The Administration of Resveratrol and Vitamin C Reduces Oxidative Stress in Postmenopausal Women—A Pilot Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Randomization and Allocation Concealment
2.3. Primary Endpoint
2.4. Secondary Outcomes
2.5. Blood Sample
2.6. Markers of OS: Biochemical Analysis
2.7. Sample Size
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minkin, M.J. Menopause: Hormones, Lifestyle, and Optimizing Aging. Obstet. Gynecol. Clin. N. Am. 2019, 46, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Delamater, L.; Santoro, N. Management of the Perimenopause. Clin. Obstet. Gynecol. 2018, 61, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Troìa, L.; Martone, S.; Morgante, G.; Luisi, S. Management of perimenopause disorders: Hormonal treatment. Gynecol. Endocrinol. 2021, 37, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Society, N.A.M. Menopause Practice: A Clinician’s Guide; North American Menopause Society: Pepper Pike, OH, USA, 2019. [Google Scholar]
- Mumusoglu, S.; Yildiz, B.O. Metabolic Syndrome During Menopause. Curr. Vasc. Pharmacol. 2019, 17, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Patni, R.; Mahajan, A. The Metabolic Syndrome and Menopause. J. Midlife Health 2018, 9, 111–112. [Google Scholar] [CrossRef]
- INEGI. Censo General de Población y Vivienda. 2020. Available online: https://www.inegi.org.mx/programas/ccpv/2020/ (accessed on 29 October 2024).
- Jaballah, A.; Soltani, I.; Bahia, W.; Dandana, A.; Hasni, Y.; Miled, A.; Ferchichi, S. The Relationship Between Menopause and Metabolic Syndrome: Experimental and Bioinformatics Analysis. Biochem. Genet. 2021, 59, 1558–1581. [Google Scholar] [CrossRef]
- Anklam, C.F.V.; Lissarassa, Y.P.S.; Dos Santos, A.B.; Costa-Beber, L.C.; Sulzbacher, L.M.; Goettems-Fiorin, P.B.; Heck, T.G.; Frizzo, M.N.; Ludwig, M.S. Oxidative and Cellular Stress Markers in Postmenopause Women with Diabetes: The Impact of Years of Menopause. J. Diabetes Res. 2021, 2021, 3314871. [Google Scholar] [CrossRef]
- Hauck, A.K.; Huang, Y.; Hertzel, A.V.; Bernlohr, D.A. Adipose oxidative stress and protein carbonylation. J. Biol. Chem. 2019, 294, 1083–1088. [Google Scholar] [CrossRef]
- Milisav, I.; Ribarič, S.; Poljsak, B. Antioxidant Vitamins and Ageing. Subcell. Biochem. 2018, 90, 1–23. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Nakatsu, Y.; Niida, S.; Tanaka, K.; Takenaka, S.; Kuwabara, A. The Relationship between Serum Vitamin E Level and Risk Factors for Arteriosclerosis in Japanese Postmenopausal Women. J. Nutr. Sci. Vitaminol. 2020, 66, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Thangavel, P.; Puga-Olguín, A.; Rodríguez-Landa, J.F.; Zepeda, R.C. Genistein as Potential Therapeutic Candidate for Menopausal Symptoms and Other Related Diseases. Molecules 2019, 24, 3892. [Google Scholar] [CrossRef] [PubMed]
- Eren-Guzelgun, B.; Ince, E.; Gurer-Orhan, H. In vitro antioxidant/prooxidant effects of combined use of flavonoids. Nat. Prod. Res. 2018, 32, 1446–1450. [Google Scholar] [CrossRef] [PubMed]
- Breuss, J.M.; Atanasov, A.G.; Uhrin, P. Resveratrol and Its Effects on the Vascular System. Int. J. Mol. Sci. 2019, 20, 1523. [Google Scholar] [CrossRef]
- Shaito, A.; Posadino, A.M.; Younes, N.; Hasan, H.; Halabi, S.; Alhababi, D.; Al-Mohannadi, A.; Abdel-Rahman, W.M.; Eid, A.H.; Nasrallah, G.K.; et al. Potential Adverse Effects of Resveratrol: A Literature Review. Int. J. Mol. Sci. 2020, 21, 2084. [Google Scholar] [CrossRef]
- Li, H.; Xia, N.; Hasselwander, S.; Daiber, A. Resveratrol and Vascular Function. Int. J. Mol. Sci. 2019, 20, 2155. [Google Scholar] [CrossRef]
- Marumo, M.; Ekawa, K.; Wakabayashi, I. Resveratrol inhibits Ca2+ signals and aggregation of platelets. Environ. Health Prev. Med. 2020, 25, 70. [Google Scholar] [CrossRef]
- Den Hartogh, D.J.; Vlavcheski, F.; Giacca, A.; Tsiani, E. Attenuation of Free Fatty Acid (FFA)-Induced Skeletal Muscle Cell Insulin Resistance by Resveratrol is Linked to Activation of AMPK and Inhibition of mTOR and p70 S6K. Int. J. Mol. Sci. 2020, 21, 4900. [Google Scholar] [CrossRef]
- Hou, C.Y.; Tain, Y.L.; Yu, H.R.; Huang, L.T. The Effects of Resveratrol in the Treatment of Metabolic Syndrome. Int. J. Mol. Sci. 2019, 20, 535. [Google Scholar] [CrossRef]
- Chi, F.; Cheng, C.; Zhang, M.; Su, B.; Hou, Y.; Bai, G. Resveratrol targeting NRF2 disrupts the binding between KEAP1 and NRF2-DLG motif to ameliorate oxidative stress damage in mice pulmonary infection. J. Ethnopharmacol. 2024, 332, 118353. [Google Scholar] [CrossRef]
- Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol. 2017, 174, 1633–1646. [Google Scholar] [CrossRef]
- Livraghi, V.; Mazza, L.; Chiappori, F.; Cardano, M.; Cazzalini, O.; Puglisi, R.; Capoferri, R.; Pozzi, A.; Stivala, L.A.; Zannini, L.; et al. A proteasome-dependent inhibition of SIRT-1 by the resveratrol analogue 4,4′-dihydroxy-trans-stilbene. J. Tradit. Complement. Med. 2024, 14, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, J.; Li, Z.; Yang, D.; Wang, D.; Sun, Z.; Wen, P.; Gou, F.; Dai, Y.; Ji, Y.; et al. SIRT1 Regulates Mitochondrial Damage in N2a Cells Treated with the Prion Protein Fragment 106-126 via PGC-1α-TFAM-Mediated Mitochondrial Biogenesis. Int. J. Mol. Sci. 2024, 25, 9707. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Li, T.; Li, J.H.; Miao, S.Y.; Xiao, X.Z. The Effects of Resveratrol on Inflammation and Oxidative Stress in a Rat Model of Chronic Obstructive Pulmonary Disease. Molecules 2017, 22, 1529. [Google Scholar] [CrossRef] [PubMed]
- Kazemirad, H.; Kazerani, H.R. Cardioprotective effects of resveratrol following myocardial ischemia and reperfusion. Mol. Biol. Rep. 2020, 47, 5843–5850. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhou, R.; Wang, B.; Mi, M.T. Effect of resveratrol on glucose control and insulin sensitivity: A meta-analysis of 11 randomized controlled trials. Am. J. Clin. Nutr. 2014, 99, 1510–1519. [Google Scholar] [CrossRef]
- Vlavcheski, F.; Den Hartogh, D.J.; Giacca, A.; Tsiani, E. Amelioration of High-Insulin-Induced Skeletal Muscle Cell Insulin Resistance by Resveratrol Is Linked to Activation of AMPK and Restoration of GLUT4 Translocation. Nutrients 2020, 12, 914. [Google Scholar] [CrossRef]
- Kaźmierczak-Barańska, J.; Boguszewska, K.; Adamus-Grabicka, A.; Karwowski, B.T. Two Faces of Vitamin C-Antioxidative and Pro-Oxidative Agent. Nutrients 2020, 12, 1501. [Google Scholar] [CrossRef]
- Tkachenko, L.I.; Maleev, V.V. The role of systemic inflammation in the pathogenesis of insulin resistance and metabolic syndrome in patients with chronic hepatitis C. Ter. Arkhiv 2018, 90, 24–31. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- el-Saadani, M.; Esterbauer, H.; el-Sayed, M.; Goher, M.; Nassar, A.Y.; Jürgens, G. A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent. J. Lipid Res. 1989, 30, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Gérard-Monnier, D.; Erdelmeier, I.; Régnard, K.; Moze-Henry, N.; Yadan, J.C.; Chaudière, J. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem. Res. Toxicol. 1998, 11, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Milzani, A.; Colombo, R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 2003, 329, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S.E.; Altun, M. Total antioxidant capacity assay of human serum using copper(II)-neocuproine as chromogenic oxidant: The CUPRAC method. Free Radic. Res. 2005, 39, 949–961. [Google Scholar] [CrossRef]
- Montoya-Estrada, A.; Velázquez-Yescas, K.G.; Veruete-Bedolla, D.B.; Ruiz-Herrera, J.D.; Villarreal-Barranca, A.; Romo-Yañez, J.; Ortiz-Luna, G.F.; Arellano-Eguiluz, A.; Solis-Paredes, M.; Flores-Pliego, A.; et al. Parameters of Oxidative Stress in Reproductive and Postmenopausal Mexican Women. Int. J. Environ. Res. Public Health 2020, 17, 1492. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, L.; Chen, H.; Wei, S.; Yao, K.; Sun, X.; Yang, G.; Jiang, L.; Zhang, C.; Wang, N.; et al. Resveratrol protected acrolein-induced ferroptosis and insulin secretion dysfunction via ER-stress-related PERK pathway in MIN6 cells. Toxicology 2022, 465, 153048. [Google Scholar] [CrossRef]
- Toaldo, I.M.; Cruz, F.A.; Alves Tde, L.; de Gois, J.S.; Borges, D.L.; Cunha, H.P.; da Silva, E.L.; Bordignon-Luiz, M.T. Bioactive potential of Vitis labrusca L. grape juices from the Southern Region of Brazil: Phenolic and elemental composition and effect on lipid peroxidation in healthy subjects. Food Chem. 2015, 173, 527–535. [Google Scholar] [CrossRef]
- Lin, M.C.; Liu, C.C.; Lin, Y.C.; Liao, C.S. Resveratrol Protects against Cerebral Ischemic Injury via Restraining Lipid Peroxidation, Transition Elements, and Toxic Metal Levels, but Enhancing Anti-Oxidant Activity. Antioxidants 2021, 10, 1515. [Google Scholar] [CrossRef]
- Kong, D.; Yan, Y.; He, X.Y.; Yang, H.; Liang, B.; Wang, J.; He, Y.; Ding, Y.; Yu, H. Effects of Resveratrol on the Mechanisms of Antioxidants and Estrogen in Alzheimer’s Disease. Biomed. Res. Int. 2019, 2019, 8983752. [Google Scholar] [CrossRef]
- Muralikrishnan, G.; Amanullah, S.; Basha, M.I.; Boopalan, S.; Vijayakumar, S.; Shakeel, F. Effect of vitamin C on lipidperoxidation and antioxidant status in tamoxifen-treated breast cancer patients. Chemotherapy 2010, 56, 298–302. [Google Scholar] [CrossRef]
- Ismy, J.; Soebadi, A.; Mangunatmadja, I.; Monica, M.; Sari, T.T.; Yuliarti, K. Role of antioxidants in reducing oxidative stress and seizure frequency in drug-resistant epileptic patients. Narra J. 2024, 4, e790. [Google Scholar] [CrossRef]
- Movahed, A.; Raj, P.; Nabipour, I.; Mahmoodi, M.; Ostovar, A.; Kalantarhormozi, M.; Netticadan, T. Efficacy and Safety of Resveratrol in Type 1 Diabetes Patients: A Two-Month Preliminary Exploratory Trial. Nutrients 2020, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Hoseini, A.; Namazi, G.; Farrokhian, A.; Reiner, Ž.; Aghadavod, E.; Bahmani, F.; Asemi, Z. The effects of resveratrol on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Food Funct. 2019, 10, 6042–6051. [Google Scholar] [CrossRef] [PubMed]
- Amini, L.; Chekini, R.; Nateghi, M.R.; Haghani, H.; Jamialahmadi, T.; Sathyapalan, T.; Sahebkar, A. The Effect of Combined Vitamin C and Vitamin E Supplementation on Oxidative Stress Markers in Women with Endometriosis: A Randomized, Triple-Blind Placebo-Controlled Clinical Trial. Pain Res. Manag. 2021, 2021, 5529741. [Google Scholar] [CrossRef] [PubMed]
- Thaung Zaw, J.J.; Howe, P.R.; Wong, R.H. Long-term effects of resveratrol on cognition, cerebrovascular function and cardio-metabolic markers in postmenopausal women: A 24-month randomised, double-blind, placebo-controlled, crossover study. Clin. Nutr. 2021, 40, 820–829. [Google Scholar] [CrossRef]
- Asghari, S.; Asghari-Jafarabadi, M.; Somi, M.H.; Ghavami, S.M.; Rafraf, M. Comparison of Calorie-Restricted Diet and Resveratrol Supplementation on Anthropometric Indices, Metabolic Parameters, and Serum Sirtuin-1 Levels in Patients With Nonalcoholic Fatty Liver Disease: A Randomized Controlled Clinical Trial. J. Am. Coll. Nutr. 2018, 37, 223–233. [Google Scholar] [CrossRef]
- Bashmakov, Y.K.; Assaad-Khalil, S.H.; Abou Seif, M.; Udumyan, R.; Megallaa, M.; Rohoma, K.H.; Zeitoun, M.; Petyaev, I.M. Resveratrol promotes foot ulcer size reduction in type 2 diabetes patients. ISRN Endocrinol. 2014, 2014, 816307. [Google Scholar] [CrossRef]
- Abdollahi, S.; Salehi-Abargouei, A.; Toupchian, O.; Sheikhha, M.H.; Fallahzadeh, H.; Rahmanian, M.; Tabatabaie, M.; Mozaffari-Khosravi, H. The Effect of Resveratrol Supplementation on Cardio-Metabolic Risk Factors in Patients with Type 2 Diabetes: A Randomized, Double-Blind Controlled Trial. Phytother. Res. 2019, 33, 3153–3162. [Google Scholar] [CrossRef]
Resveratrol | Resveratrol + Vitamin C | Vitamin C | |
---|---|---|---|
(n = 13) | (n = 15) | (n = 14) | |
Basal | |||
Weight (kg) | 69.2 ± 8.6 | 76.1 ± 10.4 | 79.4 ± 10.80 |
BMI (kg/m2) | 29.4 ± 2.3 | 32.4 ± 4 | 32.8 ± 3.7 |
Glucose (mg/L) | 105.9 ± 17.8 | 98.33 ± 99 | 96.5 ± 11.7 |
Insulin (μU/mL) | 16.9 ± 2.8 | 22.14 ± 8.25 | 21.9 ± 9.4 |
HDL-C (mg/dL) | 48.1 ± 20.4 | 50.3 ± 23.3 | 44.7 ± 6.1 |
Total cholesterol (mg/dL) | 242.8 ± 81.5 | 217.1 ± 51.3 | 213.6 ± 32.7 |
LDL-C (mg/dL) | 139.4 ± 43.8 | 132.8 ± 42.7 | 132.1 ± 35.4 |
Triglycerides (mg/dL) | 208 ± 127.2 | 200.3 ± 66.4 | 223.2 ± 108.9 |
Uric acid (mg/dL) | 5.4 ± 1.1 | 5.8 ± 1.4 | 5.9 ± 1.0 |
Post-treatment | |||
Weight (kg) | 68.2 ± 8.5 | 74.9 ± 9.8 | 78.5 ± 9.60 |
BMI (kg/m2) | 28.9 ± 2.1 | 31.7 ± 4 | 32.4 ± 3.50 |
Glucose (mg/L) | 102.9 ± 15.8 | 92.27 ± 11.25 | 195.1 ± 9.9 |
Insulin (μU/mL) | 16.5 ± 6.1 | 18.39 ± 7.08 | 19.9 ± 7.9 |
HDL-C (mg/dL) | 51.8 ± 28.3 | 49.2 ± 23 | 40.8 ± 7.0 |
Total cholesterol (mg/dL) | 236.1 ± 40.9 * | 206.9 ± 39.6 | 205.3 ± 32.3 |
LDL-C (mg/dL) | 150.9 ± 43 | 129.8± 30.6 | 121.8 ± 19.5 |
Triglycerides (mg/dL) | 167.9 ± 73.3 * | 171.4 ± 47.7 ** | 184.6 ± 59.9 |
Uric acid (mg/dL) | 5.3 ± 1.1 | 5.5 ± 1.4 | 5.6 ± 1.2 |
Resveratrol (n = 13) | Resveratrol + Vitamin C (n = 15) | Vitamin C (n = 14) | |||||||
---|---|---|---|---|---|---|---|---|---|
Before | Post-Treatment | p-Value * | Before | Post-Treatment | p-Value * | Before | Post-Treatment | p-Value * | |
Age (years) | 54.1 ± 3.2 | 55.2 ± 4 | 56.2 ± 4.2 | ||||||
Weight (kg) | 69.2 ± 8.6 | 68.2 ± 8.5 | 0.65 | 76.1 ± 10.4 | 74.9 ± 9.8 | 0.80 | 79.4 ± 10.8 | 78.5 ± 9.6 | 0.73 |
BMI (kg/m2) | 29.4 ± 2.3 | 28.9 ± 2.1 | 0.85 | 32.4 ± 4 | 31.7 ± 4 | 0.35 | 32.8 ± 3.7 | 32.4 ± 3.5 | 0.55 |
Glucose (mg/L) | 105.9 ± 17.8 | 102.9 ± 15.8 | 0.92 | 98.33 ± 99 | 92.27 ± 11.25 | 0.12 | 96.5 ± 11.7 | 95.1 ± 9.9 | 0.53 |
Insulin (μU/mL) | 16.9 ± 2.8 | 16.5 ± 6.1 | 0.70 | 22.14 ± 8.25 | 18.39 ± 7.08 | 0.92 | 21.9 ± 9.4 | 19.9 ± 7.9 | 0.12 |
HDL-C (mg/dL) | 48.1 ± 20.4 | 51.8 ± 28.3 | 0.79 | 50.3 ± 23.3 | 49.2 ± 23 | 0.62 | 44.7 ± 6.1 | 40.8 ± 7.0 | 0.50 |
Total cholesterol (mg/dL) | 242.8 ± 81.5 | 236.1 ± 40.9 | 0.50 | 217.1 ± 51.3 | 206.9 ± 39.6 | 0.89 | 213.6 ± 32.7 | 205.3 ± 32.3 | 0.35 |
LDL-C (mg/dL) | 139.4 ± 43.8 | 150.9 ± 43 | 0.33 | 132.8 ± 42.7 | 129.8± 30.6 | 0.34 | 132.1 ± 35.4 | 121.8 ± 19.5 | 0.25 |
Triglycerides (mg/dL) | 208 ± 127.2 | 167.9 ± 73.3 | 0.83 | 200.3 ± 66.4 | 171.4 ± 47.7 | 0.85 | 223.2 ± 108.9 | 184.6 ± 59.9 | 0.40 |
Uric acid (mg/dL) | 5.4 ± 1.1 | 5.3 ± 1.1 | 0.77 | 5.8 ± 1.4 | 5.5 ± 1.4 | 0.68 | 5.9 ± 1.0 | 5.6 ± 1.2 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya-Estrada, A.; García-Cortés, A.Y.; Romo-Yañez, J.; Ortiz-Luna, G.F.; Arellano-Eguiluz, A.; Belmont-Gómez, A.; Lopéz-Ugalde, V.; León-Reyes, G.; Flores-Pliego, A.; Espejel-Nuñez, A.; et al. The Administration of Resveratrol and Vitamin C Reduces Oxidative Stress in Postmenopausal Women—A Pilot Randomized Clinical Trial. Nutrients 2024, 16, 3775. https://doi.org/10.3390/nu16213775
Montoya-Estrada A, García-Cortés AY, Romo-Yañez J, Ortiz-Luna GF, Arellano-Eguiluz A, Belmont-Gómez A, Lopéz-Ugalde V, León-Reyes G, Flores-Pliego A, Espejel-Nuñez A, et al. The Administration of Resveratrol and Vitamin C Reduces Oxidative Stress in Postmenopausal Women—A Pilot Randomized Clinical Trial. Nutrients. 2024; 16(21):3775. https://doi.org/10.3390/nu16213775
Chicago/Turabian StyleMontoya-Estrada, Araceli, Aline Yunuen García-Cortés, José Romo-Yañez, Guillermo F. Ortiz-Luna, Arturo Arellano-Eguiluz, Aurora Belmont-Gómez, Vivian Lopéz-Ugalde, Guadalupe León-Reyes, Arturo Flores-Pliego, Aurora Espejel-Nuñez, and et al. 2024. "The Administration of Resveratrol and Vitamin C Reduces Oxidative Stress in Postmenopausal Women—A Pilot Randomized Clinical Trial" Nutrients 16, no. 21: 3775. https://doi.org/10.3390/nu16213775
APA StyleMontoya-Estrada, A., García-Cortés, A. Y., Romo-Yañez, J., Ortiz-Luna, G. F., Arellano-Eguiluz, A., Belmont-Gómez, A., Lopéz-Ugalde, V., León-Reyes, G., Flores-Pliego, A., Espejel-Nuñez, A., Solis-Paredes, J. M., & Reyes-Muñoz, E. (2024). The Administration of Resveratrol and Vitamin C Reduces Oxidative Stress in Postmenopausal Women—A Pilot Randomized Clinical Trial. Nutrients, 16(21), 3775. https://doi.org/10.3390/nu16213775