The Effect of Polyunsaturated Fatty Acid (PUFA) Supplementation on Clinical Manifestations and Inflammatory Parameters in Individuals with Sjögren’s Syndrome: A Literature Review of Randomized Controlled Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Search and Eligibility Criteria
2.2. Data Selection and Collection
3. Results
3.1. Literature Search and Outcomes
3.2. Effect of Polyunsaturated Fatty Acids (PUFAs) on Fatigue and Clinical Manifestations
3.3. Effect of Polyunsaturated Fatty Acids (PUFAs) on Inflammatory Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chivasso, C.; Sarrand, J.; Perret, J.; Delporte, C.; Soyfoo, M.S. The Involvement of Innate and Adaptive Immunity in the Initiation and Perpetuation of Sjögren’s Syndrome. Int. J. Mol. Sci. 2021, 22, 658. [Google Scholar] [CrossRef] [PubMed]
- Vivino, F.; Bunya, V.Y.; Massaro-Giordano, G.; Johr, C.R.; Giattino, S.L.; Schorpion, A.; Shafer, B.; Peck, A.; Sivils, K.; Rasmussen, A.; et al. Clinical Immunology; Academic Press Inc.: Cambridge, MA, USA, 2019; pp. 81–121. [Google Scholar]
- Wallace, J.D. The Sjögren’s Book Fifth Edition, 5th ed.; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Pagliai, G.; Colombini, B.; Bellando Randone, S.; Amedei, A.; Guiducci, S.; Sofi, F. Nutrients, Foods and Dietary Patterns in the Management of Autoimmune Rheumatic Diseases. Clin. Nutr. Open Sci. 2022, 44, 49–65. [Google Scholar] [CrossRef]
- André, F.; Böckle, B.C. Sjögren’s Syndrome. JDDG J. Der Dtsch. Dermatol. Ges. 2022, 20, 980–1002. [Google Scholar] [CrossRef] [PubMed]
- Mihai, A.; Caruntu, C.; Jurcut, C.; Blajut, F.C.; Casian, M.; Opris-Belinski, D.; Ionescu, R.; Caruntu, A. The Spectrum of Extraglandular Manifestations in Primary Sjögren’s Syndrome. J. Pers. Med. 2023, 13, 961. [Google Scholar] [CrossRef]
- Parisis, D.; Chivasso, C.; Perret, J.; Soyfoo, M.S.; Delporte, C. Current State of Knowledge on Primary Sjögren’s Syndrome, an Autoimmune Exocrinopathy. J. Clin. Med. 2020, 9, 2299. [Google Scholar] [CrossRef]
- Qin, B.; Wang, J.; Yang, Z.; Yang, M.; Ma, N.; Huang, F.; Zhong, R. Epidemiology of Primary Sjögren’s Syndrome: A Systematic Review and Meta-Analysis. Ann. Rheum. Dis. 2015, 74, 1983–1989. [Google Scholar] [CrossRef]
- Ferro, F.; Marcucci, E.; Orlandi, M.; Baldini, C.; Bartoloni-Bocci, E. One Year in Review 2017: Primary Sjögren’s Syndrome. Clin Exp Rheumatol 2017, 35, 179–191. [Google Scholar]
- Kroese, F.G.M.; Abdulahad, W.H.; Haacke, E.; Bos, N.A.; Vissink, A.; Bootsma, H. B-Cell Hyperactivity in Primary Sjögren’s Syndrome. Expert. Rev. Clin. Immunol. 2014, 10, 483–499. [Google Scholar] [CrossRef]
- Reale, M.; D’Angelo, C.; Costantini, E.; Laus, M.; Moretti, A.; Croce, A. MicroRNA in Sjögren’s Syndrome: Their Potential Roles in Pathogenesis and Diagnosis. J. Immunol. Res. 2018, 2018, 7510174. [Google Scholar] [CrossRef]
- Yao, Y.; Ma, J.F.; Chang, C.; Xu, T.; Gao, C.Y.; Gershwin, M.E.; Lian, Z.X. Immunobiology of T Cells in Sjögren’s Syndrome. Clin. Rev. Allergy Immunol. 2021, 60, 111–131. [Google Scholar] [CrossRef]
- Gong, Y.Z.; Nititham, J.; Taylor, K.; Miceli-Richard, C.; Sordet, C.; Wachsmann, D.; Bahram, S.; Georgel, P.; Criswell, L.A.; Sibilia, J.; et al. Differentiation of Follicular Helper T Cells by Salivary Gland Epithelial Cells in Primary Sjögren’s Syndrome. J. Autoimmun. 2014, 51, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Inamo, J.; Suzuki, K.; Takeshita, M.; Kassai, Y.; Takiguchi, M.; Kurisu, R.; Okuzono, Y.; Tasaki, S.; Tasaki, S.; Yoshimura, A.; et al. Identification of Novel Genes Associated with Dysregulation of B Cells in Patients with Primary Sjögren’s Syndrome. Arthritis Res. Ther. 2020, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ming, B.; Wu, T.; Cai, S.; Hu, P.; Tang, J.; Zheng, F.; Ye, C.; Dong, L. The Increased Ratio of Blood CD56bright NK to CD56dim NK Is a Distinguishing Feature of Primary Sjögren’s Syndrome. J. Immunol. Res. 2020, 2020, 7523914. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.C.; Yang, H.Y.; Lin, W.T.; Chang, C.B.; Chien, H.C.; Wang, H.P.; Chen, C.M.; Wang, J.T.; Li, C.; Wu, S.F.; et al. Salivary Dysbiosis in Sjögren’s Syndrome and a Commensal-Mediated Immunomodulatory Effect of Salivary Gland Epithelial Cells. npj Biofilms Microbiomes 2021, 7, 21. [Google Scholar] [CrossRef]
- Thompson, N.; Isenberg, D.A.; Jury, E.C.; Ciurtin, C. Exploring BAFF: Its Expression, Receptors and Contribution to the Immunopathogenesis of Sjögren’s Syndrome. Rheumatology 2016, 55, 1548–1555. [Google Scholar] [CrossRef] [PubMed]
- Tincani, A.; Andreoli, L.; Cavazzana, I.; Doria, A.; Favero, M.; Fenini, M.G.; Franceschini, F.; Lojacono, A.; Nascimbeni, G.; Santoro, A.; et al. Novel Aspects of Sjögren’s Syndrome in 2012. BMC Med. 2013, 11, 1–18. [Google Scholar] [CrossRef]
- Aragona, P.; Bucolo, C.; Spinella, R.; Giuffrida, S.; Ferreri, G. Systemic Omega-6 Essential Fatty Acid Treatment and PGE1 Tear Content in Sjögren’s Syndrome Patients. Investig. Ophthalmol. Vis. Sci. 2005, 46, 4474–4479. [Google Scholar] [CrossRef]
- Manthorpe, R.; Hagen Petersen, S.; Prause, J.U. Primary Sjogren’s Syndrome Treated with Efamol/Efavit—A Double-Blind Cross-over Investigation. Rheumatol. Int. 1984, 4, 165–167. [Google Scholar] [CrossRef]
- Oxholm, P.; Manthorpe, R.; Prause, J.U.; Horrobin, D. Patients with Primary Sjögren’s Syndrome Treated for Two Months with Evening Primrose Oil. Scand. J. Rheumatol. 1986, 15, 103–108. [Google Scholar] [CrossRef]
- Przybylski, R. Flax Oil and High Linolenic Oils. In Bailey’s Industrial Oil and Fat Products; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Pinheiro, M., Jr.; Santos, M.; Santos, R.; Barros, J.; Passos, L.; Neto, J. Uso Oral Do Óleo de Linhaça (Linum Usitatissimum). Arq. Bras. Oftalmol. 2007, 70, 649–655. [Google Scholar] [CrossRef]
- Singh, M.; Stark, P.C.; Palmer, C.A.; Gilbard, J.P.; Papas, A.S. Effect of Omega-3 and Vitamin e Supplementation on Dry Mouth in Patients with Sjögren’s Syndrome. Spec. Care Dent. 2010, 30, 225–229. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef] [PubMed]
- Clark, W.F.; Kortas, C.; Heidenheim, A.P.; Garland, J.; Spanner, E.; Parbtani, A. Flaxseed in Lupus Nephritis: A Two-Year Nonplacebo-Controlled Crossover Study. J. Am. Coll. Nutr. 2001, 20, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Theander, E.; Horrobin, D.F.; Manthorpe, R. Gammalinolenic Acid Treatment of Fatigue Associated with Primary Sjogren’s Syndrome. Scand. J. Rheumatol. 2002, 31, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. JPEN J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef]
- Yadav, R.K.; Singh, M.; Roy, S.; Ansari, M.N.; Saeedan, A.S.; Kaithwas, G. Modulation of Oxidative Stress Response by Flaxseed Oil: Role of Lipid Peroxidation and Underlying Mechanisms. Prostaglandins Other Lipid Mediat. 2018, 135, 21–26. [Google Scholar] [CrossRef]
- Hong, K.; Hun, M.; Wu, F.; Mao, J.; Wang, Y.; Zhu, J.; Zhou, X.; Xie, H.; Tian, J.; Wen, C. Association between Omega-3 Fatty Acids and Autoimmune Disease: Evidence from the Umbrella Review and Mendelian Randomization Analysis. Autoimmun. Rev. 2024, 23, 103651. [Google Scholar] [CrossRef]
- Poggioli, R.; Hirani, K.; Jogani, V.G.; Ricordi, C. Modulation of Inflammation and Immunity by Omega-3 Fatty Acids: A Possible Role for Prevention and to Halt Disease Progression in Autoimmune, Viral, and Age-Related Disorders. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 7380–7400. [Google Scholar]
- Calder, P.C. Omega-3 Fatty Acids and Inflammatory Processes: From Molecules to Man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef]
- Calder, P.C. N-3 PUFA and Inflammation: From Membrane to Nucleus and from Bench to Bedside. Proc. Nutr. Soc. 2020, 79, 404–416. [Google Scholar] [CrossRef]
- Giacobbe, J.; Benoiton, B.; Zunszain, P.; Pariante, C.M.; Borsini, A. The Anti-Inflammatory Role of Omega-3 Polyunsaturated Fatty Acids Metabolites in Pre-Clinical Models of Psychiatric, Neurodegenerative, and Neurological Disorders. Front. Psychiatry 2020, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Pérez, R.; Matabosch, X.; Llebaria, A.; Balboa, M.A.; Balsinde, J. Blockade of Arachidonic Acid Incorporation into Phospholipids Induces Apoptosis in U937 Promonocytic Cells. J. Lipid Res. 2006, 47, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Chiang, N.; Dalli, J. The Resolution Code of Acute Inflammation: Novel pro-Resolving Lipid Mediators in Resolution. Semin. Immunol. 2015, 27, 200–215. [Google Scholar] [CrossRef]
- López-Vicario, C.; Rius, B.; Alcaraz-Quiles, J.; García-Alonso, V.; Lopategi, A.; Titos, E.; Clària, J. Pro-Resolving Mediators Produced from EPA and DHA: Overview of the Pathways Involved and Their Mechanisms in Metabolic Syndrome and Related Liver Diseases. Eur. J. Pharmacol. 2016, 785, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Levy, B.D. Resolvins in Inflammation: Emergence of the pro-Resolving Superfamily of Mediators. J. Clin. Investig. 2018, 128, 2657–2669. [Google Scholar] [CrossRef]
- Serhan, C.N. Discovery of Specialized Pro-Resolving Mediators Marks the Dawn of Resolution Physiology and Pharmacology. Mol. Asp. Med. 2017, 58, 1–11. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Svahn, S.L.; Johansson, M.E. Effects of Omega-3 Fatty Acids on Immune Cells. Int. J. Mol. Sci. 2019, 20, 5028. [Google Scholar] [CrossRef]
- Lian, M.; Luo, W.; Sui, Y.; Li, Z.; Hua, J. Dietary N-3 PUFA Protects Mice from Con A Induced Liver Injury by Modulating Regulatory T Cells and PPAR-γ Expression. PLoS ONE 2015, 10, e0132741. [Google Scholar] [CrossRef]
References | Study Design | Sample | Intervention | Results |
---|---|---|---|---|
[25] | Prospective, randomized, and placebo-controlled and double-blind clinical trial | N = 61 individuals (4 men and 57 women) Average age of 61 years | Intervention group: TheraTears Nutrition® (1 g of flaxseed oil, 450 mg of EPA, 300 mg of DHA, 163 mg of vit. E, and 20 mg of tocoferol). Total: 1.750 mg of n − 3 Placebo group: Capsules (2.064 mg wheat germ oil, containing 144 mg linolenic acid (n − 3) and 3.63 mg vitamin E) 3 months | There were no significant differences between groups in unstimulated salivary flow (p = 0.38), and in the stimulated salivary flow rate (p = 0.35) There were no significant differences between groups in the self-perception of symptoms of dry mouth (p = 0.82) |
[23] | Double-masked and controlled randomized clinical trial | N = 40 individuals (37 women; 3 men) Average age of 36.6 years | Intervention group: Linoleic acid (LA) (112 mg) with gamma-linolenic acid (GLA) (15 mg) at 2 doses/day, in the tear content of PGE1 Placebo group: 2 doses/day, in the tear content of PGE1 1 month | There were no changes in the enzyme content (PGE1) of tears (p > 0.05) ↑ PGE1 (T1 vs. T0) (p < 0.01) ↓ PGE1 (T2 vs. T0) (p < 0.01) Significant improvement symptoms in burning; dryness; and feeling of a foreign body (T1 vs. T2) (p < 0.01) |
[28] | Randomized, double-blind, placebo-controlled clinical trial | N = 87 individuals (79 women; 8 men) Average age of 62 years | Intervention group: GLA (extracted from evening primrose oil): 800 mg or 1600 mg/day, capsules Placebo group: Corn Oil Capsules 6 months | There were no significant changes in fatigue, dryness, or pain in the eyes and mouth (p > 0.05) |
[24] | Randomized, double-blind, placebo-controlled clinical trial | N = 28 individuals (24 women; 4 men) Average age of 51 years | Intervention group: 3 g of Efamol (seed oil consisting of 73% cis-linolenic acid; 9% GLA; 18% saturated and monounsaturated fatty acids)/day (6 capsules) Placebo group: Capsules of identical appearance 8 weeks | Significant improvement in dry keratoconjunctivitis (before vs. after treatment) (p < 0.05) No significant changes in the lacrimal lysozyme concentration or secretion rate during treatment (p > 0.05) No significant changes in xerostomy (p > 0.05) ↑ erythrocyte fatty acid-binding phospholipids (20: 3n6-ac. Dihomo-gamma-linolenic acid (DGLA)) (p < 0.001) ↓ erythrocyte phospholipids of oleic acid (binding acids-18: 1n9) (before vs. after treatment) (p < 0.02) |
[26] | Randomized, double-blind, placebo-controlled clinical trial | N = 36 individuals (33 women; 3 men) (34–76 years) Average age of 55 years | Intervention group: 3 capsules (2/day): 1 capsule of Efamol (500 mg, containing 73% cis-linoleic acid, 18% saturated and monounsaturated fatty acids, and 9% GLA); 1 capsule containing 13.6 international units of vit. E.; 1 capsule of Efavit (125 mg vit. C, 25 mg pyridoxine, 25 mg of niacin, 5 mg zinc sulphate) Placebo group: Capsules with identical appearance, 3 capsules twice/day 3 weeks | Significant improvement in dry keratoconjunctivitis (p = 0.03) There were no significant changes in corneal sensitivity, tear enzymes, and nuclear chromatin in connective tissue epithelial cells (p > 0.05) |
[29] | Randomized, double-blind, placebo-controlled clinical trial | N = 38 individuals (women) (21–55 years) Average age of 38 years | 2 intervention groups: Group 1: 1 capsule of 1 g linseed oil (OL) + 1 placebo capsule identical to OL (950 mg of synthetic mineral oil and 50 mg of primrose oil) (GLA) Group 2: 2 OL capsules Placebo group: Group 3: 2 placebo capsules 180 days | ↓ significant inflammation of the eye surface (before vs. after treatment) (p < 0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nave, C.B.d.; Pereira, P.; Silva, M.L. The Effect of Polyunsaturated Fatty Acid (PUFA) Supplementation on Clinical Manifestations and Inflammatory Parameters in Individuals with Sjögren’s Syndrome: A Literature Review of Randomized Controlled Clinical Trials. Nutrients 2024, 16, 3786. https://doi.org/10.3390/nu16213786
Nave CBd, Pereira P, Silva ML. The Effect of Polyunsaturated Fatty Acid (PUFA) Supplementation on Clinical Manifestations and Inflammatory Parameters in Individuals with Sjögren’s Syndrome: A Literature Review of Randomized Controlled Clinical Trials. Nutrients. 2024; 16(21):3786. https://doi.org/10.3390/nu16213786
Chicago/Turabian StyleNave, Catarina Bento da, Paula Pereira, and Maria Leonor Silva. 2024. "The Effect of Polyunsaturated Fatty Acid (PUFA) Supplementation on Clinical Manifestations and Inflammatory Parameters in Individuals with Sjögren’s Syndrome: A Literature Review of Randomized Controlled Clinical Trials" Nutrients 16, no. 21: 3786. https://doi.org/10.3390/nu16213786
APA StyleNave, C. B. d., Pereira, P., & Silva, M. L. (2024). The Effect of Polyunsaturated Fatty Acid (PUFA) Supplementation on Clinical Manifestations and Inflammatory Parameters in Individuals with Sjögren’s Syndrome: A Literature Review of Randomized Controlled Clinical Trials. Nutrients, 16(21), 3786. https://doi.org/10.3390/nu16213786