87, 1825–1836. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Davis, E.J.; Vitolins, M.Z.; Carmichael, S.L.; Hemphill, S.; Tsaroucha, G.; Rushing, J.; Levin, S. Validity and reproducibility of a food frequency interview in a multi-cultural epidemiologic study. Ann. Epidemiol. 1999, 9, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Nettleton, J.A.; Rock, C.L.; Wang, Y.; Jenny, N.S.; Jacobs, D.R., Jr. Associations between dietary macronutrient intake and plasma lipids demonstrate criterion performance of the Multi-Ethnic Study of Atherosclerosis (MESA) food-frequency questionnaire. Br. J. Nutr. 2009, 102, 1220–1227. [Google Scholar] [CrossRef]
- Harnack, L.; Gellman, M.; Turner, J. Nutrition Data System for Research (NDSR); Turner, J.R., Ed.; Encyclopedia of Behavioral Medicine: Gellman, MD, USA, 2013; pp. 1348–1350. [Google Scholar]
- de Oliveira Otto, M.C.; Padhye, N.S.; Bertoni, A.G.; Jacobs Jr, D.R.; Mozaffarian, D. Everything in moderation-dietary diversity and quality, central obesity and risk of diabetes. PLoS ONE 2015, 10, e0141341. [Google Scholar] [CrossRef]
- Ruel, M.T. Operationalizing dietary diversity: A review of measurement issues and research priorities. J. Nutr. 2003, 133, 3911S–3926S. [Google Scholar] [CrossRef]
- Real, R.; Vargas, J.M. The Probabilistic Basis of Jaccard’s Index of Similarity. Syst. Biol. 1996, 45, 380–385. [Google Scholar] [CrossRef]
- Folsom, A.R.; Kronmal, R.A.; Detrano, R.C.; O’Leary, D.H.; Bild, D.E.; Bluemke, D.A.; Budoff, M.J.; Liu, K.; Shea, S.; Szklo, M.; et al. Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: The Multi-Ethnic Study of Atherosclerosis (MESA). Arch. Intern. Med. 2008, 168, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Detrano, R.; Guerci, A.D.; Carr, J.J.; Bild, D.E.; Burke, G.L.; Folsom, A.R.; Liu, K.; Shea, S.; Szklo, M.; Bluemke, D.A.; et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med. 2008, 358, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- The Multi-Ethnic Study of Atherosclerosis Coordinating Center. Exam 1 Manual of Operations: Field Center Procedures. 2001. Available online: https://www.mesa-nhlbi.org/manuals.aspx#exam1.0 (accessed on 3 May 2022).
- Bertoni, A.G.; Whitt-Glover, M.C.; Chung, H.; Le, K.Y.; Barr, R.G.; Mahesh, M.; Jenny, N.S.; Burke, G.L.; Jacobs, D.R. The association between physical activity and subclinical atherosclerosis: The Multi-Ethnic Study of Atherosclerosis. Am. J. Epidemiol. 2009, 169, 444–454. [Google Scholar] [CrossRef]
- Gauthier, J.; Wu, Q.; Gooley, T. Cubic Splines to Model Relationships Between Continuous Variables and Outcomes: A Guide for Clinicians; Nature Publishing Group: Berlin, Germany, 2020; pp. 675–680. [Google Scholar]
- Willett, W. Nutritional Epidemiology; Oxford university press: Oxford, UK, 2012; Volume 40. [Google Scholar]
- Nakai, M.; Ke, W. Review of the methods for handling missing data in longitudinal data analysis. Int. J. Math. Anal. 2011, 5, 1–13. [Google Scholar]
- de Oliveira Otto, M.C.; Wu, J.H.; Baylin, A.; Vaidya, D.; Rich, S.S.; Tsai, M.Y.; Jacobs Jr, D.R.; Mozaffarian, D. Circulating and dietary omega-3 and omega-6 polyunsaturated fatty acids and incidence of CVD in the Multi-Ethnic Study of Atherosclerosis. J. Am. Heart Assoc. 2013, 2, e000506. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.; Monette, G. Generalized collinearity diagnostics. J. Am. Stat. Assoc. 1992, 87, 178–183. [Google Scholar] [CrossRef]
- Alam, N.N.; Wright, A.K.; Rutter, M.K.; Buchan, I.; Ashcroft, D.M.; Sperrin, M.; Renehan, A.G. Body mass index and cancer mortality in patients with incident type 2 diabetes: A population-based study of adults in England. Diabetes Obes. Metab. 2022, 24, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Zheng, J.-S.; Steur, M.; Imamura, F.; Freisling, H.; Johnson, L.; van der Schouw, Y.T.; Tong, T.Y.; Weiderpass, E.; Bajracharya, R.; Crous-Bou, M.; et al. Dietary intake of plant- and animal-derived protein and incident cardiovascular diseases: The pan-European EPIC-CVD case–cohort study. Am. J. Clin. Nutr. 2024, 119, 1164–1174. [Google Scholar] [CrossRef]
- Chen, Z.; Glisic, M.; Song, M.; Aliahmad, H.A.; Zhang, X.; Moumdjian, A.C.; Gonzalez-Jaramillo, V.; van Der Schaft, N.; Bramer, W.M.; Ikram, M.A.; et al. Dietary protein intake and all-cause and cause-specific mortality: Results from the Rotterdam Study and a meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2020, 35, 411–429. [Google Scholar] [CrossRef]
- Naghshi, S.; Sadeghi, O.; Willett, W.C.; Esmaillzadeh, A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2020, 370, m2412. [Google Scholar] [CrossRef] [PubMed]
- Mendes, V.; Niforou, A.; Kasdagli, M.I.; Ververis, E.; Naska, A. Intake of legumes and cardiovascular disease: A systematic review and dose–response meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 22–37. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, Y.; Ding, Y.; Shan, Z.; Chen, S.; Yu, M.; Hu, F.B.; Liu, L. Nut consumption and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 256–269. [Google Scholar] [CrossRef]
- Chen, Z.; Ahmed, M.; Ha, V.; Jefferson, K.; Malik, V.; Ribeiro, P.A.; Zuchinali, P.; Drouin-Chartier, J.P. Dairy product consumption and cardiovascular health: A systematic review and meta-analysis of prospective cohort studies. Adv. Nutr. 2022, 13, 439–454. [Google Scholar] [CrossRef]
- Giosuè, A.; Calabrese, I.; Lupoli, R.; Riccardi, G.; Vaccaro, O.; Vitale, M. Relations between the consumption of fatty or lean fish and risk of cardiovascular disease and all-cause mortality: A systematic review and meta-analysis. Adv. Nutr. 2022, 13, 1554–1565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xiong, K.; Cai, J.; Ma, A. Fish consumption and coronary heart disease: A meta-analysis. Nutrients 2020, 12, 2278. [Google Scholar] [CrossRef]
- Satija, A.; Bhupathiraju, S.N.; Spiegelman, D.; Chiuve, S.E.; Manson, J.E.; Willett, W.; Rexrode, K.M.; Rimm, E.B.; Hu, F.B. Healthful and unhealthful plant-based diets and the risk of coronary heart disease in US adults. J. Am. Coll. Cardiol. 2017, 70, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Rauber, F.; da Costa Louzada, M.L.; Chang, K.; Huybrechts, I.; Gunter, M.J.; Monteiro, C.A.; Vamos, E.P.; Levy, R.B. Implications of Food Ultra-Processing on Cardiovascular Risk Considering Plant Origin Foods: An Analysis of the UK Biobank Cohort. Lancet Reg. Health–Eur. 2024, 43. [Google Scholar] [CrossRef]
- Lane, M.M.; Gamage, E.; Du, S.; Ashtree, D.N.; McGuinness, A.J.; Gauci, S.; Baker, P.; Lawrence, M.; Rebholz, C.M.; Srour, B.; et al. Ultra-processed food exposure and adverse health outcomes: Umbrella review of epidemiological meta-analyses. BMJ 2024, 384, e077310. [Google Scholar] [CrossRef]
- Juul, F.; Vaidean, G.; Parekh, N. Ultra-processed foods and cardiovascular diseases: Potential mechanisms of action. Adv. Nutr. 2021, 12, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.A.; Tayyiba, M.; Agarwal, A.; Mejia, S.B.; de Souza, R.J.; Wolever, T.M.; Leiter, L.A.; Kendall, C.W.; Jenkins, D.J.; Sievenpiper, J.L. Relation of total sugars, sucrose, fructose, and added sugars with the risk of cardiovascular disease: A systematic review and dose-response meta-analysis of prospective cohort studies. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Yang, B.; Glenn, A.J.; Liu, Q.; Madsen, T.; Allison, M.A.; Shikany, J.M.; Manson, J.E.; Chan, K.H.K.; Wu, W.C.; Li, J.; et al. Added sugar, sugar-sweetened beverages, and artificially sweetened beverages and risk of cardiovascular disease: Findings from the women’s health initiative and a network meta-analysis of prospective studies. Nutrients 2022, 14, 4226. [Google Scholar] [CrossRef] [PubMed]
- Sellem, L.; Srour, B.; Javaux, G.; Chazelas, E.; Chassaing, B.; Viennois, É.; Debras, C.; Salamé, C.; Druesne-Pecollo, N.; Esseddik, Y.; et al. Food additive emulsifiers and risk of cardiovascular disease in the NutriNet-Santé cohort: Prospective cohort study. BMJ 2023, 382, e076058. [Google Scholar] [CrossRef]
- Zhu, Y.; Bo, Y.; Liu, Y. Dietary total fat, fatty acids intake, and risk of cardiovascular disease: A dose-response meta-analysis of cohort studies. Lipids Health Dis. 2019, 18, 91. [Google Scholar] [CrossRef]
- Park, Y.-M.M.; Choi, M.K.; Lee, S.S.; Shivappa, N.; Han, K.; Steck, S.E.; Hébert, J.R.; Merchant, A.T.; Sandler, D.P. Dietary inflammatory potential and risk of mortality in metabolically healthy and unhealthy phenotypes among overweight and obese adults. Clin. Nutr. 2019, 38, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Entezari, M.H.; Mohammadi, H.; Jayedi, A.; Lazaridi, A.V.; Kermani, M.A.H.; Miraghajani, M. Ultra-processed food consumption and adult obesity risk: A systematic review and dose-response meta-analysis. Crit. Rev. Food Sci. Nutr. 2022, 63, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Joint WHO/FAO/UNU Expert Consultation. Protein and Amino Acid Requirements in Human Nutrition; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Hutcheon, J.A.; Chiolero, A.; Hanley, J.A. Random measurement error and regression dilution bias. BMJ 2010, 340, c2289. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Yu, E.; Willett, W.C.; Hu, F.B. Understanding nutritional epidemiology and its role in policy. Adv. Nutr. 2015, 6, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Pounis, G.; Costanzo, S.; di Giuseppe, R.; de Lucia, F.; Santimone, I.; Sciarretta, A.; Barisciano, P.; Persichillo, M.; de Curtis, A.; Zito, F.; et al. Consumption of healthy foods at different content of antioxidant vitamins and phytochemicals and metabolic risk factors for cardiovascular disease in men and women of the Moli–sani study. Eur. J. Clin. Nutr. 2013, 67, 207–213. [Google Scholar] [CrossRef]
Quintiles of Total Protein Intake (g) Measured at Exam 1 | |||||
---|---|---|---|---|---|
Characteristic | Q1 | Q2 | Q3 | Q4 | Q5 |
n | 1172 | 1177 | 1178 | 1176 | 1176 |
Mean (min, max) | 32.0 (11.1, 39.9) | 46.3 (39.9, 53.1) | 60.1 (53.1, 67.2) | 76.2 (67.2, 87.9) | 116.0 (87.9, 261.6) |
Demographic factors | |||||
Age, y | 64.3 ± 10.4 | 63.4 ± 10.4 | 62.1 ± 9.9 | 61.7 ± 10.0 | 59.8 ± 10.2 |
Male, % | 34.6 | 41.7 | 47.7 | 53.1 | 60.8 |
Race/ethnicity, % | |||||
White | 32.3 | 37.8 | 45.3 | 45.8 | 40.1 |
Black/African American | 28.6 | 25.7 | 24.5 | 23.6 | 27.3 |
Hispanic | 21.0 | 20.7 | 18.9 | 23.4 | 26.0 |
Chinese | 18.2 | 21.1 | 11.3 | 7.3 | 6.6 |
Socioeconomic factors | |||||
Income, % | |||||
<$20,000 | 29.1 | 25.7 | 19.5 | 20.0 | 21.7 |
$20,000–$49,999 | 39.3 | 37.6 | 35.6 | 36.9 | 37.0 |
≥$50,000 | 31.6 | 36.6 | 44.9 | 43.1 | 41.3 |
Highest education level, % | |||||
<High school | 21.9 | 19.6 | 14.2 | 16.9 | 17.1 |
High school | 20.2 | 19.7 | 17.1 | 15.8 | 16.1 |
>High school | 57.9 | 60.7 | 68.8 | 67.3 | 66.8 |
Lifestyle and comorbidity factors | |||||
Current smokers, % | 10.9 | 10.3 | 13.2 | 11.8 | 16.2 |
Cigarette pack-years | 8.9 ± 16.7 | 11.5 ± 21.1 | 11.7 ± 20.5 | 12.1 ± 22.2 | 12.5 ± 22.5 |
Moderate and vigorous physical activity, MET-min/week | 4907.9 ± 5057.7 | 5289.8 ± 5157.9 | 5462.3 ± 5482.9 | 6294.6 ± 6848.6 | 6705.6 ± 6615.0 |
Dietary supplement use, % | 92.9 | 90.4 | 88.0 | 87.6 | 88.0 |
Prevalent diabetes, % | 12.6 | 11.1 | 11.4 | 13.9 | 12.6 |
BMI, kg/m2 | 27.5 ± 5.5 | 27.8 ± 5.2 | 28.1 ± 5.4 | 28.6 ± 5.4 | 29.3 ± 5.4 |
Dietary factors | |||||
Energy intake, kcal/d | 938.6 ± 232.2 | 1247.4 ± 266.9 | 1559.4 ± 310.1 | 1935.1 ± 382.4 | 2793.5 ± 771.3 |
Alcohol intake, g/d | 3.1 ± 9.4 | 4.3 ± 9.5 | 5.5 ± 12.6 | 6.5 ± 13.8 | 7.6 ± 17.8 |
Fruit intake, servings/day | 1.7 ± 1.3 | 1.8 ± 1.4 | 2.1 ± 1.7 | 2.2 ± 1.7 | 2.4 ± 1.9 |
Vegetable 2 intake, servings/day | 1.7 ± 1.0 | 2.1 ± 1.2 | 2.5 ± 1.3 | 2.7 ± 1.6 | 3.6 ± 2.0 |
Total fiber intake, g/d | 12.4 ± 4.7 | 15.5 ± 5.5 | 18.8 ± 6.8 | 22.0 ± 8.0 | 29.5 ± 11.5 |
Saturated fat intake, % of energy | 8.8 ± 3.1 | 9.6 ± 3.0 | 10.0 ± 3.1 | 10.6 ± 3.0 | 11.3 ± 2.9 |
Polyunsaturated fat intake, % of energy | 5.9 ± 2.0 | 6.0 ± 1.7 | 6.0 ± 1.6 | 6.0 ± 1.7 | 6.1 ± 1.7 |
Monounsaturated fat intake, % of energy | 11.0 ± 2.9 | 11.5 ± 2.7 | 11.9 ± 2.8 | 12.1 ± 2.7 | 12.6 ± 2.6 |
trans fat intake, % of energy | 0.8 ± 0.3 | 0.8 ± 0.3 | 0.8 ± 0.3 | 0.8 ± 0.3 | 0.9 ± 0.3 |
Vit E intake, IU/d | 5.2 ± 2.8 | 6.7 ± 3.0 | 8.2 ± 3.2 | 10.0 ± 3.8 | 14.2 ± 6.5 |
Protein intake 3, g/d | |||||
Animal protein intake | 37.0 ± 7.7 | 39.3 ± 9.8 | 41.0 ± 11.9 | 43.5 ± 14.6 | 51.2 ± 21.2 |
Plant protein intake | 22.5 ± 3.8 | 23.1 ± 4.7 | 23.6 ± 6.0 | 23.3 ± 7.6 | 23.7 ± 10.3 |
Protein intake, % of energy | |||||
Total protein | 14.1 ± 3.0 | 15.4 ± 3.0 | 16.0 ± 3.0 | 16.3 ± 3.0 | 17.0 ± 3.0 |
Animal protein | 8.0 ± 2.9 | 9.5 ± 3.1 | 10.1 ± 3.1 | 10.7 ± 3.3 | 11.6 ± 3.2 |
Plant protein | 5.9 ± 1.6 | 5.8 ± 1.5 | 5.7 ± 1.6 | 5.4 ± 1.6 | 5.3 ± 1.5 |
Diversity of total protein foods | |||||
Count | 5.8 ± 2.8 | 7.5 ± 3.0 | 8.7 ± 3.2 | 10.0 ± 3.3 | 12.7 ± 4.3 |
Dissimilarity | 0.68 ± 0.09 | 0.68 ± 0.07 | 0.68 ± 0.06 | 0.68 ± 0.05 | 0.68 ± 0.04 |
Protein Intake from Animal Sources (g/Day) | Protein Intake from Plant Sources (g/Day) | Count of Total Protein Intake | Dissimilarity of Total Protein Sources | |
---|---|---|---|---|
Total protein intake (g/day) | 0.87 | 0.13 | 0.37 | −0.19 |
Protein intake from animal sources (g/day) | −0.30 | 0.33 | −0.24 | |
Protein intake from plant sources (g/day) | 0.12 | 0.12 | ||
Count of total protein sources |
HR (95% CI) | |||||||
---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | For 20 g/Day Increment | ||
Total Protein Intake (Grams/Day) | |||||||
CVD | |||||||
Mean (min, max) | 32.0 (11.1, 39.9) | 46.3 (39.9, 53.1) | 60.1 (53.1, 67.2) | 76.2 (67.2, 87.9) | 116.0 (87.9, 261.6) | ||
Cases | 206 | 211 | 224 | 205 | 199 | ||
Model 1 | Reference | 1.00 (0.82, 1.22) | 1.14 (0.92, 1.41) | 1.08 (0.84, 1.38) | 1.16 (0.83, 1.61) | 0.36 | 1.10 (1.00, 1.20) |
Model 2 | Reference | 1.01 (0.83, 1.24) | 1.12 (0.90, 1.38) | 1.03 (0.80, 1.32) | 1.06 (0.76, 1.48) | 0.76 | 1.04 (0.95, 1.14) |
Model 2-BMI, diabetes | Reference | 1.02 (0.84, 1.25) | 1.17 (0.95, 1.45) | 1.11 (0.87, 1.43) | 1.18 (0.84, 1.65) | 0.32 | 1.10 (1.00, 1.20) |
Model 3a | Reference | 1.02 (0.84, 1.25) | 1.12 (0.90, 1.40) | 1.04 (0.81, 1.34) | 1.07 (0.75, 1.51) | 0.75 | 1.05 (0.95, 1.16) |
Model 3b | Reference | 1.04 (0.85, 1.26) | 1.14 (0.92, 1.41) | 1.03 (0.81, 1.32) | 1.11 (0.79, 1.55) | 0.61 | 1.06 (0.97, 1.16) |
CHD | |||||||
Mean (min, max) | 32.0 (11.1, 39.9) | 46.3 (39.9, 53.1) | 60.1 (53.1, 67.2) | 76.2 (67.2, 87.9) | 116.0 (87.9, 261.6) | ||
Cases | 133 | 123 | 145 | 140 | 127 | ||
Model 1 | Reference | 0.87 (0.68, 1.12) | 1.04 (0.80, 1.35) | 1.00 (0.74, 1.36) | 0.95 (0.63, 1.43) | 0.96 | 1.07 (0.96, 1.19) |
Model 2 | Reference | 0.87 (0.67, 1.12) | 1.00 (0.77, 1.30) | 0.95 (0.70, 1.28) | 0.86 (0.57, 1.30) | 0.63 | 1.01 (0.90, 1.13) |
Model 2-BMI, diabetes | Reference | 0.88 (0.68, 1.13) | 1.06 (0.81, 1.38) | 1.03 (0.76, 1.40) | 0.96 (0.63, 1.46) | 0.91 | 1.07 (0.96, 1.20) |
Model 3a | Reference | 0.87 (0.67, 1.12) | 0.99 (0.75, 1.30) | 0.93 (0.68, 1.28) | 0.84 (0.54, 1.30) | 0.57 | 1.01 (0.89, 1.14) |
Model 3b | Reference | 0.89 (0.69, 1.14) | 1.03 (0.79, 1.34) | 0.95 (0.70, 1.28) | 0.89 (0.59, 1.36) | 0.74 | 1.02 (0.91, 1.15) |
Stroke | |||||||
Mean (min, max) | 32.0 (11.1, 39.9) | 46.3 (39.9, 53.1) | 60.1 (53.1, 67.2) | 76.2 (67.2, 87.9) | 116.0 (87.9, 261.6) | ||
Cases | 70 | 77 | 72 | 56 | 57 | ||
Model 1 | Reference | 1.17 (0.84, 1.64) | 1.27 (0.87, 1.85) | 1.07 (0.68, 1.69) | 1.35 (0.74, 2.47) | 0.46 | 1.13 (0.96, 1.33) |
Model 2 | Reference | 1.17 (0.84, 1.64) | 1.24 (0.85, 1.81) | 1.01 (0.65, 1.60) | 1.21 (0.66, 2.23) | 0.73 | 1.07 (0.91, 1.27) |
Model 2-BMI, diabetes | Reference | 1.19 (0.85, 1.67) | 1.29 (0.88, 1.88) | 1.09 (0.69, 1.71) | 1.33 (0.72, 2.44) | 0.51 | 1.12 (0.95, 1.33) |
Model 3a | Reference | 1.18 (0.84, 1.66) | 1.26 (0.86, 1.85) | 1.03 (0.65, 1.64) | 1.21 (0.64, 2.26) | 0.75 | 1.07 (0.89, 1.28) |
Model 3b | Reference | 1.21 (0.87, 1.70) | 1.28 (0.87, 1.86) | 1.03 (0.66, 1.62) | 1.27 (0.69, 2.35) | 0.64 | 1.10 (0.93, 1.30) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tark, J.Y.; Li, R.; Yu, B.; Wood, A.C.; Padhye, N.S.; de Oliveira Otto, M.C. Protein Consumption and Risk of CVD Among U.S. Adults: The Multi-Ethnic Study of Atherosclerosis (MESA). Nutrients 2024, 16, 3773. https://doi.org/10.3390/nu16213773
Tark JY, Li R, Yu B, Wood AC, Padhye NS, de Oliveira Otto MC. Protein Consumption and Risk of CVD Among U.S. Adults: The Multi-Ethnic Study of Atherosclerosis (MESA). Nutrients. 2024; 16(21):3773. https://doi.org/10.3390/nu16213773
Chicago/Turabian StyleTark, Ji Yun, Ruosha Li, Bing Yu, Alexis C. Wood, Nikhil S. Padhye, and Marcia C. de Oliveira Otto. 2024. "Protein Consumption and Risk of CVD Among U.S. Adults: The Multi-Ethnic Study of Atherosclerosis (MESA)" Nutrients 16, no. 21: 3773. https://doi.org/10.3390/nu16213773
APA StyleTark, J. Y., Li, R., Yu, B., Wood, A. C., Padhye, N. S., & de Oliveira Otto, M. C. (2024). Protein Consumption and Risk of CVD Among U.S. Adults: The Multi-Ethnic Study of Atherosclerosis (MESA). Nutrients, 16(21), 3773. https://doi.org/10.3390/nu16213773