Associations of Cognitive Function with Serum Magnesium and Phosphate in Hemodialysis Patients: A Cross-Sectional Analysis of the Osaka Dialysis Complication Study (ODCS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measurement of Cognitive Performance Using 3MS
2.3. Measurements of MBD-Related Factors
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Selection of Participants
3.2. Characteristics of the Participants
3.3. Unadjusted Associations of 3MS with MBD-Related Parameters
3.4. Adjusted Associations of 3MS with MBD-Related Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurella, M.; Chertow, G.M.; Luan, J.; Yaffe, K. Cognitive impairment in chronic kidney disease. J. Am. Geriatr. Soc. 2004, 52, 1863–1869. [Google Scholar] [CrossRef] [PubMed]
- Kurella, M.; Chertow, G.M.; Fried, L.F.; Cummings, S.R.; Harris, T.; Simonsick, E.; Satterfield, S.; Ayonayon, H.; Yaffe, K. Chronic kidney disease and cognitive impairment in the elderly: The health, aging, and body composition study. J. Am. Soc. Nephrol. 2005, 16, 2127–2133. [Google Scholar] [CrossRef] [PubMed]
- Kurella Tamura, M.; Muntner, P.; Wadley, V.; Cushman, M.; Zakai, N.A.; Bradbury, B.D.; Kissela, B.; Unverzagt, F.; Howard, G.; Warnock, D.; et al. Albuminuria, kidney function, and the incidence of cognitive impairment among adults in the United States. Am. J. Kidney Dis. 2011, 58, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Etgen, T.; Chonchol, M.; Förstl, H.; Sander, D. Chronic kidney disease and cognitive impairment: A systematic review and meta-analysis. Am. J. Nephrol. 2012, 35, 474–482. [Google Scholar] [CrossRef]
- Fazekas, G.; Fazekas, F.; Schmidt, R.; Kapeller, P.; Offenbacher, H.; Krejs, G.J. Brain MRI findings and cognitive impairment in patients undergoing chronic hemodialysis treatment. J. Neurol. Sci. 1995, 134, 83–88. [Google Scholar] [CrossRef]
- O’lone, E.; Connors, M.; Masson, P.; Wu, S.; Kelly, P.J.; Gillespie, D.; Parker, D.; Whiteley, W.; Strippoli, G.F.; Palmer, S.C.; et al. Cognition in People With End-Stage Kidney Disease Treated with Hemodialysis: A Systematic Review and Meta-analysis. Am. J. Kidney Dis. 2016, 67, 925–935. [Google Scholar] [CrossRef]
- Bugnicourt, J.-M.; Godefroy, O.; Chillon, J.-M.; Choukroun, G.; Massy, Z.A. Cognitive disorders and dementia in CKD: The neglected kidney-brain axis. J. Am. Soc. Nephrol. 2013, 24, 353–363. [Google Scholar] [CrossRef]
- Shoji, T.; Fujii, H.; Mori, K.; Nakatani, S.; Nagata, Y.; Morioka, T.; Inaba, M.; Emoto, M. Associations of cardiovascular disease and blood pressure with cognition in hemodialysis patients: The Osaka Dialysis Complication Study. Nephrol. Dial. Transplant. 2022, 37, 1758–1767. [Google Scholar] [CrossRef]
- Babroudi, S.; Tighiouart, H.; Schrauben, S.J.; Cohen, J.B.; Fischer, M.J.; Rahman, M.; Hsu, C.-Y.; Sozio, S.M.; Weir, M.; Sarnak, M.; et al. Blood Pressure, Incident Cognitive Impairment, and Severity of CKD: Findings From the Chronic Renal Insufficiency Cohort (CRIC) Study. Am. J. Kidney Dis. 2023, 82, 443–453.e1. [Google Scholar] [CrossRef]
- Giang, L.M.; Tighiouart, H.; Lou, K.V.; Agganis, B.; Drew, D.A.; Shaffi, K.; Scott, T.; Weiner, D.E.; Sarnak, M.J. Measures of blood pressure and cognition in dialysis patients. Hemodial. Int. 2013, 17, 24–31. [Google Scholar] [CrossRef]
- Drew, D.A.; Tighiouart, H.; Duncan, S.; Rollins, J.; Gupta, A.; Scott, T.; Weiner, D.E.; Sarnak, M.J. Blood Pressure and Cognitive Decline in Prevalent Hemodialysis Patients. Am. J. Nephrol. 2019, 49, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Weiner, D.E.; Scott, T.M.; Giang, L.M.; Agganis, B.T.; Sorensen, E.P.; Tighiouart, H.; Sarnak, M.J. Cardiovascular disease and cognitive function in maintenance hemodialysis patients. Am. J. Kidney Dis. 2011, 58, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Findlay, M.D.; Dawson, J.; Dickie, D.A.; Forbes, K.P.; McGlynn, D.; Quinn, T.; Mark, P.B. Investigating the Relationship between Cerebral Blood Flow and Cognitive Function in Hemodialysis Patients. J. Am. Soc. Nephrol. 2019, 30, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Nakai, S.; Wakai, K.; Kanda, E.; Kawaguchi, K.; Sakai, K.; Kitaguchi, N. Is hemodialysis itself a risk factor for dementia? An analysis of nationwide registry data of patients on maintenance hemodialysis in Japan. Ren. Replace. Ther. 2018, 4, 12. [Google Scholar] [CrossRef]
- Kato, M.; Kawaguchi, K.; Nakai, S.; Murakami, K.; Hori, H.; Ohashi, A.; Hiki, Y.; Ito, S.; Shimano, Y.; Suzuki, N.; et al. Potential therapeutic system for Alzheimer’s disease: Removal of blood Abetas by hemodialzyers and its effect on the cognitive functions of renal-failure patients. J. Neural Transm. 2012, 119, 1533–1544. [Google Scholar] [CrossRef]
- John, G.B.; Cheng, C.-Y.; Kuro-O, M. Role of Klotho in aging, phosphate metabolism, and CKD. Am. J. Kidney Dis. 2011, 58, 127–134. [Google Scholar] [CrossRef]
- Kuro-O, M. Phosphate and Klotho. Kidney Int. 2011, 79, S20–S23. [Google Scholar] [CrossRef]
- Mathur, A.; Ahn, J.B.; Sutton, W.; Chu, N.M.; Gross, A.L.; Segev, D.L.; McAdams-DeMarco, M. Secondary hyperparathyroidism (CKD-MBD) treatment and the risk of dementia. Nephrol. Dial. Transplant. 2022, 37, 2111–2118. [Google Scholar] [CrossRef]
- Drew, D.A.; Tighiouart, H.; Scott, T.M.; Lou, K.V.; Fan, L.; Shaffi, K.; Weiner, D.E.; Sarnak, M.J. FGF-23 and cognitive performance in hemodialysis patients. Hemodial. Int. 2014, 18, 78–86. [Google Scholar] [CrossRef]
- Barbagallo, M.; Veronese, N.; Dominguez, L.J. Magnesium in Aging, Health and Diseases. Nutrients 2021, 13, 463. [Google Scholar] [CrossRef]
- Touyz, R.M.; de Baaij, J.H.; Hoenderop, J.G. Magnesium Disorders. N. Engl. J. Med. 2024, 390, 1998–2009. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, A.E.; Sarlo, G.L.; Holton, K.F. The Role of Magnesium in Neurological Disorders. Nutrients 2018, 10, 730. [Google Scholar] [CrossRef] [PubMed]
- Peeri, N.C.; Egan, K.M.; Chai, W.; Tao, M.-H. Association of magnesium intake and vitamin D status with cognitive function in older adults: An analysis of US National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. Eur. J. Nutr. 2021, 60, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Liu, J.; Cervantes, D. Association between magnesium intake and cognition in US older adults: National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. Alzheimer’s Dement. 2022, 8, e12250. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, M.; Ninomiya, T.; Ohara, T.; Hirakawa, Y.; Doi, Y.; Hata, J.; Uchida, K.; Shirota, T.; Kitazono, T.; Kiyohara, Y. Self-reported dietary intake of potassium, calcium, and magnesium and risk of dementia in the Japanese: The Hisayama Study. J. Am. Geriatr. Soc. 2012, 60, 1515–1520. [Google Scholar] [CrossRef]
- Kieboom, B.C.; Licher, S.; Wolters, F.J.; Ikram, M.K.; Hoorn, E.J.; Zietse, R.; Stricker, B.H. Serum magnesium is associated with the risk of dementia. Neurology 2017, 89, 1716–1722. [Google Scholar] [CrossRef]
- Tzeng, N.-S.; Chung, C.-H.; Lin, F.-H.; Huang, C.-F.; Yeh, C.-B.; Huang, S.-Y.; Lu, R.-B.; Chang, H.-A.; Kao, Y.-C.; Yeh, H.-W.; et al. Magnesium oxide use and reduced risk of dementia: A retrospective, nationwide cohort study in Taiwan. Curr. Med. Res. Opin. 2018, 34, 163–169. [Google Scholar] [CrossRef]
- Li, W.; Yu, J.; Liu, Y.; Huang, X.; Abumaria, N.; Zhu, Y.; Huang, X.; Xiong, W.; Ren, C.; Liu, X.-G.; et al. Elevation of brain magnesium prevents synaptic loss and reverses cognitive deficits in Alzheimer’s disease mouse model. Mol. Brain 2014, 7, 65. [Google Scholar] [CrossRef]
- Abumaria, N.; Yin, B.; Zhang, L.; Li, X.-Y.; Chen, T.; Descalzi, G.; Zhao, L.; Ahn, M.; Luo, L.; Ran, C.; et al. Effects of elevation of brain magnesium on fear conditioning, fear extinction, and synaptic plasticity in the infralimbic prefrontal cortex and lateral amygdala. J. Neurosci. 2011, 31, 14871–14881. [Google Scholar] [CrossRef]
- Fassin, M.; Danhier, P.; Ris, L. Effect of oral administration of Magnesium N-Acetyltaurinate on synaptic plasticity in rodents. Magnes. Res. 2020, 33, 106–113. [Google Scholar] [CrossRef]
- Sakaguchi, Y.; Hamano, T.; Obi, Y.; Monden, C.; Oka, T.; Yamaguchi, S.; Matsui, I.; Hashimoto, N.; Matsumoto, A.; Shimada, K.; et al. A Randomized Trial of Magnesium Oxide and Oral Carbon Adsorbent for Coronary Artery Calcification in Predialysis CKD. J. Am. Soc. Nephrol. 2019, 30, 1073–1085. [Google Scholar] [CrossRef] [PubMed]
- Bressendorff, I.; Hansen, D.; Schou, M.; Pasch, A.; Brandi, L. The Effect of Increasing Dialysate Magnesium on Serum Calcification Propensity in Subjects with End Stage Kidney Disease: A Randomized, Controlled Clinical Trial. Clin. J. Am. Soc. Nephrol. 2018, 13, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Long, Y.; Yuan, J.; Zha, Y. U-shaped association of serum magnesium with mild cognitive impairment among hemodialysis patients: A multicenter study. Ren. Fail. 2023, 45, 2231084. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Nakashima, A.; Shinagawa, S.; Kobayashi, A.; Ohkido, I.; Urashima, M.; Yokoo, T. Association between serum magnesium levels and cognitive function in patients undergoing hemodialysis. Clin. Exp. Nephrol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Teng, E.L.; Chui, H.C. The Modified Mini-Mental State (3MS) examination. J. Clin. Psychiatry 1987, 48, 314–318. [Google Scholar]
- Kurella, M.; Luan, J.; Yaffe, K.; Chertow, G.M. Validation of the Kidney Disease Quality of Life (KDQOL) cognitive function subscale. Kidney Int. 2004, 66, 2361–2367. [Google Scholar] [CrossRef]
- Drew, D.A.; Tighiouart, H.; Rollins, J.; Duncan, S.; Babroudi, S.; Scott, T.; Weiner, D.E.; Sarnak, M.J. Evaluation of Screening Tests for Cognitive Impairment in Patients Receiving Maintenance Hemodialysis. J. Am. Soc. Nephrol. 2020, 31, 855–864. [Google Scholar] [CrossRef]
- Emoto, M.; Mori, K.; Lee, E.; Kawano, N.; Yamazaki, Y.; Tsuchikura, S.; Morioka, T.; Koyama, H.; Shoji, T.; Inaba, M.; et al. Fetuin-A and atherosclerotic calcified plaque in patients with type 2 diabetes mellitus. Metabolism 2010, 59, 873–878. [Google Scholar] [CrossRef]
- Mori, K.; Emoto, M.; Araki, T.; Yokoyama, H.; Lee, E.; Teramura, M.; Koyama, H.; Shoji, T.; Inaba, M.; Nishizawa, Y. Effects of pioglitazone on serum fetuin-A levels in patients with type 2 diabetes mellitus. Metabolism 2008, 57, 1248–1252. [Google Scholar] [CrossRef]
- Mori, K.; Emoto, M.; Araki, T.; Yokoyama, H.; Teramura, M.; Lee, E.; Motoyama, K.; Koyama, H.; Shoji, T.; Inaba, M.; et al. Association of serum fetuin-A with carotid arterial stiffness. Clin. Endocrinol. 2007, 66, 246–250. [Google Scholar] [CrossRef]
- Pasch, A.; Farese, S.; Gräber, S.; Wald, J.; Richtering, W.; Floege, J.; Jahnen-Dechent, W. Nanoparticle-based test measures overall propensity for calcification in serum. J. Am. Soc. Nephrol. 2012, 23, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, S.; Mori, K.; Sonoda, M.; Nishide, K.; Uedono, H.; Tsuda, A.; Emoto, M.; Shoji, T. Association between Serum Zinc and Calcification Propensity (T50) in Patients with Type 2 Diabetes Mellitus and In Vitro Effect of Exogenous Zinc on T50. Biomedicines 2020, 8, 337. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Nakatani, S.; Kabata, D.; Mori, K.; Shintani, A.; Yoshida, H.; Takahashi, K.; Ota, K.; Fujii, H.; Ueda, S.; et al. Comparative Effects of Etelcalcetide and Maxacalcitol on Serum Calcification Propensity in Secondary Hyperparathyroidism: A Randomized Clinical Trial. Clin. J. Am. Soc. Nephrol. 2021, 16, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.-P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, I.; Ishimura, E.; Kato, Y.; Okuno, S.; Yamamoto, T.; Yamakawa, T.; Mori, K.; Inaba, M.; Nishizawa, Y. Geriatric Nutritional Risk Index, a simplified nutritional screening index, is a significant predictor of mortality in chronic dialysis patients. Nephrol. Dial. Transpl. 2010, 25, 3361–3365. [Google Scholar] [CrossRef]
- Kanda, E.; Kato, A.; Masakane, I.; Kanno, Y. A new nutritional risk index for predicting mortality in hemodialysis patients: Nationwide cohort study. PLoS ONE 2019, 14, e0214524. [Google Scholar] [CrossRef]
- Yamanaka, R.; Shindo, Y.; Oka, K. Magnesium Is a Key Player in Neuronal Maturation and Neuropathology. Int. J. Mol. Sci. 2019, 20, 3439. [Google Scholar] [CrossRef]
- Veronese, N.; Zurlo, A.; Solmi, M.; Luchini, C.; Trevisan, C.; Bano, G.; Manzato, E.; Sergi, G.; Rylander, R. Magnesium Status in Alzheimer’s Disease: A Systematic Review. Am. J. Alzheimer’s Dis. Other Dementiasr. 2016, 31, 208–213. [Google Scholar] [CrossRef]
- Toffa, D.H.; Magnerou, M.A.; Kassab, A.; Djibo, F.H.; Sow, A.D. Can magnesium reduce central neurodegeneration in Alzheimer’s disease? Basic evidences and research needs. Neurochem. Int. 2019, 126, 195–202. [Google Scholar] [CrossRef]
- Suksridechacin, N.; Thongon, N. Fibroblast growth factor-23 and parathyroid hormone suppress small intestinal magnesium absorption. Physiol. Rep. 2022, 10, e15247. [Google Scholar] [CrossRef]
- Block, G.A.; Klassen, P.S.; Lazarus, J.M.; Ofsthun, N.; Lowrie, E.G.; Chertow, G.M. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol. 2004, 15, 2208–2218. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Tsuruya, K.; Taniguchi, M.; Tokumoto, M.; Fujisaki, K.; Hirakata, H.; Fujimi, S.; Kitazono, T. Association Between Serum Phosphate Levels and Stroke Risk in Patients Undergoing Hemodialysis: The Q-Cohort Study. Stroke 2016, 47, 2189–2196. [Google Scholar] [CrossRef] [PubMed]
- Pesta, D.H.; Tsirigotis, D.N.; Befroy, D.E.; Caballero, D.; Jurczak, M.J.; Rahimi, Y.; Cline, G.W.; Dufour, S.; Birkenfeld, A.L.; Rothman, D.L.; et al. Hypophosphatemia promotes lower rates of muscle ATP synthesis. FASEB J. 2016, 30, 3378–3387. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S.; Fujisaki, K.; Nishimura, M.; Nakano, T.; Abe, M.; Hanafusa, N.; Joki, N. Association Between Disturbed Serum Phosphorus Levels and QT Interval Prolongation. Kidney Int. Rep. 2024, 9, 1792–1801. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.R.; Nilforooshan, R.; Weaving, G.; Tabet, N. Plasma fetuin-A is associated with the severity of cognitive impairment in mild-to-moderate Alzheimer’s disease. J. Alzheimer’s Dis. 2011, 24, 327–333. [Google Scholar] [CrossRef]
- Laughlin, G.A.; McEvoy, L.K.; Barrett-Connor, E.; Daniels, L.B.; Ix, J.H. Fetuin-A, a new vascular biomarker of cognitive decline in older adults. Clin. Endocrinol. 2014, 81, 134–140. [Google Scholar] [CrossRef]
Variable | Unit | Total (N = 1207) | Q1 (N = 309) | Q2 (N = 299) | Q3 (N = 356) | Q4 (N = 243) | p-Value | Missing, N (%) |
---|---|---|---|---|---|---|---|---|
3MS | point | 91 [82, 97] | 75 [65, 79] | 88 [86, 90] | 95 [93, 96] | 99 [98, 100] | <0.001 | 0 (0%) |
Mg | mg/dL | 2.6 [2.4, 2.8] | 2.5 [2.3, 2.7] | 2.6 [2.3, 2.8] | 2.6 [2.4, 2.9] | 2.7 [2.4, 2.9] | <0.001 | 0 (0%) |
Phosphate | mg/dL | 5.1 [4.3, 5.9] | 4.8 [4, 5.5] | 5.1 [4.4, 6] | 5.2 [4.5, 6] | 5.4 [4.5, 6.3] | <0.001 | 0 (0%) |
Calcium | mg/dL | 9.0 [8.5, 9.5] | 8.9 [8.4, 9.3] | 8.9 [8.4, 9.4] | 9.1 [8.6, 9.5] | 9.1 [8.6, 9.6] | <0.001 | 0 (0%) |
Ca-P product | mg2/dL2 | 45.9 [38.3, 53.9] | 42.6 [34.4, 50.3] | 45.9 [38.7, 54.3] | 47.3 [40.1, 55.1] | 49.5 [41.0, 56.4] | <0.001 | 0 (0%) |
intact PTH | pg/mL | 116 [60, 190] | 114 [61, 169] | 110 [61, 194] | 114 [53, 200] | 137 [70, 209] | 0.108 | 0 (0%) |
Fetuin-A | µg/mL | 186 [156, 221] | 175 [150, 211] | 182 [154, 219] | 188 [162, 222] | 194 [164, 226] | <0.001 | 0 (0%) |
T50 | min | 128 [109, 151] | 122 [103, 146] | 126 [108, 148] | 130 [110, 153] | 134 [113, 159] | <0.001 | 0 (0%) |
Use of P-binders | N (%) | 1062 (88.0%) | 247 (79.9%) | 254 (85.0%) | 331 (93.0%) | 230 (94.7%) | <0.001 | 0 (0%) |
Use of VDRAs | N (%) | 864 (71.6%) | 207 (67.0%) | 207 (69.2%) | 273 (76.7%) | 177 (72.8%) | 0.033 | 0 (0%) |
Use of cinacalcet | N (%) | 249 (20.6%) | 45 (14.6%) | 47 (15.7%) | 87 (24.4%) | 70 (28.8%) | <0.001 | 0 (0%) |
Age | year | 67 [60, 74] | 73 (68, 78) | 70 (64, 75) | 64 (56, 71) | 60 (50, 65) | <0.001 | 0 (0%) |
Male sex | N (%) | 766 (63.5%) | 197 (63.8%) | 193 (64.6%) | 218 (61.2%) | 158 (65.0%) | 0.758 | 0 (0%) |
Dialysis vintage | year | 5.8 [2.5, 11.8] | 4.5 [2.3, 9.6] | 5.0 [2.2, 9.7] | 6.6 [2.8, 13.8] | 8.8 [3.4, 16.5] | <0.001 | 0 (0%) |
DKD | N (%) | 473 (39.2%) | 141 (45.6%) | 130 (43.5%) | 130 (36.5%) | 72 (29.6%) | <0.001 | 0 (0%) |
Prior stroke | N (%) | 207 (17.1%) | 81 (26.2%) | 58 (19.4%) | 49 (13.8%) | 19 (7.8%) | <0.001 | 0 (0%) |
Prior CAD | N (%) | 166 (13.8%) | 56 (18.1%) | 52 (17.4%) | 39 (11.0%) | 19 (7.8%) | <0.001 | 0 (0%) |
Prior PAD | N (%) | 77 (6.4%) | 21 (6.8%) | 26 (8.7%) | 21 (5.9%) | 9 (3.7%) | 0.120 | 0 (0%) |
Prior CHF | N (%) | 150 (12.4%) | 54 (17.5%) | 42 (14.1%) | 39 (11.0%) | 15 (6.2%) | <0.001 | 0 (0%) |
Prior non-stroke CVD | N (%) | 228 (18.9%) | 67 (21.7%) | 73 (24.4%) | 57 (16.0%) | 31 (12.8%) | 0.002 | 0 (0%) |
Prior any CVD | N (%) | 435 (36.0%) | 148 (47.9%) | 131 (43.8%) | 106 (29.8%) | 50 (20.6%) | <0.001 | 0 (0%) |
Education (≥univ) | N (%) | 244 (20.2%) | 32 (10.4%) | 46 (15.4%) | 83 (23.3%) | 83 (34.2%) | <0.001 | 0 (0%) |
SBP | mmHg | 150 [134, 164] | 150 [133, 163] | 150 [138, 164] | 148 [133, 164] | 148 [132, 164] | 0.442 | 8 (0.7%) |
DBP | mmHg | 75 [68, 83] | 70 [66, 78] | 74 [67, 81] | 78 [69, 84] | 79 [69, 89] | <0.001 | 13 (1.1%) |
Hemoglobin | g/dL | 10.6 [10.0, 11.3] | 10.5 [9.8, 11.3] | 10.6 [10, 11.3] | 10.7 [10, 11.3] | 10.7 [10.1, 11.4] | 0.110 | 0 (0%) |
Body mass index | kg/m2 | 21.2 [19.2, 23.6] | 21.1 [18.9, 23.3] | 21.2 [19.2, 23.3] | 21.2 [19.4, 23.8] | 21.4 [19.3, 23.9] | 0.343 | 0 (0%) |
Albumin | g/dL | 3.7 [3.5, 3.9] | 3.7 [3.4, 3.8] | 3.7 [3.5, 3.9] | 3.8 [3.6, 4] | 3.8 [3.6, 4] | <0.001 | 0 (0%) |
C-reactive protein | mg/dL | 0.10 [0.05, 0.29] | 0.12 [0.05, 0.40] | 0.1 [0.05, 0.29] | 0.10 [0.05, 0.25] | 0.10 [0.05, 0.19] | 0.137 | 0 (0%) |
Sodium | mEq/L | 139 [137, 141] | 139 [137, 141] | 140 [138, 141] | 140 [137, 141] | 139 [137, 141] | 0.005 | 0 (0%) |
Potassium | mEq/L | 4.7 [4.2, 5.2] | 4.6 [4.1, 5.0] | 4.7 [4.2, 5.2] | 4.7 [4.3, 5.2] | 4.8 [4.4, 5.4] | <0.001 | 0 (0%) |
Chloride | mEq/L | 102 [99, 105] | 101 [99, 104] | 103 [100, 105] | 102 [100, 105] | 102 [100, 106] | <0.001 | 0 (0%) |
GNRI | point | 95.9 [90.8, 101.8] | 94.6 [87.7, 100.3] | 95.1 [90.7, 100.9] | 96.7 [92.0, 102.7] | 97.5 [92.1, 103.6] | <0.001 | 0 (0%) |
NRI-JH | point | 3 [0, 5] | 4 [0, 7] | 3 [0, 5] | 3 [0, 5] | 3 [0, 4] | 0.004 | 0 (0%) |
Dialysis frequency | ||||||||
2 sessions per week | N (%) | 28 (2.3%) | 11 (3.6%) | 5 (1.7%) | 8 (2.2%) | 4 (1.7%) | ||
3 sessions per week | N (%) | 1173 (97.3%) | 295 (95.8%) | 294 (98.3%) | 346 (97.2%) | 238 (98.3%) | ||
4 sessions per week | N (%) | 4 (0.3%) | 2 (0.6%) | 0 (0.0%) | 2 (0.6%) | 0 (0.0%) | 0.368 | 2 (0.2%) |
Dialysis time per session | hours | 4.0 [4.0, 4.0] | 4.0 [3.5, 4.0] | 4.0 [3.5, 4.0] | 4.0 [4.0, 4.0] | 4.0 [4.0, 4.0] | <0.001 | 7 (0.6%) |
UFR | mL/kg/h | 12.9 [10.0, 15.9] | 12.9 [9.8, 16.5] | 12.8 [9.6, 15.4] | 13.4 [10.3, 16.1] | 12.4 [9.9, 15.5] | 0.122 | 13 (1.1%) |
spKt/V | no unit | 1.38 [1.20, 1.59] | 1.37 [1.20, 1.56] | 1.37 [1.12, 1.54] | 1.37 [1.20, 1.60] | 1.40 [1.20, 1.62] | 0.048 | 70 (5.8%) |
D-Ca 2.5 mEq/L | N (%) | 186 (15.4%) | 34 (11.0%) | 49 (16.4%) | 65 (18.3%) | 38 (15.6%) | ||
D-Ca 2.75 mEq/L | N (%) | 304 (25.2%) | 41 (13.3%) | 63 (21.1%) | 94 (26.4%) | 106 (43.6%) | ||
D-Ca 3.0 mEq/L | N (%) | 717 (59.4%) | 234 (75.3%) | 187 (62.5%) | 197 (55.3%) | 99 (70.7%) | <0.001 | 0 (0%) |
D-Mg 1.0 mEq/L | N (%) | 1207 (100%) | 309 (100%) | 299 (100%) | 356 (100%) | 243 (100%) | 1.000 | 0 (0%) |
Hemodiafiltration | N (%) | 16 (1.3%) | 4 (1.3%) | 5 (1.7%) | 5 (1.4%) | 2 (0.8%) | 0.858 | 0 (0%) |
Variable | Unit | Coefficient | Lower 95% | Higher 95% | p-Value |
---|---|---|---|---|---|
Magnesium | 0.4 mg/dL | 0.074 | 0.047 | 0.101 | <0.001 |
Phosphate | 1.6 mg/dL | 0.094 | 0.062 | 0.125 | <0.001 |
Calcium | 1.0 mg/dL | 0.072 | 0.038 | 0.106 | <0.001 |
Calcium–phosphate product | 15.7 mg2/dL2 | 0.116 | 0.083 | 0.149 | <0.001 |
Intact PTH | 130 pg/mL | 0.021 | −0.000 | 0.043 | 0.054 |
T50 | 41.9 min | 0.060 | 0.029 | 0.091 | <0.001 |
Fetuin-A | 65 µg/dL | 0.042 | 0.014 | 0.070 | 0.003 |
Use of P-binders | yes = 1, no = 0 | 0.131 | 0.093 | 0.170 | <0.001 |
Use of VDRAs | yes = 1, no = 0 | 0.028 | −0.000 | 0.056 | 0.054 |
Use of cinacalcet | yes = 1, no = 0 | 0.074 | 0.042 | 0.105 | <0.001 |
Variable | Unit | Coefficient | Lower 95% | Higher 95% | p-Value |
---|---|---|---|---|---|
Age | year | −0.015 | −0.017 | −0.012 | <0.001 |
Sex | male = 1, female = 0 | −0.001 | −0.024 | 0.022 | 0.916 |
Dialysis vintage | year | 0.009 | 0.006 | 0.012 | <0.001 |
Diabetic kidney disease | yes = 1, no = 0 | −0.015 | −0.039 | 0.010 | 0.242 |
Prior stroke | yes = 1, no = 0 | −0.066 | −0.095 | −0.036 | <0.001 |
Prior non-stroke CVD | yes = 1, no = 0 | −0.033 | −0.062 | −0.005 | 0.022 |
Education (≥Univ.) | yes = 1, no = 0 | 0.097 | 0.070 | 0.124 | <0.001 |
Systolic blood pressure | 10 mmHg | −0.016 | −0.028 | −0.003 | 0.012 |
Diastolic blood pressure | 10 mmHg | 0.030 | 0.008 | 0.051 | 0.007 |
Hemoglobin | g/dL | −0.002 | −0.022 | 0.018 | 0.876 |
Albumin | g/dL | 0.109 | 0.034 | 0.184 | 0.004 |
Body mass index | kg/m2 | 0.001 | −0.006 | 0.007 | 0.831 |
Log10(C-reactive protein) | Log unit | −0.001 | −0.042 | 0.041 | 0.966 |
Magnesium | IQR, 0.4 mg/dL | 0.025 | 0.001 | 0.049 | 0.040 |
Coefficient of determination (R2) = 0.329 (p < 0.001) |
Variable | Unit | Coefficient | Lower 95% | Higher 95% | p-Value |
---|---|---|---|---|---|
Age | year | −0.014 | −0.016 | −0.012 | <0.001 |
Sex | male = 1, female = 0 | −0.001 | −0.024 | 0.022 | 0.934 |
Dialysis vintage | year | 0.009 | 0.006 | 0.012 | <0.001 |
Diabetic kidney disease | yes = 1, no = 0 | −0.012 | −0.037 | 0.012 | 0.317 |
Prior stroke | yes = 1, no = 0 | −0.066 | −0.095 | −0.036 | <0.001 |
Prior non-stroke CVD | yes = 1, no = 0 | −0.036 | −0.064 | −0.007 | 0.014 |
Education (≥Univ.) | yes = 1, no = 0 | 0.097 | 0.070 | 0.123 | <0.001 |
Systolic blood pressure | 10 mmHg | −0.016 | −0.028 | −0.004 | 0.009 |
Diastolic blood pressure | 10 mmHg | 0.030 | 0.009 | 0.052 | 0.005 |
Hemoglobin | g/dL | −0.003 | −0.023 | 0.017 | 0.795 |
Albumin | g/dL | 0.118 | 0.044 | 0.192 | 0.002 |
Body mass index | kg/m2 | 0.000 | −0.007 | 0.006 | 0.901 |
Log10(C-reactive protein) | Log unit | −0.007 | −0.049 | 0.035 | 0.743 |
Phosphate | IQR, 1.6 mg/dL | 0.029 | 0.001 | 0.057 | 0.042 |
Coefficient of determination (R2) = 0.329 (p < 0.001) |
Variable | Unit | Coefficient | Lower 95% | Higher 95% | p-Value | R2 |
---|---|---|---|---|---|---|
Magnesium | 0.4 mg/dL | 0.025 | 0.001 | 0.049 | 0.040 | 0.329 |
Phosphate | 1.6 mg/dL | 0.029 | 0.001 | 0.057 | 0.042 | 0.329 |
Calcium | 1.0 mg/dL | 0.011 | −0.019 | 0.041 | 0.459 | 0.327 |
Calcium–phosphate product | 15.7 mg2/dL2 | 0.034 | 0.004 | 0.063 | 0.027 | 0.329 |
Intact PTH | 130 pg/mL | −0.008 | −0.026 | 0.011 | 0.408 | 0.327 |
Fetuin-A | 65 µg/dL | 0.000 | −0.025 | 0.024 | 0.972 | 0.326 |
T50 | 41.9 min | 0.002 | −0.025 | 0.030 | 0.876 | 0.326 |
Use of phosphate binders | yes = 1, no = 0 | 0.035 | 0.000 | 0.069 | 0.051 | 0.329 |
Use of VDRAs | yes = 1, no = 0 | 0.018 | −0.006 | 0.042 | 0.140 | 0.328 |
Use of cinacalcet | yes = 1, no = 0 | −0.006 | −0.034 | 0.022 | 0.662 | 0.326 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoji, T.; Mori, K.; Nagakura, Y.; Kabata, D.; Kuriu, K.; Nakatani, S.; Uedono, H.; Nagata, Y.; Fujii, H.; Imanishi, Y.; et al. Associations of Cognitive Function with Serum Magnesium and Phosphate in Hemodialysis Patients: A Cross-Sectional Analysis of the Osaka Dialysis Complication Study (ODCS). Nutrients 2024, 16, 3776. https://doi.org/10.3390/nu16213776
Shoji T, Mori K, Nagakura Y, Kabata D, Kuriu K, Nakatani S, Uedono H, Nagata Y, Fujii H, Imanishi Y, et al. Associations of Cognitive Function with Serum Magnesium and Phosphate in Hemodialysis Patients: A Cross-Sectional Analysis of the Osaka Dialysis Complication Study (ODCS). Nutrients. 2024; 16(21):3776. https://doi.org/10.3390/nu16213776
Chicago/Turabian StyleShoji, Tetsuo, Katsuhito Mori, Yu Nagakura, Daijiro Kabata, Kaori Kuriu, Shinya Nakatani, Hideki Uedono, Yuki Nagata, Hisako Fujii, Yasuo Imanishi, and et al. 2024. "Associations of Cognitive Function with Serum Magnesium and Phosphate in Hemodialysis Patients: A Cross-Sectional Analysis of the Osaka Dialysis Complication Study (ODCS)" Nutrients 16, no. 21: 3776. https://doi.org/10.3390/nu16213776
APA StyleShoji, T., Mori, K., Nagakura, Y., Kabata, D., Kuriu, K., Nakatani, S., Uedono, H., Nagata, Y., Fujii, H., Imanishi, Y., Morioka, T., & Emoto, M. (2024). Associations of Cognitive Function with Serum Magnesium and Phosphate in Hemodialysis Patients: A Cross-Sectional Analysis of the Osaka Dialysis Complication Study (ODCS). Nutrients, 16(21), 3776. https://doi.org/10.3390/nu16213776