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Abstract: Background/Objective: Long-term intake of a high-fat diet (HFD) leads to obesity and gut
dysbiosis. AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism. Herein,
we investigated the impacts of Lactobacillus (Lactiplantibacillus) plantarum P111 and Bifidobacterium
longum P121, which suppressed dexamethasone-induced adipogenesis in 3T3 L1 cells and increased
lipopolysaccharide-suppressed AMPK activation in HepG2 cells, on HFD-induced obesity, liver
steatosis, gut inflammation and dysbiosis, and depression/cognitive impairment (DCi)-like behavior
in mice. Methods: Obesity is induced in mice by feeding with HFD. Biomarker levels were measured
using immunoblotting, enzyme-linked immunosorbent assay, and immunofluorescence staining.
Results: Orally administered P111, P121, or their mix LpBl decreased HFD-induced body weight
gain, epididymal fat pad weight, and triglyceride (TG), total cholesterol (TC), and lipopolysaccharide
levels in the blood. Additionally, they downregulated HFD-increased NF-κB activation and TNF-α
expression in the liver and colon, while HFD-decreased AMPK activation was upregulated. They
also suppressed HFD-induced DCi-like behavior and hippocampal NF-κB activation, NF-κB-positive
cell population, and IL-1β and TNF-α levels, while increasing the hippocampal BDNF-positive cell
population and BDNF level. The combination of P111 and P122 (LpBl) also improved body weight
gain, liver steatosis, and DCi-like behavior. LpBl also mitigated HFD-induced gut dysbiosis: it
decreased Desulfovibrionaceae, Helicobacteriaceae, Coriobacteriaceae, and Streptococcaceae populations
and lipopolysaccharide production, which were positively correlated with TNF-α expression; and
increased Akkermansiaceae, Bifidobacteriaceae, and Prevotellaceae populations, which were positively
correlated with the BDNF expression. Conclusions: P111 and/or P121 downregulated adipogenesis,
gut dysbiosis, and NF-κB activation and upregulatde AMPK activation, leading to the alleviation of
obesity, liver steatosis, and DCi.

Keywords: obesity; liver steatosis; Lactobacillus plantarum; Bifidobacterium longum; psychiatric disorder;
gut microbiota

1. Introduction

Obesity is the accumulation of abnormal or excessive amounts of fat in the body [1].
The primary risk factor of obesity is the excessive intake of high-calorie diets, such as a high-
fat diet (HFD), and physical inactivity [1–3]. Long-term HFD feeding causes gut dysbiosis
and excessive endotoxin production, which induce inflammation and adipogenesis and sup-
press the activation of AMP-activated protein kinase (AMPK) [4–6]. The AMPK activation
downregulates lipid metabolism in cells and organisms, including the oxidative decomposi-
tion and biosynthesis of fatty acids and triglycerides [6,7]. Interestingly, endotoxin-induced
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expression of proinflammatory cytokines suppresses AMPK activation, which inhibits
the inflammatory response of adipose tissue macrophages, and systemic inflammation,
including neuroinflammation [8,9]. Inflammation-inducing stressors such as pathogen
infection and gut bacterial endotoxin induce depression and cognitive impairment (DCi)
and systemic inflammation in mice [10,11]. Therefore, suppressing inflammation and adi-
pogenesis and/or inducing AMPK activation may be useful for the therapy of obesity and
psychiatric disorders, including DCi.

The gut microbiota is associated with both obesity and psychiatric disorders [5,12].
Gut dysbiosis-ameliorating probiotics may alleviate obesity, depression, and cognitive
impairment in mice and volunteers by modulating gut microbiota [13–15]. Lactobacillus
delbrueckii subsp. bulgaricus strain TCI904 alleviates HFD-induced weight gain and anxiety
in mice [16]. Lactiplantibacillus (Lactobacillus) plantarum LC27 and Bifidobacterium longum
LC67 alleviate weight gain by suppressing gut bacteria lipopolysaccharide (LPS) produc-
tion [17]. Lactobacillus acidophilus alleviates HFD-induced weight gain, hyperlipidemia, and
inflammation in mice [18]. Anti-inflammatory Lactobacillus plantarum NK33 and B. adoles-
centis mix (NVP1704) can also alleviate depression/anxiety and systemic inflammation in
LPS-producing Escherichia coli-exposed mice by modulating the gut microbiota [19]. Never-
theless, studies on obesity-ameliorating action mechanism(s) of probiotics remain elusive.

Therefore, we selected L. plantarum P111 and B. longum P121, which suppressed
dexamethasone-induced fat accumulation in 3T3L1 cells and increased LPS-suppressed
AMPK activation in HepG2 cells, from the bacteria collection of healthy human feces and
investigated their effects on HFD-induced obesity, liver steatosis, depression, and cognitive
impairment in mice.

2. Materials and Methods
2.1. Materials

LPS (L2630) and DAPI (4,6-diamidine-2-phenylindole dihydrochloride, F6057)) were
bought from Sigma (St. Louis, MO, USA). A limulus amoebocyte lysate (LAL) assay kit
(113412) was bought from Cape Cod Inc. (E. Falmouth, MA, USA). Antibodies targeting
p-p65 (#3033), p65 (#6956), AMPK (#25325), and p-AMPK (#25315), were bought from Cell
Signaling Technology (Danvers, MA, USA). BDNF (PA5-85730) and β-actin (AB8227) were
purchased from Santa Cruz Biotechnology (Dallas, TX, USA) and Abcam (Cambridge, UK),
respectively. Low-fat diet (LFD, D12450B, Research Diets Inc.) and HFD (D12492) were
bought from Research Diets Inc. (New Brunswick, NJ, USA).

2.2. Culture of Gut Microbiota-Derived Probiotics and Their Dosage Regimen

Gut bacteria, including P111 (KCCM13475P, from Korean Culture Center of Microor-
ganisms, Seoul, Republic of Korea) and P121 (KCCM13476), were cultured in GAM (D5422,
Nissuei Pharm Inc., Tokyo, Japan) or MRS (288130, BD, Franklin Lakes, NJ, USA) broth
(0.5 L) and then centrifuged at 5000× g for 20 min, washed with saline and distilled water,
and freeze-dried. The freeze-dried cells were resuspended in phosphate-buffered saline for
in vitro cell experiment or 1% trehalose for in vivo animal experiment.

To determine the appropriate dose of probiotics for in vivo studies, mice were sub-
jected to oral gavage with P111 (2 × 108 and 1 × 109 colony-forming unit (CFU)/mouse/day)
for 4 weeks in conjunction with HFD. Compared to mice receiving only HFD treatment,
P111 at doses of 2 × 108 CFU/mouse and 1 × 109 CFU/mouse reduced weight gain by
22% and 36%, respectively. Consequently, a dose of 1 × 109 CFU/mouse/day was selected
for further in vivo experiments.
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2.3. HepG2 and 3T3-L1 Cell Cultures

HepG2 cells (Korean Cell Line Bank, Seoul, Republic of Korea) were cultured in
DMEM (00741, GIBCO, Grand Island, NY, USA) containing 1% antibiotic–antimycotic
(AA, 15240-062, GIBCO) and 10% fetal bovine serum (FBS, 26140-079, GIBCO) at 37 ◦C
in a 5% CO2/air atmosphere [20]. The cells (1 × 106 cells/mL) were treated with or
without probiotics (1 × 105 CFU/mL) in the presence of palmitic acid (0.25 mM) or LPS
(100 ng/mL) for 24 h. 3T3-L1 cells (American Type Culture Collection, Manassas, VA, USA)
were cultured in DMEM supplemented with 10% FBS and 1% AA at 37 ◦C and 5% CO2/air
and differentiated into the adipocyte, as previously reported [21].

Lipid amount and AMPK activation activity were assayed using Oil Red O staining
and immunoblotting, respectively, as previously reported [21].

2.4. Animals

Animal experiments were conducted using male C57BL/6 mice (18–21 g, 6 weeks
old) obtained from Koatech (Pyeongtaek, Republic of Korea). Mice were housed in plastic
cages with 5 cm elevated wire flooring, under controlled conditions, for one week prior
to the commencement of experiments and used in animal experiments, as previously
reported [19]. All animal experiments were approved by the Institutional Animal Care and
Use Committee (IACUC approval nos. KHSASP-20-177, 14 July 2020; and KHSASP-21-098,
11 March 2021) and conducted according to the Ethical Policies and Guidelines of the
University for Laboratory Animals Care and Use and Use of Laboratory Animals and
ARRIVE guideline [22].

2.5. Preparation of Mice with Obesity and Anti-Obesity Activity Assay of Probiotics

To understand the anti-obesity activities of Lpl, Blo, and their (4:1) mix (LpBl), we
examined two sequential experiments in mice with HFD-induced obesity, which were
prepared as previously reported [17]. First, to investigate the effects of Lpl and Blo, mice
were randomly separated into 4 groups (LF, HF, Lpl, and Blo). Second, to examine the
effects of LpBl, mice were randomly separated into 3 groups (LF, HF, and LpBl). Each group
consisted of 8 mice. The LF group was fed an LFD for 8 weeks, while the HF, Lpl, Blo, and
LpBl groups were subjected to an HFD for the same duration. The LF and HF groups were
administered 1% trehalose (vehicle) via oral gavage once a day (six day/week) after feeding
on their assigned diet for 4 weeks. Lpl, Blo, and LpBl groups were administered P111, P121,
and their (4:1) mix (1 × 109 CFU/mouse/day, suspended in 1% trehalose) via oral gavage
once a day (six day/week) from next day after HFD feeding for 4 weeks, respectively.

DCi-like behaviors were measured 24 h after the final gavage of probiotics. Mice were
euthanized via exposure to CO2, followed by cervical dislocation. Blood, colon, liver, and
brain tissues were collected and stored at −80 ◦C for biochemical marker analysis.

2.6. Behavioral Tasks

Depression-like behaviors were assessed using the elevated plus-maze test (EPMT)
and tail suspension test (TST) performed in a plus-maze apparatus and at the edge of a
table, respectively, as previously described [19]. Cognitive function-like behaviors were
evaluated using the Y-maze task (YMT) conducted in a three-arm horizontal maze (40 cm
long, 3 cm wide, and 12 cm high walls), as previously reported [23]. Detailed protocols are
indicated in the Supplementary Materials’ Methods section.

2.7. Immunoblotting and ELISA

Colon, liver, and brain tissue samples were homogenized and lysed in RIPA buffer and
then centrifuged at 14,000× g for 20 min. Proteins in the supernatant (20 µg) were analyzed
by immunoblotting for p65, p-p65, AMPK, p-AMPK, BDNF, and β-actin, as previously
described [23]. Cytokines in the liver, colon, and blood supernatants were measured using
ELISA kits [17].
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2.8. Determination of LPS Concentration

LPS levels in blood, liver, and feces were measured using an LAL assay kit, as previ-
ously reported [17].

2.9. Determination of Total Cholesterol (TC), HDL-Cholesterol (HC), and Triglyceride (TG) Levels
in the Liver and Blood

Liver tissue samples were homogenized, lysed in RIPA buffer (pc2002-050-00, Bios-
esang, Yongin-si, Republic of Korea), and then centrifuged at 14,000 g for 20 min. TC, HC,
and TG levels in the liver homogenate supernatant and blood were measured using each
commercial kit (Asan pharmaceutical Co., Seoul, Republic of Korea).

2.10. Immunofluorescence Staining

Immunofluorescence staining was performed, as described by Jang et al. [19]. Detailed
protocols are provided in the Supplementary Materials (Methods).

2.11. Quantitative Real-Time Polymerase Chain Reaction (qPCR)

Quantitative PCR (qPCR) was performed for (SIRT)-1, sREBP-1c, PGC-1α, LPL, Fiaf,
G6PD, FAS, and β-actin, following the method described by Jang et al. [19]. The primers
are indicated in Supplementary Table S1.

2.12. Gut Microbiota Composition Analysis

Gut microbiota composition was determined using Illumina iSeq 100 [23]. Detailed
protocols are provided in the Supplementary Materials (Methods). Sequenced reads were
deposited in the NCBI’s short-read archive under accession number PRJNA163520.

2.13. Whole-Genome Analysis

The whole-genome sequences of P111 and P121 were analyzed, as previously re-
ported [23]. Detailed protocols are provided in the Supplementary Materials (Methods).

2.14. Statistical Analysis

Data were indicated as the mean ± standard deviation (SD) and analyzed by a Graph-
Pad Prism 9. The significance was analyzed by a one-way ANOVA, followed by Duncan’s
multiple-range test (p < 0.05).

3. Results
3.1. Effects of Probiotics on Lipid Accumulation and AMPK Activation in 3T3-L1 and
HepG2 Cells

First, we screened probiotics suppressing lipid accumulation in 3T3 L1 cells from
healthy human fecal microbiota-derived lactic acid bacteria collection. Of them, P111 and
P121 significantly suppressed dexamethasone-mediated adipogenesis (fat accumulation)
in 3T3 L1 cells (Figure 1 and Supplementary Figure S1). They also suppressed palmitic
acid-induced fat (lipid) accumulation in HepG2 cells. When they were (4:1), (1:1), or (1:4)
mixed, their lipid accumulation-inhibitory effects were not different. However, they in-
creased LPS-suppressed AMPK activation in HepG2 cells. Based on the analysis of Gram
staining, whole genome and 16S rRNA gene, and API 20A and 50 CHL kits (bioMérieux,
Marcy-l’Étoile, France), P111 and P121 were named L. plantarum and B. longum, respectively.
Their whole-genome sequences exhibited the highest phylogenetic similarity to L. plan-
tarum NCTC13644 (99.1%) and B. longum DSM20211 (96.3%), respectively, using OrthoANI
(Supplementary Figure S2).
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Lpl, P111+dexamethasone; Blo, P121+dexamethasone. (b) Effects on fat deposition in HepG2 cells. 
Nc, vehicle alone; PA, palmitic acid; Lpl, P111+palmitic acid; Blo, P121+palmitic acid. (c) Effects on 
AMPK activation in HepG2 cells. Nc, vehicle alone; LPS, lipopolysaccharide (LPS); Lpl, P111+LPS; 
Blo, P121+LPS. Fat deposition and AMPK activation were assessed by Oil Red O staining and im-
munoblotting, respectively. 3T3 L1 cells were treated with probiotics (1 × 105 CFU/mL) and dexame-
thasone. HepG2 cells were treated with probiotics (1 × 105 CFU/mL) and palmitic acid. (n = 4). # p < 
0.05 vs. NC. * p < 0.05 vs. Dex or PA alone. 

3.2. P111 and P121 Alleviated HFD-Induced Body Weight Gain, Liver Steatosis,  
and Depression in Mice 

The effects of P111 and P121 on body weight changes were investigated in mice sub-
jected to HFD. Long-term feeding of HFD significantly increased body weight gain com-
pared to those of LFD feeding (Figure 2). Oral administration of P111 or P121 effectively 
mitigated HFD-induced weight gain. They also increased HFD-induced epididymal fat 
pad (EFP) weight and adipocyte size, as assessed by H&E staining. 

HFD feeding also increased TG, TC, and HC levels in the blood. However, oral ad-
ministration of P111 or P121 reduced HFD-increased TG and TC, while the HFD-de-
creased HC level increased. They also decreased HFD-induced corticosterone, IL-6, and 
LPS levels in the blood. 

Figure 1. Effects of P111 and P121 on fat (lipid) deposition and AMPK activation in 3T3 L1 and
HepG2 cells. (a) Effects on fat deposition in 3T3 L1 cells. Nc, vehicle alone; Dex, dexamethasone;
Lpl, P111+dexamethasone; Blo, P121+dexamethasone. (b) Effects on fat deposition in HepG2 cells.
Nc, vehicle alone; PA, palmitic acid; Lpl, P111+palmitic acid; Blo, P121+palmitic acid. (c) Effects on
AMPK activation in HepG2 cells. Nc, vehicle alone; LPS, lipopolysaccharide (LPS); Lpl, P111+LPS;
Blo, P121+LPS. Fat deposition and AMPK activation were assessed by Oil Red O staining and
immunoblotting, respectively. 3T3 L1 cells were treated with probiotics (1 × 105 CFU/mL) and
dexamethasone. HepG2 cells were treated with probiotics (1 × 105 CFU/mL) and palmitic acid.
(n = 4). # p < 0.05 vs. NC. * p < 0.05 vs. Dex or PA alone.

3.2. P111 and P121 Alleviated HFD-Induced Body Weight Gain, Liver Steatosis, and Depression
in Mice

The effects of P111 and P121 on body weight changes were investigated in mice
subjected to HFD. Long-term feeding of HFD significantly increased body weight gain
compared to those of LFD feeding (Figure 2). Oral administration of P111 or P121 effectively
mitigated HFD-induced weight gain. They also increased HFD-induced epididymal fat
pad (EFP) weight and adipocyte size, as assessed by H&E staining.

HFD feeding also increased TG, TC, and HC levels in the blood. However, oral admin-
istration of P111 or P121 reduced HFD-increased TG and TC, while the HFD-decreased HC
level increased. They also decreased HFD-induced corticosterone, IL-6, and LPS levels in
the blood.

HFD feeding increased liver weight and lipid droplet number (Figure 3 and
Supplementary Figure S3). Treatment with HFD also increased TG, TC, and HC levels
in the liver. However, P111 and P121 significantly reduced HFD-induced liver weight; lipid
droplet number; and TG, TC, and HC levels. Additionally, their treatments reduced TNF-α,
IL-1β, IL-6, and LPS levels.
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HC levels (g) in the blood. Effects on IL-6 (h), corticosterone (CORT, (i)), and LPS levels (j) in the 
blood. LF, LFD (8 weeks) alone; HF, HFD (8 weeks) alone; Lpl, P111 (4 weeks) with HFD (8 weeks); 
Blo, P121 (4 weeks) with HFD (8 weeks). n = 8. # p < 0.05 vs. LF group. * p < 0.05 vs. HF group. 
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However, P111 and P121 significantly reduced HFD-induced liver weight; lipid droplet 
number; and TG, TC, and HC levels. Additionally, their treatments reduced TNF-α, IL-
1β, IL-6, and LPS levels. 

HFD feeding suppressed AMPK activation and induced NF-κB activation in the liver. 
Furthermore, HFD feeding decreased SIRT-1, PGC-1α, and Fiaf levels, while sREBP-1c, 
LPL, G6PD, and FAS levels increased. However, treatment with P111 or P121 induced 
HFD-suppressed AMPK activation and SIRT-1, PGC-1α, and Fiaf levels, while HFD-in-
duced sREBP-1c, LPL, G6PD, and FAS levels and NF-κB activation decreased. 

Figure 2. Effects of P111 and P121 on HFD-increased obesity in mice. Effects on body weight change
(a), body weight gain (b), EFP weight (c), and EFP adipocyte size (d). Effects on TG (e), TC (f), and
HC levels (g) in the blood. Effects on IL-6 (h), corticosterone (CORT, (i)), and LPS levels (j) in the
blood. LF, LFD (8 weeks) alone; HF, HFD (8 weeks) alone; Lpl, P111 (4 weeks) with HFD (8 weeks);
Blo, P121 (4 weeks) with HFD (8 weeks). n = 8. # p < 0.05 vs. LF group. * p < 0.05 vs. HF group.

HFD feeding suppressed AMPK activation and induced NF-κB activation in the liver.
Furthermore, HFD feeding decreased SIRT-1, PGC-1α, and Fiaf levels, while sREBP-1c,
LPL, G6PD, and FAS levels increased. However, treatment with P111 or P121 induced HFD-
suppressed AMPK activation and SIRT-1, PGC-1α, and Fiaf levels, while HFD-induced
sREBP-1c, LPL, G6PD, and FAS levels and NF-κB activation decreased.
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Effects on p-p65, p65, p-AMPK, AMPK, and β-actin expression, as assessed by immunoblotting. (l) 
Effects on SIRT1, sREBP-1c, PGC-1a, LPL, Fiaf, G6PD, and FAS levels, as assessed by qPCR. LF, LFD 
(8 weeks) alone; HF, HFD (8 weeks) alone; Lpl, P111 (4 weeks) with HFD (8 weeks); Blo, P121 (4 
weeks) with HFD (8 weeks). n = 8. # p < 0.05 vs. LF group. * p < 0.05 vs. HF group. 

Long-term feeding of HFD increased depression-like behaviors, time spent in open 
arm (OT) and open arm entries (OE) in the EPMT, to 45.6% (F3,28 = 11.12, p < 0.001) and 
50.0% (F3,28 = 4.56, p < 0.01) of LFD-fed mice, respectively, and immobility time (IT) in the 
TST to 151.3% (F3,28 = 9.73, p < 0.001) of LFD-fed mice, respectively (Figure 4 and Supple-
mentary Figure S4). HFD also decreased spontaneous alternation (SA) in the YMT to 75.5% 
(F3,28 = 5.71, p < 0.001) of LFD-fed mice. Orally treated P111 and P121 alleviated HFD-in-
duced depression-like behaviors OT to 67.2% and 67.9% of LFD-fed mice, respectively, 

Figure 3. Effects of P111 and P121 on liver weight and steatohepatitis-related marker expression
in the liver. Effects on liver weight (a) and lipid droplet number (b). Effects on TG (c), TC (d), and
HC (e). Effects on TNF-α (f), IL-1β (g), IL-6 (h), IL-10 (i), and LPS (j) levels, as assessed by ELISA.
(k) Effects on p-p65, p65, p-AMPK, AMPK, and β-actin expression, as assessed by immunoblotting.
(l) Effects on SIRT1, sREBP-1c, PGC-1a, LPL, Fiaf, G6PD, and FAS levels, as assessed by qPCR. LF,
LFD (8 weeks) alone; HF, HFD (8 weeks) alone; Lpl, P111 (4 weeks) with HFD (8 weeks); Blo, P121
(4 weeks) with HFD (8 weeks). n = 8. # p < 0.05 vs. LF group. * p < 0.05 vs. HF group.

Long-term feeding of HFD increased depression-like behaviors, time spent in open
arm (OT) and open arm entries (OE) in the EPMT, to 45.6% (F3,28 = 11.12, p < 0.001) and
50.0% (F3,28 = 4.56, p < 0.01) of LFD-fed mice, respectively, and immobility time (IT) in
the TST to 151.3% (F3,28 = 9.73, p < 0.001) of LFD-fed mice, respectively (Figure 4 and
Supplementary Figure S4). HFD also decreased spontaneous alternation (SA) in the YMT to
75.5% (F3,28 = 5.71, p < 0.001) of LFD-fed mice. Orally treated P111 and P121 alleviated HFD-
induced depression-like behaviors OT to 67.2% and 67.9% of LFD-fed mice, respectively,
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and IT to 122.4% and 124.8% of LFD-fed mice, respectively. They recovered HFD-decreased
SA to 90.6% and 88.6% of LFD-fed mice, respectively.
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and number of NF-κB+CD11c+ cells in the colon, while decreasing IL-10 and SIRT1 expres-
sion and AMPK activation (p-AMPK/AMPK) (Figure 5 and Supplementary Figure S5). 
Orally administered P111 or P121 suppressed HFD-induced myeloperoxidase; IL-1β, IL-

Figure 4. Effects of P111 and P121 on DCi-like symptoms in mice with HFD-induced obesity. Effects
on OT in the EPMT (a), IT in the TST (b), and SA in the YMT (c). Effects on hippocampal BDNF (d),
TNF-α (e), IL-1β (f), IL-6 (g), and IL-10 expression (h). (i) Effects on hippocampal p-p65, p65, BDNF,
and β-actin expression. (j) Effects on hippocampal NF-κB+Iba1+ and BDNF+NeuN+ cell numbers.
LF, LFD (8 weeks) alone; HF, HFD (8 weeks) alone; Lpl, P111 (4 weeks) with HFD (8 weeks); Blo, P121
(4 weeks) with HFD (8 weeks). n = 8. # p < 0.05 vs. LF group. * p < 0.05 vs. HF group.

HFD treatment increased TNF-α, IL-1β, and IL-6 levels; NF-κB activation; and NF-κB+Iba1+

cell number in the hippocampus, while decreasing BDNF levels and the BDNF+NeuN+ cell
number. However, oral treatment with P111 or P121 reduced HFD-induced TNF-α, IL-1β,
and IL-6 levels; NF-κB activation; and NF-κB+ cell number, while increasing the BDNF
level and BDNF+NeuN+ cell number suppressed by HFD.
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3.3. P11 and P121 Alleviated HFD-Induced Gut Inflammation and Dysbiosis in Mice

Long-term HFD feeding shortened the length of colon and enhanced the expression of
myeloperoxidase, TNF-α, IL-1β, and IL-6, activation of NF-κB activation (p-p65/p65), and
number of NF-κB+CD11c+ cells in the colon, while decreasing IL-10 and SIRT1 expression
and AMPK activation (p-AMPK/AMPK) (Figure 5 and Supplementary Figure S5). Orally
administered P111 or P121 suppressed HFD-induced myeloperoxidase; IL-1β, IL-6, and
TNF-α levels; NF-κB activation (p-p65/p65); and NF-κB-positive cell population and
enhanced HFD-decreased IL-10 expression and AMPK activation (p-AMPK/AMPK).
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Figure 5. Effects of P111 and P121 on HFD-induced colitis in mice. (a) Effects on colon length. Effects
on colonic myeloperoxidase (MPO, (b)), TNF-α (c), IL-1β (d), IL-6 (e), and IL-10 expression (f), as
assessed by ELISA. (g) Effects on colonic p-p65, p65, p-AMPK, AMPK, and β-actin expression, as
assessed by immunoblotting. (h) Effects on colonic SIRT1 expression, as assessed by qPCR. (i) Effects
on colonic NF-κB+CD11c+ cell populations. LF, LFD (8 weeks) alone; HF, HFD (8 weeks) alone; Lpl,
P111 (4 weeks) with HFD (8 weeks); Blo, P121 (4 weeks) with HFD (8 weeks). n = 8. # p < 0.05 vs. LF
group. * p < 0.05 vs. HF group.

3.4. Effects of P111 and P121 Mix (LpBl) on HFD-Induced Body Weight, Liver Steatosis, and Their
Related Biomarker Levels in Mice

When they were (4:1), (1:1), or (1:4) mixed, the lipid accumulation-inhibitory effects
were not different in palmitic acid-treated HepG2 cells. Therefore, we examined the effect
of LpBl (P111 and P121 (4:1) mix) on HFD-increased body weight gain in mice (Figure 6).
HFD feeding significantly increased body weight gain compared to LFD feeding. However,
oral administration of LpBl decreased HFD-induced body weight gain. Furthermore, they
also decreased HFD-induced EFP weight and adipocyte size.
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of TG, TC, and HC in the liver (Figure 7 and Supplementary Figure S6). Conversely, oral 
treatment with LpBl significantly lowered HFD-increased liver weight; lipid droplet num-
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levels decreased. 

Figure 6. Effect of LpBl on HFD-induced body weight, liver steatosis, and their related biomarker
levels in mice. Effect on body weight change (a), body weight gain (b), EFP weight (c), and EFP
adipocyte size (d). Effects on blood TG (e), TC (f), and HC levels (g). Effect on blood IL-6 (h),
corticosterone (CORT, (i)), and LPS levels (j), as assessed by ELISA. LF, LFD (8 weeks) alone; HF,
HFD (8 weeks) alone; LpBl, P111 and P121 mix (4 weeks) with HFD (8 weeks). n = 8. # p < 0.05 vs. LF
group. * p < 0.05 vs. HF group.

HFD feeding enhanced blood TG, TC, and HC levels. On the contrary, oral treat-
ment with LpBl decreased HFD-induced TG and TC, while the HFD-suppressed HC level
increased. LpBl also reduced HFD-induced blood IL-6, corticosterone, and LPS levels.

HFD feeding also increased liver weight, lipid droplet number, and elevated levels
of TG, TC, and HC in the liver (Figure 7 and Supplementary Figure S6). Conversely,
oral treatment with LpBl significantly lowered HFD-increased liver weight; lipid droplet
number; and TG, TC, and HC levels. Additionally, LpBl treatment attenuated HFD-induced
elevations in TNF-α, IL-1β, IL-6, and LPS levels and NF-κB activation.
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34.7% (F2,21 = 104.2, p < 0.001) of LFD-fed mice, respectively, and increased IT in the TST to 
175.4% (F2,21 = 71.99, p < 0.001) of LFD-fed mice, respectively (Figure 8 and Supplementary 
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of LFD-fed mice. Conversely, oral treatment with LpBl alleviated HFD-induced DCi-like 

Figure 7. Effect of LpBl (P111 and P121 (4:1) mix) on liver steatosis-related marker levels. Effects
on liver weight (a) and lipid droplet number (b). Effects on liver TG (c), TC (d), and HC (e). Effects
on liver TNF-α (f), IL-1β (g), IL-6 (h), IL-10 (i), and LPS levels (j), as assessed by ELISA. (k) Effects
on liver p-p65, p65. P-AMPK, AMPK, and β-actin levels, as assessed by immunoblotting. (l) Effects
on liver SIRT1, sREBP-1c, PGC-1a, LPL, Fiaf, G6PD, and FAS levels, as assessed by qPCR. LF, LFD
(8 weeks) alone; HF, HFD (8 weeks) alone; LpBl, P111 and P121 mix (4 weeks) with HFD (8 weeks).
n = 8. # p < 0.05 vs. LF group. * p < 0.05 vs. HF group.

Furthermore, LpBl upregulated HFD-decreased AMPK activation and PGC-1α, SIRT-
1, and Fiaf levels, while HFD-induced sREBP-1c, LPL, G6PD, and FAS expression levels
decreased.

HFD feeding decreased OT and OE in the EPMT to 44.7% (F2,21 = 87.09, p < 0.001) and
34.7% (F2,21 = 104.2, p < 0.001) of LFD-fed mice, respectively, and increased IT in the TST to
175.4% (F2,21 = 71.99, p < 0.001) of LFD-fed mice, respectively (Figure 8 and Supplementary
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Figure S7). HFD treatment also decreased SA in the YMT to 71.5% (F2,21 = 35.61, p < 0.001)
of LFD-fed mice. Conversely, oral treatment with LpBl alleviated HFD-induced DCi-like
behaviors: it recovered OT to 83.2% of LFD-fed mice, IT to 133.0% of LFD-fed mice, and SA
to 93.4% of LFD-fed mice.
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and P121 mix (4 weeks) with HFD (8 weeks). n = 8. # p < 0.05 vs. LF group. * p < 0.05 vs. HF group. 

3.5. Effect of LpBl on HFD-Induced Gut Inflammation and Dysbiosis in Mice 
HFD feeding resulted in colitis: it elevated myeloperoxidase, TNF-α, IL-1β, and IL-6 
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Figure 8. Effect of LpBl on HFD-induced DCi in mice. Effects on OT (a) in EPMT, IT in TST (b), and
SA in YMT (c). Effect on hippocampal BDNF (d), TNF-α (e), IL-1β (f), IL-6 (g), and IL-10 levels (h), as
assessed by ELISA. (i) Effect on hippocampal p-p65, p65, BDNF, and β-actin levels, as assessed by
immunoblotting. (j) Effect on hippocampal NF-κB+Iba1+ and BDNF+NeuN+ cell number, as assessed
by the confocal microscope. LF, LFD (8 weeks) alone; HF, HFD (8 weeks) alone; LpBl, P111 and
P121 mix (4 weeks) with HFD (8 weeks). n = 8. # p < 0.05 vs. LF group. * p < 0.05 vs. HF group.

Furthermore, LpBl treatment significantly lowered HFD-induced levels of TNF-α, IL-
1β, and IL-6; activation of NF-κB; and number of NF-κB-positive cells in the hippocampus.
Conversely, LpBl treatment enhanced HFD-suppressed levels of BDNF and the number of
BDNF-positive cells.

3.5. Effect of LpBl on HFD-Induced Gut Inflammation and Dysbiosis in Mice

HFD feeding resulted in colitis: it elevated myeloperoxidase, TNF-α, IL-1β, and IL-
6 levels, NF-κB activation (p-p65/p65), and NF-κB+CD11c+ cell number and decreased



Nutrients 2024, 16, 3810 13 of 18

IL-10 and SIRT1 levels and AMPK activation (p-AMPK/AMPK) in the colon (Figure 9 and
Supplementary Figure S8). However, LpBl treatment lowered HFD-induced myeloperox-
idase; IL-1β, IL-6, and TNF-α levels; NF-κB activation (p-p65/p65); and NF-κB-positive
cell population and enhanced HFD-suppressed IL-10 level and AMPK activation (p-
AMPK/AMPK).
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FR888536_f, and Bifidobacteriaceae, decreased. However, oral administration of LpBl par-
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Figure 9. Effect of LpBl on HFD-induced gut inflammation in mice. (a) Effect on colon length.
Effect on colonic myeloperoxidase (MPO, (b)), TNF-α (c), IL-1β (d), IL-6 (e), and IL-10 levels (f), as
assessed by ELISA. (g) Effect on colonic p-p65, p65, p-AMPK, AMPK, and β-actin levels, as assessed
by immunoblotting. (h) Effect on colonic SIRT1 level, as assessed by qPCR. (i) Effect on colonic
NF-κB+CD11c+ cell number. LF, LFD (8 weeks) alone; HF, HFD (8 weeks) alone; LpBl, P111, and
P121 mix (4 weeks) with HFD (8 weeks). n = 8. # p < 0.05 vs. LF group. * p < 0.05 vs. HF group.

We examined the impact of LpBl on HFD-induced gut dysbiosis in mice. HFD feeding also
fluctuated the composition of gut microbiota: it decreasedα-diversity (OUT richness) and shifted
β-diversity compared to that of LFD-fed mice (Figure 10 and Supplementary Tables S2 and S3).
However, oral administration of LpBl increased HFD-suppressed α-diversity and partially
shifted HFD-changed β-diversity to that of LFD-fed mice. In particular, HFD feeding
increased the populations of Firmicutes and Proteobacteria, including Streptococcaceae, Ru-
minococcaceae, Desulfovibrionaceae, Helicobacteriaceae, Coriobacteriaceae, AC160630_f, and Pep-
tococcaceae, while the populations of Bacteroidetes and Verrucomicrobia, including Muribacu-
laceae, Akkermansiaceae, Prevotellaceae, Porphyromonadaceae, FR888536_f, and Bifidobacteriaceae,
decreased. However, oral administration of LpBl partially shifted the HFD-changed gut mi-
crobiota composition to that of LFD-fed mice. In particular, LpBl decreased Streptococcaceae,
Helicobacteriacae, Peptococcaceae, and AC160630_f in mice with HFD-induced obesity, while
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Akkermansiaceae, Prevotellaceae, Lactobacillaceae, and Bifidobacteriaceae populations increased.
LpBl also decreased HFD-induced fecal LPS levels.
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At a family level, Streptococcaceae, Desulfovibrionaceae, and Moraxellaceae populations
had a positive correlation with body weight gain, while Muribacullaceae and Enterobacteri-
aceae populations were negatively correlated. Staphylococcaceae, Moracellaceae, Streptococ-
caceae, and Desulfovibrionaceae populations had a positive correlation with depression-like
behaviors (IT in TST), while Muribaculaceae, Enterobacteriaceae, Bifidobacteriaceae, Bifidobacte-
riaceae, and Morganellaceae populations were negatively correlated. Liver TNF-α expres-
sion level had a positive correlation with Moraxellaceae, Streptococcaceae, Corobacteriaceae,
and Desulfovibrionaceae populations, while Enterobacteriacae, Bifidobacteriaceae, Muribacu-
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laceae, and Morganellaceae populations were negatively correlated. Hippocampal BDNF
expression levels had a positive correlation with Bifidobacteriaceae, Muribaculaceae, and
Erysipelotrichaceae populations, while Peptococcaceae, Staphylococcaceae, and PAC001057_f
populations were negatively correlated. Liver SIRT1 expression level had a positive cor-
relation with Akkermansiaceae, Porphyromonadaceae, Enterobacteriaceae, Muribaculaceae, and
Bacteroidaceae populations, while Streptococcaceae, Desulfovibrionaceae, Helicobacteriaceae, and
Corobacteriaceae populations were negatively correlated.

4. Discussion

Excessive, chronic feeding of an HFD induces obesity, which is the representative risk
factor for heart disease, diabetes mellitus, and hepatic steatosis [24,25]. Furthermore, HFD
induces gut dysbiosis and microbiota LPS production in humans and mice, inducing gut
inflammation and membrane permeability [6,26]. Excessively exposed LPS also suppresses
AMPK activation and induces adipogenesis in the gut and liver and causes neuroinflam-
mation [7,27]. We also found that chronic feeding of an HFD induced body weight gain;
inflammation in the colon, liver, and hippocampus; and DCi-like behavior in mice.

In the present study, oral administration of P111, P121, or LpBL decreased HFD-
induced body weight gain and EFP weight. Furthermore, they enhanced HFD-suppressed
AMPK activation and SIRT expression in both the colon and liver. They also increased HFD-
suppressed PGC-1α and Fiaf expression and decreased HFD-induced sREBP-1c, LPL, G6PD,
and FAS expression. The feeding of an HFD decreases AMPK activation, which regulates
the expression of lipogenesis/lipolysis-involved metabolism-regulatory factors PGC1α,
sREBP-1c, Fiaf, LDL, G6PD, and SIRT-1 [28–31]. An HFD suppresses SIRT1 expression,
which increases PGC-1α expression and AMPK activation [28,32]. P111, P121, and LpBL
suppressed lipid accumulation and induced AMPK activation in palmitic acid-stimulated
HepG2 cells and suppressed adipogenesis in dexamethasone-stimulated 3T3 L1 cells.
These findings imply that P111, P121, or LpBL are able to suppress lipogenesis and induce
lipolysis in the liver and intestine by inducing AMPK activation and SIRT1 expression,
leading to the alleviation of liver steatosis. They also decreased HFD-induced liver and
EFP weights; liver lipid droplet number; and TC, TG, and HC levels in the liver and blood.
These observations suggest that these probiotics can have an effect on liver steatosis.

Oral administration of P111, P121, or LpBL decreased HFD-induced proinflammatory
cytokine expression, NF-κB activation (p-p65/065), and NF-κB-positive cell number in
the colon, liver, and brain. Furthermore, they lowered HFD-induced LPS levels in the
blood and feces. They also alleviated HFD-induced DCi-like behavior. LPS induces
NF-κB-mediated proinflammatory cytokine expression, which triggers adipogenesis and
hinders AMPK activation [4–6]. The AMPK activation inhibits systemic inflammation,
including neuroinflammation [8,9]. Inflammation-inducing stressors such as pathogens and
bacterial endotoxin induce DCi through systemic inflammation [10,11]. The combination of
P111 with P121 (LpBl) additively alleviated HF-induced body weight gain, liver and EFP
weights, liver steatosis, colitis, neuroinflammation, and DCi-like behavior. The efficacy of
LpBl was more potent than those of P111 and P121, but not significantly. These findings
suggest that P111 and/or P121 may suppress proinflammatory cytokine expression in the
gut, liver, and brain by suppressing LPS-linked NF-κB signal, leading to the alleviation of
colitis, hepatitis, neuroinflammation, and psychiatric disorders.

HFD feeding increased Proteobacteria, including Helicobacteriaceae, Firmicutes, Strepto-
coccaceae, and Staphylococcaceae populations, and bacterial LPS production. However, LpBl,
which most potently reduced HFD-induced body weight gain, suppressed HFD-induced
populations of Firmicutes and Proteobacteria, in particular, Streptococcaceae, Desulfovibri-
onaceae, Coriobacteriaceae, and Helicobacteriacae populations, which had a positive correlation
with body weight gain and a negative correlation with SIRT1 and BDNF expression levels
in the liver. LpBl reduced the HFD-induced LPS level in the feces, blood, and liver that
was positively correlated with TNF-α expression. The HFD-induced Streptococcaceae and
Helicobacteriaceae number had a positive correlation with IT in the TST, while SA in the
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YMT were negatively correlated. However, LpBl treatment increased HFD-suppressed
Bacteroidetes and Verrucomicrobiota, including Akkermansiaceae, Prevotellaceae, Bifidobacteri-
aceae, and Enterobacteriaceae populations, which had a negative correlation with DCi-like
behavior and a positive correlation with an increased hippocampal BDNF expression level.
Furthermore, LpBl suppressed HFD-induced corticosterone and IL-6 levels in the blood
and IL-6 levels in the colon, blood, liver, and hippocampus. HFD feeding suppresses the
Akkermansiaceae population in mice, in turn suppressing HFD-induced obesity and the
blood glucose level [33–35]. The probiotic L. plantarum KY1032 increases Akkermansiaceae
and Bifidobacteriaceae populations in volunteers with overweight [36]. Dietary fibers in-
crease gut Prevotellaceae and Bifidobacteriaceae populations and reduce body weight gain.
LPS increases DCi-like behavior and TNF-α and corticosterone expression [19]. Lactobacillus
reuteri NK33 alleviates depressive symptoms in mice by inhibiting gut dysbiosis and bacte-
rial LPS production. These results suggest that HFD can cause gut dysbiosis, which may be
closely associated with body weight gain, liver steatosis, gut inflammation, neuroinflam-
mation, and DCi-like behavior; and probiotics, in particular, LpBl, may mitigate obesity,
liver steatosis, colitis, and DCi by alleviating gut dysbiosis and bacterial LPS production.

Moreover, we discovered that chronic feeding of an HFD could cause gut dysbiosis,
along with body weight gain, which leads to DCi, and P111 and/or P121 could alleviate
body weight gain and DCi by regulating gut dysbiosis and AMPK activation. However, to
understand the action mechanism of P111 and/or P121, future research is needed to identify
their substances and to clarify the pathogenesis of overgrown fecal bacteria stemming from
an HFD.

5. Conclusions

P111, P121, and their mix LpBl can alleviate obesity, liver steatosis, DCi, and systemic
inflammation, including colitis, liver inflammation, and neuroinflammation, in vivo by
inducing AMPK activation and suppressing gut dysbiosis and LPS production.
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at the family level. Methods—Behavioral tasks and determination of LPS in the blood, liver, and
feces. Quantitative real-time polymerase chain reaction (qPCR). Gut microbiota composition analysis.
Immunofluorescence staining. References [37–40] are cited in the Supplementary Materials.
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