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Abstract: Background: The reintroduction of hemp production has resulted in increased consumption
of cannabidiol (CBD) products, particularly CBD oil, yet their effects on intestinal health are not
fully understood. Proper mitochondrial function and antioxidant defenses are vital for maintaining
the intestinal epithelial barrier. AMP-activated protein kinase (AMPK) and peroxisome proliferator-
activated receptor gamma coactivator (PGC)1α are key mediators of mitochondrial metabolism.
Methods & Results: Using Caco-2 cells, we found that CBD oil promoted AMPK phosphorylation,
upregulated differentiation markers, and enhanced PGC1α/SIRT3 mitochondrial signaling. CBD
oil reduced reactive oxygen species production and increased antioxidant enzymes. Moreover, CBD
oil also increased levels of citrate, malate, and succinate—key metabolites of the tricarboxylic acid
cycle—alongside upregulation of pyruvate dehydrogenase and isocitrate dehydrogenase 1. Similarly,
pure CBD induced metabolic and antioxidant signaling. Conclusions: CBD enhances mitochondrial
metabolic activity and antioxidant defense in Caco-2 cells, making it a promising candidate for
treating intestinal dysfunction.
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1. Introduction

The intestinal epithelium is a self-renewing, tightly regulated barrier essential for
nutrient absorption, tissue protection, and the coordination of immune responses [1].
Dysregulation of the epithelium, such as impaired barrier function, is characteristic of
gut diseases such as inflammatory bowel disease (IBD) [2]. The intestinal epithelium is
constantly renewed, depending on the proliferation and differentiation of stem cells residing
in crypts. Extensive oxidative metabolic transition and mitochondrial biogenesis occur
during epithelial differentiation [3]. Proper cellular energetics, orchestrated by functional
mitochondria, are vital for epithelial health. Mice with enhanced intestinal oxidative
phosphorylation and ATP production develop less severe colitis than their peers [4]. In
humans, patients with colitis exhibit decreased levels of mitochondrial respiratory chain
complexes compared to healthy counterparts [5].

Mitochondria are major producers of free radicals, and their dysfunction results in
increased oxidative damage that contributes to the progression of pathological intestinal
conditions [6]. The inability of the body to balance the production of free radicals, such as
reactive oxygen species (ROS), with appropriate defense mechanisms results in damaging
oxidative stress, which plays a role in the pathology of numerous conditions including
IBD [7]. Managing ROS is an intricate process vital for maintaining redox homeostasis. The
body employs various defenses to control levels of oxidative stress, including antioxidative
enzymes, whose levels can be influenced by lifestyle factors and aging [8]. Patients with
gastrointestinal diseases exhibit both elevated levels of ROS and decreased activity of
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antioxidative enzymes [9]. Inhibition of these mediators increases ROS levels and promotes
inflammasome activation [10]. Thus, it is important to identify strategies to maintain
adequate antioxidative activity.

NF-E2-related factor 2 (NRF2) is an important transcription factor that regulates the
expression of antioxidant genes and controls ROS levels in the intestines [11]. NRF2 is
regulated by Kelch-like ECH-associated protein 1 (KEAP1), and it binds to the antioxidant
response element (ARE) to promote the expression of enzymes such as NAD(P)H quinone
dehydrogenase 1 (NQO1) and heme oxygenase 1 (HO-1) [12]. In the canonical pathway
of NRF2 activation, oxidative stress decreases the ability of KEAP1 to sequester NRF2,
allowing NRF2 to translocate to the nucleus and activate ARE-driven gene expression [13].
Alternatively, the scaffold protein p62 plays a role in the noncanonical activation of NRF2 by
disrupting the interaction between KEAP1 and NRF2 [14,15]. Several upstream pathways
regulate NRF2/HO-1, including phosphoinositide 3-kinase (PI3K)/AKT [16], p38 mitogen-
activated protein kinase (MAPK) [17], and AMP-activated protein kinase (AMPK) [18].
AMPK also regulates intestinal differentiation and barrier function through the activation
of caudal type homeobox 2 (CDX2) [19], illustrating the interconnection between metabolic
and antioxidant pathways, which is essential for maintaining intestinal homeostasis.

Cannabidiol (CBD) is a non-psychoactive cannabinoid found in cannabis that can reach
the gut depending on the method of delivery [20,21]. In the human colorectal carcinoma
cell line Caco-2, CBD reduces ROS production and improves transepithelial resistance
upon exposure to H2O2 or H2O2/Fe2+ [22,23]. We previously demonstrated that mice with
dextran sodium sulfate (DSS)-induced colitis that received 200 mg kg−1 CBD in their diet
for 5 weeks showed reduced inflammation, associated with increased phosphorylation and
activation of AMPK [24].

Several studies showed the effects of CBD in improving mitochondrial energetics.
Hippocampal neurons treated with 5 µM CBD exhibit greater mitochondrial respiration
compared to untreated neurons [25]. In mice, intraperitoneal injections of CBD ameliorate
the negative effects of doxorubicin on mitochondrial biogenesis in the myocardium [26].
The effect of CBD on intestinal mitochondrial energetics and signaling remains to be
elucidated. This study used human epithelial Caco-2 cells to investigate the effects of
CBD on the antioxidant and metabolic activities of colon cells. We hypothesized that CBD
treatment upregulates the phosphorylation of AMPK in Caco-2 cells, which is accompanied
by enhanced mitochondrial energetics and the upregulation of antioxidant enzymes.

2. Materials and Methods
2.1. Cannabidiol

A commercial full-spectrum CBD hemp oil was purchased directly from the manu-
facturer (Nutra Pure LLC, Vancouver, WA, USA). As per the test results provided by the
producer, analysis by a published method [27] determined the CBD content in the oil to
be 18.3 mg/mL, while other cannabinoids were below the limit of quantification. A CBD
stock solution (10 mM) was prepared by diluting the oil in dimethylsulfoxide (DMSO)
(VWR, Radnor, PA, USA). Additionally, cannabidiol (≥98%) was purchased from Cayman
Chemical (Ann Arbor, MI, USA) and dissolved in DMSO to prepare a stock solution at
10 mM. All CBD stock solutions were stored at −20 ◦C.

2.2. Cell Line

Caco-2 cells were obtained from the American Type Culture Collection (Manassas, VA,
USA). The cells were routinely cultured in Dulbecco’s modified Eagle medium (DMEM) (Sigma;
St. Louis, MO, USA) supplemented with 10% fetal bovine serum (Sigma), 100 units/mL of
penicillin G, and 100 µg/mL of streptomycin (Sigma) at 37 ◦C with 5% CO2. Cells were seeded
into 12-well plates for analyses unless stated otherwise. Following overnight incubation, cells
were treated with or without 10µM CBD for 1, 2, or 4 days.
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2.3. Intracellular Reactive Oxygen Species (ROS) Measurement

Levels of intracellular ROS were evaluated as previously described [28]. In brief,
Caco-2 cells were seeded into 96-well plates and cultured in complete DMEM overnight,
followed by incubation with media containing the cell-permeable fluorescent probe, 2,7-
dichlorofluorescein diacetate (H2DCFDA) (MilliporeSigma, Burlington, MA, USA), for
45 min. After replacing the media, the cells were treated with or without CBD and with
or without H2O2 for 24 h. Fluorescence was measured using a BioTek Synergy H1 mi-
croplate reader (Agilent Technologies, Palo Alto, CA, USA) with an excitation wavelength
of 485 nm and an emission wavelength of 530 nm. The fluorescence of H2DCFDAobtained
from the plate reader was reported in arbitrary units and normalized to the values of the
untreated controls.

2.4. Immunoblotting

Proteins were extracted from Caco-2 cells, separated by SDS-PAGE gels, and trans-
ferred onto nitrocellulose membrane as described previously [29,30]. Antibodies against
acetyl-CoA carboxylase (ACC), AMPK, CDX2, catalase, HO-1, isocitrate dehydrogenase
1 (IDH1), p62, p-ACC, p-AMPK, pyruvate dehydrogenase (PDH), sirtuin3 (SIRT3), and su-
peroxide dismutase (SOD)2 were purchased from Cell Signaling Technology (Danvers, MA,
USA). The antibody for claudin-2 was purchased from Thermo Fisher Scientific (Waltham,
MA, USA), while the antibody for proliferator-activated receptor gamma coactivator 1 al-
pha (PGC1α) was obtained from ProteinTech (Rosemont, IL, USA). The antibody for SOD1
was purchased from Santa Cruz Biotechnology (Dallas, TX, USA). Horseradish peroxidase-
coupled anti-rabbit or anti-mouse IgGs were used for visualization by chemiluminescence.
Band density quantification was normalized to the signal of β-tubulin. Data are presented
as relative to the control group.

2.5. Quantitative Reverse Transcription PCR (qRT-PCR) Analysis

Total mRNA was extracted from Caco-2 cells or animal tissue using Trizol Reagent
(Thermo Fisher) per the manufacturer’s instructions. Reverse transcription was completed
using an iScript™ kit (Bio-Rad, Hercules, CA, USA). The produced cDNA served as
templates for qRT-PCR analysis, using SYBR Green Master Mix (Bio-Rad) and a CFX96™
Real-Time PCR Detection System (Bio-Rad). The primers used for qRT-PCR are listed in
Supplementary Materials Table S1, with 18S serving as the housekeeping gene.

2.6. Tricarboxylic Acid Cycle Metabolite Analysis by GC-MS

Caco-2 cells were treated with or without CBD for 2 days. Following the treatment
period, the cells were collected and processed for analysis using an Agilent 7890B gas
chromatography system equipped with a 5977A single-quadrupole mass spectrometer
and a 7693 autosampler system (Agilent Technologies), following previously established
procedures [31]. The column utilized was an HP-5 ms column (30 m × 250 µM i.d., 0.25 µM
film thickness; Agilent Technologies). Ribitol, purchased from Sigma, served as the internal
standard. Citrate and malate standards were purchased from Sigma. The succinate standard
was purchased from ThermoFisher Scientific. The relative abundances of metabolites were
determined by calculating the area ratios of the target peaks to the ribitol (internal standard)
peaks.

2.7. Statistical Analysis

Statistical analysis was performed as previously described using GraphPad Prism
7 [31]. The data are presented relative to the control group as mean ± SEM (standard
error of the mean). Treatments were compared using either a two-tailed Student’s t-test or
one-way ANOVA. Significance was determined using a p-value ≤ 0.05.
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3. Results
3.1. CBD Oil Induces Phosphorylation of AMPK and Upregulates Downstream Targets

Incubation with CBD oil increased the phosphorylation of AMPK compared to controls
(Figure 1A). CBD oil treatment also enhanced the phosphorylation of ACC, a downstream
target of AMPK (Figure 1A). Moreover, at both the protein and mRNA levels, CBD oil
exhibited a promotive effect on CDX2, another downstream target of AMPK and the
key transcription factor governing epithelial differentiation (Figure 1B,C). Additionally,
exposure to CBD oil decreased the protein level of claudin-2 and increased the mRNA level
of zonula occludens-1 (ZO-1), indicating positive effects on epithelial differentiation and
barrier function (Figure 1B,C).
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Figure 1. Cannabidiol oil induces AMP-activated protein kinase (AMPK) phosphorylation and
upregulates downstream targets overseeing epithelial differentiation and barrier function. (A) Protein
contents of p-AMPK, t-AMPK, p- acetyl-CoA carboxylase (ACC), and t-ACC. (B) The protein content
of caudal type homeobox 2 (CDX2) and claudin-2. (C) mRNA expression of CDX2 and zonula
occludens-1 (ZO-1). CON: untreated Caco-2 cells; CBD: Caco-2 cells treated with 10 µM cannabidiol
(CBD) oil. Mean ± SEM, n = 4, #: p ≤ 0.10; *: p ≤ 0.05; **: p ≤ 0.01.

3.2. CBD Oil Treatment Promotes Mitochondrial Energetics

CBD oil treatment increased protein contents of the transcription factor Peroxisome
proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) and the deacetylase
enzyme, Sirtuin 3 (SIRT3) (Figure 2A). Treatment with CBD oil also upregulated the mRNA
expression of the mitochondrially encoded NADH-ubiquinone oxidoreductase core subunit
1 (mtND1), mtND4, and cytochrome b (CYTB) (Figure 2B). Additionally, CBD oil promoted
oxidative phosphorylation in Caco-2 cells. GC-MS analysis of key tricarboxylic acid (TCA)
cycle metabolites revealed elevated contents of citrate, malate, and succinate in CBD-treated
cells (Figure 3A). This effect was accompanied by increased protein contents of isocitrate
dehydrogenase 1 (IDH1), an enzyme in the TCA cycle responsible for the conversion of
isocitrate to alpha-ketoglutarate (αKG), and pyruvate dehydrogenase (PDH), the enzyme
responsible for directing pyruvate to oxidative phosphorylation (Figure 3B).
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Figure 2. Cannabidiol oil enhances mitochondrial signaling and activity. (A) Protein contents of
Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) and sirtuin 3 (SIRT3).
(B) mRNA expression of cytochrome b (CYTB), mitochondrially encoded NADH-ubiquinone oxi-
doreductase core subunit 1 (mtND1), mtND4, and mtND6. CON: untreated Caco-2 cells; CBD: Caco-2
cells treated with 10 µM cannabidiol (CBD) oil. Mean ± SEM, n = 4, #: p ≤ 0.10; *: p ≤ 0.05.
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Figure 3. Cannabidiol oil alters tricarboxylic acid (TCA) cycle activity and metabolite levels.
(A) Levels of TCA cycle metabolites obtained from gas chromatography/mass spectrometry and
representative peaks for citrate, malate, and succinate. (B) Protein contents of isocitrate dehydroge-
nase 1 (IDH1) and pyruvate dehydrogenase (PDH). CON: untreated Caco-2 cells; CBD: Caco-2 cells
treated with 10 µM cannabidiol (CBD) oil. Mean ± SEM, n = 3–4, *: p ≤ 0.05; **: p ≤ 0.01.

3.3. CBD Oil Suppresses ROS Formation and Upregulates Antioxidants

Treating Caco-2 cells with 10 µM CBD oil lowered levels of ROS with or without
the H2O2 challenge (Figure 4A). CBD oil also induced the expression of the antioxidant
enzyme, HO-1 (Figure 4B). Moreover, the protein contents of catalase SOD1, and to a lesser
extent SOD2, were increased (Figure 4B). At the mRNA level, CBD oil upregulated heme
oxygenase 1 gene (HMOX1) and SOD2 expression (Figure 4C).
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Figure 4. Cannabidiol oil mitigates reactive oxygen species (ROS) production and enhances antiox-
idant expression. (A) ROS production measured with H2DCFDA. (B) mRNA expression of heme
oxygenase 1 gene (HMOX1) and superoxide dismutase 2 (SOD2). (C) Protein contents of catalase,
heme oxygenase 1 (HO-1), SOD1, and SOD2. CON: untreated Caco-2 cells; CBD: Caco-2 cells treated
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3.4. Exposure to CBD Oil Upregulates NRF2 Signaling Pathway

Consistent with the upregulation of HO-1 protein and mRNA (HMOX1) levels in CBD
oil-treated cells, the mRNA expression of NRF2 was also elevated (Figure 5A). Accordingly,
the mRNA level of NQO1, a target gene of NRF2 encoding the detoxification enzyme,
was increased in CBD oil-treated cells. The content of p62 was also upregulated in CBD
oil-treated cells (Figure 5B).
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Caco-2 cells; CBD: Caco-2 cells treated with 10 µM cannabidiol (CBD) oil. Mean ± SEM, n = 4,
*: p ≤ 0.05.

3.5. Pure CBD Promotes Signaling Pathways Similarly to CBD Oil

While CBD is the major constituent in commercial CBD oils, it is common for them to
contain other cannabinoids at much smaller levels. To confirm that CBD exerts positive
effects on AMPK and related signaling, Caco-2 cells were further treated with 10 µM
pure CBD compound. Consistently, pure CBD increased phosphorylation of AMPK and
upregulated SIRT3 (Figure 6A). Pure CBD exerted beneficial effects on antioxidant signaling,
elevating protein levels of HO-1 and catalase (Figure 6B), as well as the mRNA expression of
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NQO1 and SOD2 (Figure 6C). Together these findings show that CBD targets mitochondrial
and antioxidant signaling to improve intestinal epithelial health.
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Figure 6. Pure cannabidiol induces phosphorylation of AMPK and upregulates both mitochondrial
and antioxidant signaling. (A) Protein contents of p- AMP-activated protein kinase (AMPK), t-AMPK,
and sirtuin3 (SIRT3). (B) Protein contents of catalase and heme oxygenase 1 (HO-1). (C) mRNA
expression of NAD(P)H quinone dehydrogenase 1 (NQO1) and superoxide dismutase 2 (SOD2).
CON: untreated Caco-2 cells; CBD: Caco-2 cells treated with 10 µM cannabidiol (CBD). Mean ± SEM,
n = 4, *: p ≤ 0.05; **: p ≤ 0.01.

4. Discussion

The average daily intake of CBD among adults who regularly consume CBD-containing
products is 50.3 ± 40.7 mg [32]. CBD exhibits poor bioavailability, hampered by its low
water solubility [33], and approximately one-third of orally ingested CBD is excreted in
the feces [34]. Pharmacokinetic studies with humans have largely focused on serum levels
following oral intake. After ingesting an oral capsule containing 10 mg CBD, the maximum
concentration measured in serum was 2.47 ng/mL (7.85 nM) [35]. In a different study, a
higher oral dose of 200 mg CBD resulted in a maximum serum concentration of 148 ng/mL
(470.63 nM) [36]. Multiple factors affect the oral absorption of CBD, including the presence
of lipids, which enhances CBD absorption [35,37]. Following oral delivery in rats, CBD
levels detected in intestinal lymph far exceeded serum levels, being 250-fold greater [37],
suggesting the importance of understanding its effects on gut epithelial health. If the same
holds following oral intake in humans, micromolar levels of CBD may be obtainable in
the intestines.

Among CBD product consumers, drops are the most commonly used type of prod-
uct [38]. In this experiment, we employed commercially available CBD oil to best reflect
exposure to the average consumers. This CBD oil utilized hempseed oil as a carrier, which
contains essential fatty acids and bioactive tocopherols [39]. To account for this, we also
utilized pure CBD in the present study. Given that concentration and dosage instructions
differ between CBD products, the use of a single treatment condition is a limitation of the
present study.
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The present study employed the Caco-2 cell line to model the intestinal epithelium of
the colon. The cultured cells mimic epithelial differentiation upon achieving confluence
which dictated our choice of treatment times [19]. In Caco-2 cell monolayers, 10 µM CBD
treatment potentiated the recovery of transepithelial resistance following a challenge with
ethylenediaminetetraacetic acid [40]. CBD treatment also resulted in elevated mRNA
expression of ZO-1 [40]. In the present study, CBD oil treatment similarly increased the
mRNA expression of ZO-1. In agreement with our previous observations in mice with DSS-
induced colitis, CBD oil and pure CBD increased the phosphorylation of AMPK in Caco-2
cells. AMPK, a regulator of energy homeostasis, plays a key role in the homeostasis of the
intestinal epithelium [19,41]. Considering that AMPK activation upregulates differentiation
transcription factor CDX2 at both the mRNA and protein levels [42], the ability of both
CBD to activate AMPK and upregulate its downstream targets holds promise as a means to
strengthen intestinal epithelial barrier function.

Proper differentiation relies on mitochondrial function, characterized by increased
oxidative phosphorylation and mitochondrial biogenesis as epithelial cells differentiate
and migrate away from the crypts [43,44]. In intestinal epithelial cells, the proinflammatory
signal, tumor necrosis factor-alpha (TNF-α) induces mitochondrial dysfunction, reducing
oxygen consumption and mitochondrial membrane potential [45]. It also decreases the
expression of alkaline phosphatase, a marker for intestinal epithelial differentiation [46].
CBD oil treatment upregulated the protein contents of PGC1α and SIRT3, a deacetylase
controlling mitochondrial quantity, metabolism, and antioxidant activity [47,48].

Furthermore, CBD oil upregulated the TCA cycle enzyme IDH1, responsible for syn-
thesizing α-ketoglutarate, a vital cofactor for epigenetic modifications that is required for
the proper differentiation of epithelial cells [49,50]. PDH was also increased in CBD-treated
cells. Impairment of the PDH in cancer cells favors greater glycolysis at the expense of mi-
tochondrial oxidation [51]. Changes to TCA cycle enzyme protein levels were accompanied
by changes in metabolite levels. CBD treatment increased the intracellular content of citrate,
malate, and succinate in Caco-2 cells. In pigs, succinate increased epithelial tight junction
protein content [52]. Together, our findings suggest that CBD enhances mitochondrial
metabolic function in colon epithelial cells, which may contribute to its beneficial effects.

CBD oil treatment ameliorated ROS production in Caco-2 cells both in the presence or
absence of H2O2. This effect was accompanied by the upregulation of antioxidant enzymes
including HO-1. Similar observations of NRF2 and HO-1 induction have been reported in
keratinocytes [53] and endothelial cells [54] treated with 1 and 6 µM CBD, respectively. The
scaffold protein p62 can facilitate the degradation of KEAP1, impeding its interactions with
NRF2 [55], and also participates in a positive feedback loop with NRF2 [56]. We observed
the upregulation of p62 in CBD oil-treated Caco-2 cells. Given its role in regulating the
expression of important antioxidants and detoxification enzymes, proper NRF2 expression
is crucial for intestinal health. Mice deficient in NRF2 showed increased susceptibility to
colitis induced by DSS [57]. Conversely, the activation of NRF2 and the upregulation of its
antioxidant signaling pathways in mice mitigated DSS-induced disease severity [58]. In
DSS-induced colitis, HO-1 is negatively regulated by transcription factor BTB domain and
CNC homology 1 (BACH1), and mice deficient in BACH1 display elevated levels of colonic
HO-1 and decreased disease activity [59]. Co-treatment with ZnPP, an inhibitor of HO-1,
negated the beneficial effects of BACH1 deficiency on disease activity [59]. Promoting
proper expression of HO-1 and other antioxidant defenses through phytochemicals such as
CBD may serve as an approach for combatting intestinal dysfunction.

5. Conclusions

As the burden generated by IBD persists, multiple prevention and treatment strategies
are needed. The beneficial effects of plant-derived bioactive compounds, such as resveratrol,
which ameliorate disease activity of IBD in experimental animal models of colitis, are par-
tially through the promotion of antioxidant activity [60]. Our findings showcase the ability
of CBD to combat oxidative stress in colonic epithelial cells, shedding light on potential



Nutrients 2024, 16, 3843 9 of 12

mechanisms behind these effects such as induction of NRF2/HO-1 signaling. Additionally,
our study reveals that CBD treatment impacts mitochondrial energetics and related signal-
ing, inducing the phosphorylation of AMPK and the upregulation of PGC1α and SIRT3.
Given that the maintenance of the intestinal epithelium is an energy-demanding process
reliant on intricate regulation of mitochondrial activity, our findings help understand the
potential of CBD to safeguard against intestinal epithelial dysregulation.
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