Protective Effect of High Adherence to Mediterranean Diet on the Risk of Incident Type-2 Diabetes in Subjects with MAFLD: The [email protected] Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Population
2.2. Variables and Procedures
2.3. Definition of New Cases of T2DM
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Population
3.2. New Onset of T2DM
3.3. Adherence to Mediterranean Diet as a Protecting Factor for T2DM Development
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Younossi, Z.M.; Golabi, P.; de Avila, L.; Paik, J.M.; Srishord, M.; Fukui, N.; Qiu, Y.; Burns, L.; Afendy, A.; Nader, F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J. Hepatol. 2019, 71, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Caballería, L.; Pera, G.; Auladell, M.A.; Torán, P.; Muñoz, L.; Miranda, D.; Alumà, A.; Casas, J.D.; Sánchez, C.; Gil, D.; et al. Prevalence and factors associated with the presence of nonalcoholic fatty liver disease in an adult population in Spain. Eur. J. Gastroenterol. Hepatol. 2010, 22, 24–32. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Méndez-Sánchez, N.; Bugianesi, E.; Gish, R.G.; Lammert, F.; Tilg, H.; Nguyen, M.H.; Sarin, S.K.; Fabrellas, N.; Zelber-Sagi, S.; Fan, J.G.; et al. Global multi-stakeholder endorsement of the MAFLD definition. Lancet Gastroenterol. Hepatol. 2022, 7, 388–390. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.J.; Yin, M.; Zhou, B.Q.; Tan, X.Y.; Xia, Y.Q.; Qin, C.X. Impact renaming non-alcoholic fatty liver disease to metabolic associated fatty liver disease in prevalence, characteristics and risk factors. World J. Hepatol. 2023, 15, 985–1000. [Google Scholar] [CrossRef]
- Kim, D.; Konyn, P.; Sandhu, K.K.; Dennis, B.B.; Cheung, A.C.; Ahmed, A. Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States. J. Hepatol. 2021, 75, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, L.; Cao, Y.Y.; Gao, X.; Targher, G.; Byrne, C.D.; Sun, D.Q.; Zheng, M.H. MAFLD as part of systemic metabolic dysregulation. Hepatol. Int. 2024, 18, 834–847. [Google Scholar] [CrossRef]
- Jeeyavudeen, M.S.; Khan, S.K.A.; Fouda, S.; Pappachan, J.M. Management of metabolic-associated fatty liver disease: The diabetology perspective. World J. Gastroenterol. 2023, 29, 126–143. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, X.; Yi, D.; Qiu, F.; Wu, L.; Tang, Y.; Wang, N. Mediterranean diet affects the metabolic outcome of metabolic dysfunction-associated fatty liver disease. Front. Nutr. 2023, 10, 1225946. [Google Scholar] [CrossRef]
- Cao, L.; An, Y.; Liu, H.; Jiang, J.; Liu, W.; Zhou, Y.; Shi, M.; Dai, W.; Lv, Y.; Zhao, Y.; et al. Global epidemiology of type 2 diabetes in patients with NAFLD or MAFLD: A systematic review and meta-analysis. BMC Med. 2024, 22, 101. [Google Scholar] [CrossRef]
- Mantovani, A.; Petracca, G.; Beatrice, G.; Tilg, H.; Byrne, C.D.; Targher, G. Non-alcoholic fatty liver disease and risk of incident diabetes mellitus: An updated meta-analysis of 501,022 adult individuals. Gut 2021, 70, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, Y.; Fan, Y.; Ying, Z.; Su, Q.; Li, X.; Qin, L. The change of non-alcoholic fatty liver disease is associated with risk of incident diabetes. Front. Endocrinol. 2023, 14, 1108442. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Chen, H.; Liu, Y.; Hou, X.; Wei, L.; Bao, Y.; Yang, C.; Zong, G.; Wu, J.; Jia, W. Association of MAFLD with Diabetes, Chronic Kidney Disease, and Cardiovascular Disease: A 4.6-Year Cohort Study in China. J. Clin. Endocrinol. Metab. 2022, 107, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Loosen, S.H.; Krieg, S.; Krieg, A.; Qvartskhava, N.; Luedde, T.; Kostev, K.; Roderburg, C. Non-alcoholic fatty liver disease is associated with an increased risk of type 2 diabetes. Eur. J. Gastroenterol. Hepatol. 2023, 35, 662–667. [Google Scholar] [CrossRef]
- Armandi, A.; Bugianesi, E. Dietary and pharmacological treatment in patients with metabolic-dysfunction associated steatotic liver disease. Eur. J. Intern. Med. 2024, 122, 20–27. [Google Scholar] [CrossRef]
- Keating, S.E.; Chawla, Y.; De, A.; George, E.S. Lifestyle intervention for metabolic dysfunction-associated fatty liver disease: A 24-h integrated behavior perspective. Hepatol. Int. 2024, 18, 959–976. [Google Scholar] [CrossRef]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet; a Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef]
- Stefan, N.; Roden, M. European Association for the Study of the Liver (EASL) EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Diabetologia 2016, 59, 1121–1140. [Google Scholar]
- Nordmann, A.J.; Suter-Zimmermann, K.; Bucher, H.C.; Shai, I.; Tuttle, K.R.; Estruch, R.; Briel, M. Meta-analysis comparing Mediterranean to low-fat diets for modification of cardiovascular risk factors. Am. J. Med. 2011, 124, 841–851.e2. [Google Scholar] [CrossRef]
- Perez-Diaz-del-Campo, N.; Rosso, C.; Caviglia, G.P.; Castelnuovo, G.; D’Amato, D.; Abdulle, A.; Guariglia, M.; Armandi, A.; Olivero, A.; Abate, M.L.; et al. Low adherence to Mediterranean Diet is associated to sCD163 levels in patients with MAFLD. Dig. Liver Dis. 2023, 55, S23. [Google Scholar] [CrossRef]
- Trovato, F.M.; Catalano, D.; Martines, G.F.; Pace, P.; Trovato, G.M. Mediterranean diet and non-alcoholic fatty liver disease: The need of extended and comprehensive interventions. Clin. Nutr. 2015, 34, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Bozzetto, L.; Prinster, A.; Annuzzi, G.; Costagliola, L.; Mangione, A.; Vitelli, A.; Mazzarella, R.; Longobardo, M.; Mancini, M.; Vigorito, C.; et al. Liver fat is reduced by an isoenergetic MUFA diet in a controlled randomized study in type 2 diabetic patients. Diabetes Care 2012, 35, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.C.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’Dea, K.; Desmond, P.V.; Johnson, N.A.; Wilson, A.M. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J. Hepatol. 2013, 59, 138–143. [Google Scholar] [CrossRef] [PubMed]
- George, E.S.; Reddy, A.; Nicoll, A.J.; Ryan, M.C.; Itsiopoulos, C.; Abbott, G.; Johnson, N.A.; Sood, S.; Roberts, S.K.; Tierney, A.C. Impact of a Mediterranean diet on hepatic and metabolic outcomes in non-alcoholic fatty liver disease: The MEDINA randomised controlled trial. Liver Int. 2022, 42, 1308–1322. [Google Scholar] [CrossRef] [PubMed]
- Kouvari, M.; Boutari, C.; Chrysohoou, C.; Fragkopoulou, E.; Antonopoulou, S.; Tousoulis, D.; Pitsavos, C.; Panagiotakos, D.B.; Mantzoros, C.S. Mediterranean diet is inversely associated with steatosis and fibrosis and decreases ten-year diabetes and cardiovascular risk in NAFLD subjects: Results from the ATTICA prospective cohort study. Clin. Nutr. 2021, 40, 3314–3324. [Google Scholar] [CrossRef]
- Soriguer, F.; Goday, A.; Bosch-Comas, A.; Bordiú, E.; Calle-Pascual, A.; Carmena, R.; Casamitjana, R.; Castaño, L.; Castell, C.; Catalá, M.; et al. Prevalence of diabetes mellitus and impaired glucose regulation in Spain: The [email protected] Study. Diabetologia 2012, 55, 88–93. [Google Scholar] [CrossRef]
- Rojo-Martínez, G.; Valdés, S.; Soriguer, F.; Vendrell, J.; Urrutia, I.; Pérez, V.; Ortega, E.; Ocón, P.; Montanya, E.; Menéndez, E.; et al. Incidence of diabetes mellitus in Spain as results of the nation-wide cohort [email protected] study. Sci. Rep. 2020, 10, 2765. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The fatty liver index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Yang, B.L.; Wu, W.C.; Fang, K.C.; Wang, Y.C.; Huo, T.I.; Huang, Y.H.; Yang, H.I.; Su, C.W.; Lin, H.C.; Lee, F.Y.; et al. External validation of fatty liver index for identifying ultrasonographic fatty liver in a large-scale cross-sectional study in Taiwan. PLoS ONE 2015, 10, e0120443. [Google Scholar] [CrossRef]
- Koehler, E.M.; Schouten, J.N.L.; Hansen, B.E.; Hofman, A.; Stricker, B.H.; Janssen, H.L.A. External Validation of the Fatty Liver Index for Identifying Nonalcoholic Fatty Liver Disease in a Population-based Study. Clin. Gastroenterol. Hepatol. 2013, 11, 1201–1204. [Google Scholar] [CrossRef]
- Han, A.L. Validation of fatty liver index as a marker for metabolic dysfunction-associated fatty liver disease. Diabetol. Metab. Syndr. 2022, 14, 44. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshal, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Aller, R.; Fernández-Rodríguez, C.; lo Iacono, O.; Bañares, R.; Abad, J.; Carrión, J.A.; García-Monzón, C.; Caballería, J.; Berenguer, M.; Rodríguez-Perálvarez, M.; et al. Consensus document. Management of non-alcoholic fatty liver disease (NAFLD). Clinical practice guideline. Gastroenterol. Hepatol. 2018, 41, 328–349. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef]
- Cuesta, M.; Fuentes, M.; Rubio, M.; Bordiu, E.; Barabash, A.; Garcia De La Torre, N.; Rojo-Martinez, G.; Valdes, S.; Soriguer, F.; Vendrell, J.J.; et al. Incidence and regression of metabolic syndrome in a representative sample of the Spanish population: Results of the cohort [email protected] study. BMJ Open Diabetes Res. Care 2020, 8, e001715. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Rothman, K. Modern Epidemiology, 1st ed.; Little, Brown and Company: Boston, MA, USA, 1986. [Google Scholar]
- Tsamos, G.; Vasdeki, D.; Koufakis, T.; Michou, V.; Makedou, K.; Tzimagiorgis, G. Therapeutic Potentials of Reducing Liver Fat in Non-Alcoholic Fatty Liver Disease: Close Association with Type 2 Diabetes. Metabolites 2023, 13, 517. [Google Scholar] [CrossRef]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef]
- Fan, X.; Jiao, G.; Pang, T.; Wen, T.; He, Z.; Han, J.; Zhang, F.; Chen, W. Ameliorative effects of mangiferin derivative TPX on insulin resistance via PI3K/AKT and AMPK signaling pathways in human HepG2 and HL-7702 hepatocytes. Phytomedicine 2023, 114, 154740. [Google Scholar] [CrossRef]
- Baratta, F.; Pastori, D.; Polimeni, L.; Bucci, T.; Ceci, F.; Calabrese, C.; Ernesti, I.; Pannitteri, G.; Violi, F.; Angelico, F.; et al. Adherence to Mediterranean Diet and Non-Alcoholic Fatty Liver Disease: Effect on Insulin Resistance. Am. J. Gastroenterol. 2017, 112, 1832–1839. [Google Scholar] [CrossRef]
- Park, Y.M.; Zhang, J.; Steck, S.E.; Fung, T.T.; Hazlett, L.J.; Han, K.; Ko, S.H.; Merchant, A.T. Obesity Mediates the Association Between Mediterranean Diet Consumption and Insulin Resistance and Inflammation in US Adults. J. Nutr. 2017, 147, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Ballestri, S.; Nascimbeni, F.; Baldelli, E.; Marrazzo, A.; Romagnoli, D.; Lonardo, A. NAFLD as a Sexual Dimorphic Disease: Role of Gender and Reproductive Status in the Development and Progression of Nonalcoholic Fatty Liver Disease and Inherent Cardiovascular Risk. Adv. Ther. 2017, 34, 1291–1326. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Serafini, M.; Estruch, R.; Lamuela-Raventós, R.M.; Martínez-González, M.A.; Salas-Salvadó, J.; Fiol, M.; Lapetra, J.; Arós, F.; Covas, M.I.; et al. Mediterranean diet and non enzymatic antioxidant capacity in the PREDIMED study: Evidence for a mechanism of antioxidant tuning. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1167–1174. [Google Scholar] [CrossRef]
- Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 2003, 52, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.; Chiefari, E.; Arcidiacono, B.; Corigliano, D.M.; Brunetti, F.S.; Maggisano, V.; Russo, D.; Foti, D.P.; Brunetti, A. Mediterranean Diet Nutrients to Turn the Tide Against Insulin Resistance and Related Diseases. Nutrients 2020, 12, 1066. [Google Scholar] [CrossRef] [PubMed]
- Koh-Banerjee, P.; Wang, Y.; Hu, F.B.; Spiegelman, D.; Willett, W.C.; Rimm, E.B. Changes in body weight and body fat distribution as risk factors for clinical diabetes in US men. Am. J. Epidemiol. 2004, 159, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
Overall Study Population (n = 714) | ||||
---|---|---|---|---|
n = 714 | High Adherence (n = 265) | Low Adherence (n = 449) | p-Value * | |
Age in years (%) | <0.001 | |||
18–30 | 5.7 | 2.3 | 7.8 | |
31–45 | 25.2 | 20.0 | 29.0 | |
46–60 | 36.7 | 37.5 | 36.0 | |
61–75 | 27.5 | 33.6 | 24.0 | |
>75 | 4.9 | 6.4 | 4.0 | |
Sex (n (% men)) | 398 (55.7) | 153 (57.7) | 245 (54.6) | 0.41 |
BMI (kg/m2) | 32.18 ± 4.20 | 31.44 ± 3.88 | 32.61 ± 4.32 | <0.01 |
Weight (kg) | 86.80 ± 13.41 | 84.40 ± 12.23 | 88.22 ± 13.88 | <0.01 |
Waist circumference (cm) | 105.19 ± 9.42 | 104.27 ± 9.32 | 105.73 ± 9.44 | <0.01 |
Fasting glucose (mg/dL) | 97.44 ± 10.76 | 97.65 ± 10.53 | 97.31 ± 10.90 | 0.77 |
Fasting insulin (mU/dl) | 11.75 ± 6.09 | 11.19 ± 6.34 | 12.07 ± 5.92 | 0.30 |
HOMA index | 2.87 ± 1.67 | 2.74 ± 1.80 | 2.94 ± 1.58 | 0.22 |
Total cholesterol (mg/dL) | 207.64 ± 37.20 | 210.88 ± 38.36 | 205.73 ± 36.41 | 0.16 |
HDL cholesterol (mg/dL) | 47.72 ± 11.08 | 48.42 ± 11.54 | 47.30 ± 10.80 | 0.34 |
LDL cholesterol (mg/dL) | 114.83 ± 27.66 | 115.92 ± 28.53 | 114.18 ± 27.15 | 0.58 |
Triacylglycerides (mg/dL) | 162.99 ± 122.32 | 164.56 ± 139.19 | 160.06 ± 111.32 | 0.60 |
GOT (U/L) | 20.15 ± 9.04 | 20.38 ± 8.31 | 20.02 ± 9.46 | 0.37 |
GPT (U/L) | 18.58 ± 13.60 | 18.50 ± 12.59 | 18.64 ± 14.18 | 0.41 |
GGT (U/L) | 44.40 ± 44.34 | 44.40 ± 39.17 | 44.39 ± 47.17 | 0.72 |
hsCRP (mg/L) | 4.07 ± 4.78 | 4.23 ± 5.62 | 3.97 ± 4.21 | 0.67 |
Systolic blood pressure (mmHg) | 137.80 ± 16.76 | 139.14 ± 16.57 | 137.01 ± 16.83 | 0.72 |
Diastolic blood pressure (mmHg) | 81.44 ± 9.80 | 81.71 ± 9.50 | 81.27 ± 9.97 | 0.74 |
Metabolic syndrome (%) | 65.4 | 66.8 | 64.6 | 0.55 |
Hypertension (%) | 77.9 | 78.5 | 77.5 | 0.76 |
Obesity (%) | 66.4 | 61.1 | 70.0 | <0.01 |
Abdominal obesity (%) | 79.1 | 78.1 | 79.7 | 0.60 |
Prediabetes (%) | 50 | 49.4 | 45.7 | 0.39 |
Insulin resistance (%) | 50.1 | 44.3 | 53.3 | 0.02 |
Dyslipidemia (%) | 81.1 | 80.8 | 81.3 | 0.86 |
Steatogenic medication (%) | 11.3 | 12.5 | 10.7 | 0.47 |
SF-IPAQ score (%) | 0.04 | |||
Low | 50.0 | 44.7 | 53.1 | |
Moderate | 32.0 | 37.5 | 28.8 | |
High | 18.0 | 17.8 | 18.1 | |
Smoking (%current smoker) | 23.5 | 20.0 | 25.6 | 0.09 |
Alcohol consumption (%) | 0.06 | |||
Never | 22.5 | 19.6 | 24.3 | |
Low | 8.1 | 6.8 | 8.9 | |
Moderate | 50.3 | 49.8 | 50.6 | |
High | 19.1 | 23.8 | 16.2 |
Without Weight Increment (n = 377) | Weight Increment (n = 337) | |||||
---|---|---|---|---|---|---|
High Adherence (n = 135) | Low Adherence (n = 242) | p-Value * | High Adherence (n = 130) | Low Adherence (n = 207) | p-Value * | |
Age in years (%) | <0.01 | 0.04 | ||||
18–30 | 0.7 | 7.4 | 3.8 | 8.2 | ||
31–45 | 14.1 | 25.6 | 25.4 | 31.9 | ||
46–60 | 37.8 | 32.2 | 37.7 | 40.6 | ||
61–75 | 40.0 | 29.3 | 27.7 | 16.9 | ||
>75 | 7.4 | 5.4 | 5.4 | 2.4 | ||
Sex (n (% men)) | 65 (48.1) | 115 (47.5) | 0.90 | 88 (67.7) | 130 (62.8) | 0.36 |
BMI (kg/m2) | 31.16 ± 3.46 | 33.26 ± 4.52 | <0.001 | 31.74 ± 4.26 | 31.86 ± 3.96 | 0.90 |
Weight (kg) | 82.49 ± 10.77 | 88.76 ± 14.18 | <0.001 | 86.38 ± 13.35 | 87.58 ± 13.53 | 0.68 |
Waist circumference (cm) | 103.50 ± 8.76 | 106.74 ± 9.41 | <0.001 | 105.08 ± 9.83 | 104.56 ± 9.34 | 0.94 |
Fasting glucose (mg/dL) | 96.86 ± 10.72 | 98.05 ± 11.40 | 0.19 | 98.48 ± 10.31 | 96.44 ± 10.26 | 0.25 |
Fasting insulin (mU/dL) | 10.82 ± 5.08 | 12.45 ± 6.04 | 0.08 | 11.57 ± 7.41 | 11.63 ± 5.76 | 0.75 |
HOMA index | 2.60 ± 1.35 | 3.06 ± 1.67 | 0.09 | 2.88 ± 2.16 | 2.79 ± 1.47 | 0.96 |
Total cholesterol (mg/dL) | 213.71 ± 41.30 | 204.12 ± 35.78 | 0.06 | 207.94 ± 34.98 | 207.63 ± 37.12 | 0.93 |
HDL cholesterol (mg/dL) | 49.53 ± 11.87 | 47.24 ± 9.96 | 0.17 | 47.26 ± 11.12 | 47.38 ± 11.73 | 0.92 |
LDL cholesterol (mg/dL) | 117.09 ± 30.70 | 113.86 ± 27.47 | 0.49 | 114.67 ± 26.08 | 114.57 ± 26.85 | 0.92 |
Triacylglycerides (mg/dL) | 156.07 ± 59.46 | 154.79 ± 74.04 | 0.39 | 173.38 ± 180.27 | 170.56 ± 140.85 | 0.97 |
GOT (U/L) | 21.42 ± 9.42 | 19.62 ± 8.96 | 0.01 | 19.28 ± 6.82 | 20.50 ± 10.01 | 0.31 |
GPT (U/L) | 18.85 ± 11.93 | 18.51 ± 16.07 | 0.07 | 18.12 ± 12.27 | 18.78 ± 11.67 | 0.60 |
GGT (U/L) | 46.30 ± 41.81 | 40.80 ± 48.72 | 0.02 | 42.43 ± 36.28 | 48.59 ± 45.05 | 0.08 |
hsCRP (mg/L) | 4.35 ± 5.59 | 3.93 ± 3.69 | 0.96 | 4.11 ± 5.67 | 4.01 ± 4.75 | 0.55 |
Systolic blood pressure (mmHg) | 140.76 ± 16.34 | 138.42 ± 17.32 | 0.65 | 137.46 ± 16.71 | 135.36 ± 16.13 | 0.88 |
Diastolic blood pressure (mmHg) | 82.72 ± 9.34 | 81.29 ± 10.01 | 0.25 | 80.66 ± 9.60 | 81.26 ± 9.95 | 0.33 |
Metabolic syndrome (%) | 71.1 | 67.8 | 0.50 | 62.3 | 60.9 | 0.79 |
Hypertension (%) | 84.4 | 78.1 | 0.13 | 72.3 | 76.8 | 0.35 |
Obesity (%) | 60.7 | 75.2 | <0.01 | 60.8 | 63.3 | 0.64 |
Abdominal obesity (%) | 81.5 | 84.4 | 0.48 | 74.6 | 74.4 | 0.96 |
Prediabetes (%) | 45.2 | 49.6 | 0.41 | 53.8 | 41.1 | 0.02 |
Insulin resistance (%) | 43.9 | 55.0 | 0.04 | 44.6 | 51.5 | 0.22 |
Dyslipidemia (%) | 85.2 | 79.3 | 0.16 | 76.2 | 83.6 | 0.09 |
Steatogenic medication (%) | 13.3 | 12.0 | 0.70 | 11.5 | 9.2 | 0.48 |
SF-IPAQ score (%) | 0.01 | 0.78 | ||||
Low | 42.2 | 54.8 | 47.3 | 51.2 | ||
Moderate | 42.2 | 27.8 | 32.6 | 30.0 | ||
High | 15.6 | 17.4 | 20.2 | 18.8 | ||
Smoking (%current smoker) | 14.8 | 21.5 | 0.11 | 25.4 | 30.4 | 0.31 |
Alcohol consumption (%) | 0.06 | 0.05 | ||||
Never | 20.1 | 26.0 | 19.2 | 22.2 | ||
Low | 8.1 | 8.7 | 5.4 | 9.2 | ||
Moderate | 48.1 | 52.1 | 51.5 | 48.8 | ||
High | 23.7 | 13.2 | 23.8 | 19.8 |
New Cases (n (%)) | ||||
---|---|---|---|---|
All | High Adherence | Low Adherence | p * | |
Overall population (n = 714) | 98 (13.7%) | 28 (10.5%) | 70 (15.6%) | 0.06 |
Sex | ||||
Men (n = 398) | 50 (12.5%) | 15 (9.8%) | 35 (14.3%) | 0.19 |
Women (n = 316) | 48 (15.2%) | 13 (11.6%) | 35 (17.1%) | 0.19 |
Weight gain at follow-up | ||||
No weight increment (n = 377) | 51 (13.5%) | 11 (8.15%) | 40 (16.5%) | 0.02 |
Weight increment (n = 337) | 47 (13.9%) | 17 (13.1%) | 30 (14.5%) | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lago-Sampedro, A.; Oualla-Bachiri, W.; García-Serrano, S.; Maldonado-Araque, C.; Valdés, S.; Doulatram-Gamgaram, V.; Olveira, G.; Delgado, E.; Chaves, F.J.; Castaño, L.; et al. Protective Effect of High Adherence to Mediterranean Diet on the Risk of Incident Type-2 Diabetes in Subjects with MAFLD: The [email protected] Study. Nutrients 2024, 16, 3788. https://doi.org/10.3390/nu16213788
Lago-Sampedro A, Oualla-Bachiri W, García-Serrano S, Maldonado-Araque C, Valdés S, Doulatram-Gamgaram V, Olveira G, Delgado E, Chaves FJ, Castaño L, et al. Protective Effect of High Adherence to Mediterranean Diet on the Risk of Incident Type-2 Diabetes in Subjects with MAFLD: The [email protected] Study. Nutrients. 2024; 16(21):3788. https://doi.org/10.3390/nu16213788
Chicago/Turabian StyleLago-Sampedro, Ana, Wasima Oualla-Bachiri, Sara García-Serrano, Cristina Maldonado-Araque, Sergio Valdés, Viyey Doulatram-Gamgaram, Gabriel Olveira, Elias Delgado, Felipe Javier Chaves, Luis Castaño, and et al. 2024. "Protective Effect of High Adherence to Mediterranean Diet on the Risk of Incident Type-2 Diabetes in Subjects with MAFLD: The [email protected] Study" Nutrients 16, no. 21: 3788. https://doi.org/10.3390/nu16213788
APA StyleLago-Sampedro, A., Oualla-Bachiri, W., García-Serrano, S., Maldonado-Araque, C., Valdés, S., Doulatram-Gamgaram, V., Olveira, G., Delgado, E., Chaves, F. J., Castaño, L., Calle-Pascual, A., Franch-Nadal, J., Rojo-Martínez, G., & García-Escobar, E. (2024). Protective Effect of High Adherence to Mediterranean Diet on the Risk of Incident Type-2 Diabetes in Subjects with MAFLD: The [email protected] Study. Nutrients, 16(21), 3788. https://doi.org/10.3390/nu16213788