Omega-3 Supplementation and Nutritional Status in Patients with Pancreatic Neoplasms: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Search Strategy
2.3. Eligibility
2.4. Data Extraction
2.5. Methodological Assessment of the Studies
2.6. Data Synthesis
3. Results
3.1. Study Selection
3.2. Characterization of the Studies
3.3. Omega-3 Supplementation and Nutritional Status
3.4. Quality Assessment Findings
4. Discussion
4.1. Omega-3 Supplementation
4.2. Nutritional Status
4.3. Study Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Ben, Q.; Xu, M.; Ning, X.; Liu, J.; Hong, S.; Huang, W.; Zhang, H.; Li, Z. Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies. Eur. J. Cancer 2011, 47, 1928–1937. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Greenwood, D.C.; Chan, D.S.; Vieira, R.; Vieira, A.R.; Rosenblatt, D.N.; Cade, J.E.; Burley, V.J.; Norat, T. Body mass index, abdominal fatness and pancreatic cancer risk: A systematic review and non-linear dose–response meta-analysis of prospective studies. Ann. Oncol. 2012, 23, 843–852. [Google Scholar] [CrossRef]
- Wang, Y.T.; Gou, Y.W.; Jin, W.W.; Xiao, M.; Fang, H.Y. Association between alcohol intake and the risk of pancreatic cancer: A dose–response meta-analysis of cohort studies. BMC Cancer 2016, 16, 212. [Google Scholar] [CrossRef]
- Iodice, S.; Gandini, S.; Maisonneuve, P.; Lowenfels, A.B. Tobacco and the risk of pancreatic cancer: A review and meta-analysis. Langenbeck’s Arch. Surg. 2008, 393, 535–545. [Google Scholar] [CrossRef]
- Brune, K.A.; Lau, B.; Palmisano, E.; Canto, M.; Goggins, M.G.; Hruban, R.H.; Klein, A.P. Importance of age of onset in pancreatic cancer kindreds. J. Natl. Cancer Inst. 2010, 102, 119–126. [Google Scholar] [CrossRef]
- Duell, E.J.; Lucenteforte, E.; Olson, S.H.; Bracci, P.M.; Li, D.; Risch, H.A.; Silverman, D.T.; Ji, B.T.; Gallinger, S.; Holly, E.A.; et al. Pancreatitis and pancreatic cancer risk: A pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann. Oncol. 2012, 23, 2964–2970. [Google Scholar] [CrossRef]
- Klein, A.P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 493–502. [Google Scholar] [CrossRef]
- Klein, A.P.; Hruban, R.H.; Brune, K.A.; Petersen, G.M.; Goggins, M. Familial pancreatic cancer. Cancer J. 2001, 7, 266–273. [Google Scholar]
- Couch, F.J.; Johnson, M.R.; Rabe, K.G.; Brune, K.; De Andrade, M.; Goggins, M.; Rothenmund, H.; Gallinger, S.; Klein, A.; Petersen, G.M.; et al. The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiol. Biomark. Prev. 2007, 16, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Su, G.H.; Hruban, R.H.; Bansal, R.K.; Bova, G.S.; Tang, D.J.; Shekher, M.C.; Westerman, A.M.; Entius, M.M.; Goggins, M.; Yeo, C.J.; et al. Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers. Am. J. Pathol. 1999, 154, 1835–1840. [Google Scholar] [CrossRef] [PubMed]
- Olson, S.H.; Xu, Y.; Herzog, K.; Saldia, A.; DeFilippis, E.M.; Li, P.; Allen, P.J.; O’Reilly, E.M.; Kurtz, R.C. Weight loss, diabetes, fatigue, and depression preceding pancreatic cancer. Pancreas 2016, 45, 986. [Google Scholar] [CrossRef] [PubMed]
- Gilliland, T.M.; Villafane-Ferriol, N.; Shah, K.P.; Shah, R.M.; Tran Cao, H.S.; Massarweh, N.N.; Silberfein, E.J.; Choi, E.A.; Hsu, C.; McElhany, A.L.; et al. Nutritional and metabolic derangements in pancreatic cancer and pancreatic resection. Nutrients 2017, 9, 243. [Google Scholar] [CrossRef]
- Evans, W.J.; Morley, J.E.; Argilés, J.; Bales, C.; Baracos, V.; Guttridge, D.; Jatoi, A.; Kalantar-Zadeh, K.; Lochs, H.; Mantovani, G.; et al. Cachexia: A new definition. Clin. Nutr. 2008, 27, 793–799. [Google Scholar] [CrossRef]
- Muscaritoli, M.; Molfino, A.; Gioia, G.; Laviano, A.; Rossi Fanelli, F. The “parallel pathway”: A novel nutritional and metabolic approach to cancer patients. Intern. Emerg. Med. 2011, 6, 105–112. [Google Scholar] [CrossRef]
- Muscaritoli, M.; Arends, J.; Aapro, M. From guidelines to clinical practice: A roadmap for oncologists for nutrition therapy for cancer patients. Ther. Adv. Med. Oncol. 2019, 11, 1758835919880084. [Google Scholar] [CrossRef]
- Ravasco, P. Nutrition in cancer patients. J. Clin. Med. 2019, 8, 1211. [Google Scholar] [CrossRef]
- Prado, C.M.; Purcell, S.A.; Laviano, A. Nutrition interventions to treat low muscle mass in cancer. J. Cachexia Sarcopenia Muscle 2020, 11, 366–380. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Arends, J.; Strasser, F.; Gonella, S.; Solheim, T.S.; Madeddu, C.; Ravasco, P.; Buonaccorso, L.; De Van Der Schueren, M.A.; Baldwin, C.; Chasen, M.; et al. Cancer cachexia in adult patients: ESMO Clinical Practice Guidelines. ESMO Open 2021, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN practical guideline: Clinical Nutrition in cancer. Clin. Nutr. 2021, 40, 2898–2913. [Google Scholar] [CrossRef] [PubMed]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Mota, A.; Prado, C.; Waitzberg, D.L.; de Oliveira, G.S.; Ozorio, G.A.; de Fatima Gaui, M.; de Souza, M.T.; De Podestá, O.G.; Goastico, S.S.; et al. Guia de Nutrição para o Oncologista. 2021. Available online: https://app.sboc.org.br/wp-content/uploads/2022/09/Ig-Guia-Nutricional.pdf (accessed on 10 August 2024).
- Tamai, M.; Shimada, T.; Hiramatsu, N.; Hayakawa, K.; Okamura, M.; Tagawa, Y.; Takahashi, S.; Nakajima, S.; Yao, J.; Kitamura, M. Selective deletion of adipocytes, but not preadipocytes, by TNF-α through C/EBP-and PPARγ-mediated suppression of NF-κB. Lab. Investig. 2010, 90, 1385–1395. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes. Nutrients 2010, 2, 355–374. [Google Scholar] [CrossRef]
- Cheng, M.; Zhang, S.; Ning, C.; Huo, Q. Omega-3 Fatty Acids Supplementation Improve Nutritional Status and Inflammatory Response in Patients with Lung Cancer: A Randomized Clinical Trial. Front. Nutr. 2021, 8, 686752. [Google Scholar] [CrossRef]
- Tan, S.E.; Abdul Satar, N.F.; Majid, H.A. Effects of immunonutrition in head and neck cancer patients undergoing cancer treatment–a systematic review. Front. Nutr. 2022, 9, 821924. [Google Scholar] [CrossRef]
- Yu, J.; Liu, L.; Zhang, Y.; Wei, J.; Yang, F. Effects of omega-3 fatty acids on patients undergoing surgery for gastrointestinal malignancy: A systematic review and meta-analysis. BMC Cancer 2017, 17, 271. [Google Scholar] [CrossRef]
- Aucoin, M.; Cooley, K.; Knee, C.; Fritz, H.; Balneaves, L.G.; Breau, R.; Fergusson, D.; Skidmore, B.; Wong, R.; Seely, D. Fish-derived omega-3 fatty acids and prostate cancer: A systematic review. Integr. Cancer Ther. 2017, 16, 32–62. [Google Scholar] [CrossRef]
- Tao, X.; Zhou, Q.; Rao, Z. Efficacy of ω-3 polyunsaturated fatty acids in patients with lung cancer undergoing radiotherapy and chemotherapy: A meta-analysis. Int. J. Clin. Pract. 2022, 2022, 6564466. [Google Scholar] [CrossRef]
- Mahan, L.K.; Escott-Stump, S.; Raymond, J.L. Krause: Alimentos, Nutrição e Dietoterapia, 14th ed.; Elsevier: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- Davidson, W.; Ash, S.; Capra, S.; Bauer, J.; Cancer Cachexia Study Group. Weight stabilisation is associated with improved survival duration and quality of life in unresectable pancreatic cancer. Clin. Nutr. 2004, 23, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Ihmaidat, H. Nutritional effects of oesophageal, gastric and pancreatic carcinoma. Eur. J. Surg. Oncol. (EJSO) 2003, 29, 634–643. [Google Scholar] [CrossRef]
- Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.J.H.W. Cochrane Handbook for Systematic Reviews of Interventions Version 6.3; Wiley: Hoboken, NJ, USA, 2022; Available online: www.training.cochrane.org/handbook (accessed on 15 August 2024).
- Pires, L.B.C.; Salaroli, L.B.; Lopes-Júnior, L.C. Effect of omega-3 supplementation on the nutritional status of patients with pancreatic cancer: A protocol for systematic review of clinical trials. Medicine 2022, 101, e31262. [Google Scholar] [CrossRef]
- Lopes-Júnior, L.C.; Pessanha, R.M.; Bomfim, E.; de Lima, R.A.G. Cost-effectiveness of Home Care Services versus hospital care for pediatric patients worldwide: A protocol for systematic review and meta-analysis. Medicine 2022, 101, e30993. [Google Scholar] [CrossRef]
- Lopes-Junior, L.C.; Rosa, M.A.D.R.D.P.; de Lima, R.A.G. Psychological and psychiatric outcomes following PICU admission: A systematic review of cohort studies. Pediatr. Crit. Care Med. 2018, 19, e58–e67. [Google Scholar] [CrossRef]
- Lopes-Júnior, L.C.; Rosa, G.S.; Pessanha, R.M.; Schuab, S.I.P.D.C.; Nunes, K.Z.; Amorim, M.H.C. Efficacy of the complementary therapies in the management of cancer pain in palliative care: A systematic review. Rev. Lat.-Am. Enferm. 2020, 28, e3377. [Google Scholar] [CrossRef]
- Lopes-Júnior, L.C.; Bomfim, E.; Olson, K.; Neves, E.T.; Silveira, D.S.; Nunes, M.D.; Nascimento, L.C.; Pereira-da-Silva, G.; Lima, R.A. Effectiveness of hospital clowns for symptom management in paediatrics: Systematic review of randomised and non-randomised controlled trials. BMJ 2020, 371, m4290. [Google Scholar] [CrossRef]
- Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 2014, 14, 579. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Prisma-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Carlos Lopes-Júnior, L.; Cruz, L.A.P.D.; Leopoldo, V.C.; Campos, F.R.D.; Almeida, A.M.D.; Silveira, R.C.D.C.P. Effectiveness of traditional Chinese acupuncture versus sham acupuncture: A systematic review. Rev. Lat.-Am. Enferm. 2016, 24, e2762. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Júnior, L.C.; Bomfim, E.D.O.; Nascimento, L.C.; Nunes, M.D.R.; Pereira-da-Silva, G.; Lima, R.A.G.D. Non-pharmacological interventions to manage fatigue and psychological stress in children and adolescents with cancer: An integrative review. Eur. J. Cancer Care 2016, 25, 921–935. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Júnior, L.C.; Urbano, I.R.; Schuab, S.I.P.D.C.; Pessanha, R.M.; Rosa, G.S.; Lima, R.A.G.D. Effectiveness of complementary therapies for the management of symptom clusters in palliative care in pediatric oncology: A systematic review. Rev. Esc. Enferm. USP 2021, 55, 03709. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Júnior, L.C.; Siqueira, P.C.; Maciel, E.L.N. School reopening and risks accelerating the COVID-19 pandemic: A systematic review and meta-analysis protocol. PLoS ONE 2021, 16, e0260189. [Google Scholar] [CrossRef]
- Nunes, M.D.; Bomfim, E.; Olson, K.; Lopes-Junior, L.C.; Silva-Rodrigues, F.M.; Garcia de Lima, R.A.; Nascimento, L.C. Interventions minimizing fatigue in children/adolescents with cancer: An integrative review. J. Child Health Care 2018, 22, 186–204. [Google Scholar] [CrossRef]
- Gonçalves, C.A.; Pereira-da-Silva, G.; Silveira, R.C.C.P.; Mayer, P.C.M.; Zilly, A.; Lopes-Júnior, L.C. Safety, Efficacy, and Immunogenicity of Therapeutic Vaccines for Patients with High-Grade Cervical Intraepithelial Neoplasia (CIN 2/3) Associated with Human Papillomavirus: A Systematic Review. Cancers 2024, 16, 672. [Google Scholar] [CrossRef]
- da Silva Junior, F.J.; de Souza Monteiro, C.F.; Costa, A.P.; Campos, L.R.; Miranda, P.I.; de Souza Monteiro, T.A.; Lima, R.A.; Lopes-Junior, L.C. Impact of COVID-19 pandemic on mental health of young people and adults: A systematic review protocol of observational studies. BMJ Open 2020, 10, e039426. [Google Scholar] [CrossRef]
- Pessanha, R.M.; Schuab, S.I.P.D.C.; Nunes, K.Z.; Lopes-Júnior, L.C. Use of family history taking for hereditary neoplastic syndromes screening in primary health care: A systematic review protocol. PLoS ONE 2022, 17, e0271286. [Google Scholar] [CrossRef]
- Oxford Centre for Evidence-Based Medicine; Levels of Evidence Working Group. The Oxford 2011 Levels of Evidence; Oxford Centre for Evidence-Based Medicine (CEBM): Oxford, UK, 2011. [Google Scholar]
- Sterne, J.A.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- McKenzie, J.E.; Brennan, S.E. Chapter 12. Synthesizing and presenting findings using other methods. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J., Thomas, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2021. [Google Scholar]
- Popay, J.; Roberts, H.; Sowden, A.; Petticrew, M.; Arai, L.; Rodgers, M.; Britten, N. Guidance on the Conduct of Narrative Synthesis in Systematic Reviews: ESRC Methods Programme; University of Lancaster: Lancaster, UK, 2006. [Google Scholar]
- Ashida, R.; Okamura, Y.; Wakabayashi-Nakao, K.; Mizuno, T.; Aoki, S.; Uesaka, K. The impact of preoperative enteral nutrition enriched with eicosapentaenoic acid on postoperative hypercytokinemia after pancreatoduodenectomy: The results of a double-blinded randomized controlled trial. Dig. Surg. 2019, 36, 348–356. [Google Scholar] [CrossRef]
- Akita, H.; Takahashi, H.; Asukai, K.; Tomokuni, A.; Wada, H.; Marukawa, S.; Yamasaki, T.; Yanagimoto, Y.; Takahashi, Y.; Sugimura, K.; et al. The utility of nutritional supportive care with an eicosapentaenoic acid (EPA)-enriched nutrition agent during pre-operative chemoradiotherapy for pancreatic cancer: Prospective randomized control study. Clin. Nutr. ESPEN 2019, 33, 148–153. [Google Scholar] [CrossRef]
- Werner, K.; Küllenberg de Gaudry, D.; Taylor, L.A.; Keck, T.; Unger, C.; Hopt, U.T.; Massing, U. Dietary supplementation with n-3-fatty acids in patients with pancreatic cancer and cachexia: Marine phospholipids versus fish oil-a randomized controlled double-blind trial. Lipids Health Dis. 2017, 16, 104. [Google Scholar] [CrossRef]
- Bauer, J.; Capra, S.; Battistutta, D.; Davidson, W.; Ash, S.; Cancer Cachexia Study Group. Compliance with nutrition prescription improves outcomes in patients with unresectable pancreatic cancer. Clin. Nutr. 2005, 24, 998–1004. [Google Scholar] [CrossRef]
- Fearon, K.C.; Von Meyenfeldt, M.F.; Moses, A.G.; van Geenen, R.; Roy, A.; Gouma, D.J.; Giacosa, A.; Van Gossum, A.; Bauer, J.; Barber, M.D.; et al. Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: A randomised double blind trial. Gut 2003, 52, 1479–1486. [Google Scholar] [CrossRef]
- Barber, M.D.; Ross, J.A.; Preston, T.; Shenkin, A.; Fearon, K.C. Fish oil–enriched nutritional supplement attenuates progression of the acute-phase response in weight-losing patients with advanced pancreatic cancer. J. Nutr. 1999, 129, 1120–1125. [Google Scholar] [CrossRef]
- Barber, M.D.; Fearon, K.C.; Tisdale, M.J.; McMillan, D.C.; Ross, J.A. Effect of a fish oil-enriched nutritional supplement on metabolic mediators in patients with pancreatic cancer cachexia. Nutr. Cancer 2001, 40, 118–124. [Google Scholar] [CrossRef]
- Wigmore, S.J.; Barber, M.D.; Ross, J.A.; Tisdale, M.J.; Fearon, K.C. Effect of oral eicosapentaenoic acid on weight loss in patients with pancreatic cancer. Nutr. Cancer 2000, 36, 177–184. [Google Scholar] [CrossRef]
- Lorton, C.M.; Griffin, O.; Higgins, K.; Roulston, F.; Stewart, G.; Gough, N.; Barnes, E.; Aktas, A.; Walsh, T.D. Late referral of cancer patients with malnutrition to dietitians: A prospective study of clinical practice. Support. Care Cancer 2020, 28, 2351–2360. [Google Scholar] [CrossRef]
- Serhan, C.N.; Yacoubian, S.; Yang, R. Anti-inflammatory and proresolving lipid mediators. Annu. Rev. Pathol. Mech. Dis. 2008, 3, 279–312. [Google Scholar] [CrossRef]
- Freitas, R.D.; Campos, M.M. Understanding the appetite modulation pathways: The role of the FFA1 and FFA4 receptors. Biochem. Pharmacol. 2021, 186, 114503. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.D.; Campos, M.M. Protective effects of omega-3 fatty acids in cancer-related complications. Nutrients 2019, 11, 945. [Google Scholar] [CrossRef] [PubMed]
- Fearon, K.C.; Barber, M.D.; Moses, A.G.; Ahmedzai, S.H.; Taylor, G.S.; Tisdale, M.J.; Murray, G.D. Double-blind, placebo-controlled, randomized study of eicosapentaenoic acid diester in patients with cancer cachexia. J. Clin. Oncol. 2006, 24, 3401–3407. [Google Scholar] [CrossRef]
- Barkmeijer, A.; Te Molder, H.; Janssen, M.; Jager-Wittenaar, H. Towards effective dietary counseling: A scoping review. Patient Educ. Couns. 2022, 105, 1801–1817. [Google Scholar] [CrossRef]
- De van der Schueren, M.A.; Laviano, A.; Blanchard, H.; Jourdan, M.; Arends, J.; Baracos, V.E. Systematic review and meta-analysis of the evidence for oral nutritional intervention on nutritional and clinical outcomes during chemo (radio) therapy: Current evidence and guidance for design of future trials. Ann. Oncol. 2018, 29, 1141–1153. [Google Scholar] [CrossRef]
- Latenstein, A.E.; Dijksterhuis, W.P.; Mackay, T.M.; Beijer, S.; van Eijck, C.H.; de Hingh, I.H.; Molenaar, I.Q.; van Oijen, M.G.; van Santvoort, H.C.; de Van Der Schueren, M.A.; et al. Cachexia, dietetic consultation, and survival in patients with pancreatic and periampullary cancer: A multicenter cohort study. Cancer Med. 2020, 9, 9385–9395. [Google Scholar] [CrossRef]
- Souza, V.G.; de Lima Dantas, J.B.; Martins, G.B.; Pereira, M.C.M.C.; de Almeida Reis, S.R.; Medrado, A.R.A.P. Impacto da terapia nutricional em pacientes com câncer de cabeça e pescoço com desnutrição: Uma revisão sistemática. Rev. Ciências Médicas Biológicas 2021, 20, 137–143. [Google Scholar] [CrossRef]
- BRASPEN. Diretriz Braspen De Terapia Nutricional No Paciente Com Câncer. Braspen J. 2019, 34, 2–32. [Google Scholar]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
- Gui, L.; Cheng, M.; Zheng, M.; Ning, C.; Huo, Q. Effects of omega-3 fatty acid supplementation on nutritional status and inflammatory response in patients with stage II-III NSCLC undergoing postoperative chemotherapy: A double-blind randomized controlled trial. Front. Nutr. 2023, 10, 1266584. [Google Scholar] [CrossRef]
- Ghoreishy, S.M.; Zeraattalab-Motlagh, S.; Amiri Khosroshahi, R.; Hemmati, A.; Noormohammadi, M.; Mohammadi, H. Dose-Dependent Impacts of Omega-3 Fatty Acids Supplementation on Anthropometric Variables in Patients with Cancer: Results from a Systematic Review and Meta-Analysis of Randomized Clinical Trials. Clin. Nutr. Res. 2024, 13, 186–200. [Google Scholar] [CrossRef] [PubMed]
- Delpino, F.M.; Figueiredo, L.M. Effects of omega-3 supplementation on lean body mass in cancer patients: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2022, 76, 1636–1645. [Google Scholar] [CrossRef] [PubMed]
- Solís-Martínez, O.; Plasa-Carvalho, V.; Phillips-Sixtos, G.; Trujillo-Cabrera, Y.; Hernández-Cuellar, A.; Queipo-García, G.E.; Meaney-Mendiolea, E.; Ceballos-Reyes, G.M.; Fuchs-Tarlovsky, V. Effect of eicosapentaenoic acid on body composition and inflammation markers in patients with head and neck squamous cell cancer from a public hospital in Mexico. Nutr. Cancer 2018, 70, 663–670. [Google Scholar] [CrossRef]
- Serhan, C.N.; Chiang, N.; Dalli, J.; Levy, B.D. Lipid mediators in the resolution of inflammation. Cold Spring Harb. Perspect. Biol. 2015, 7, a016311. [Google Scholar] [CrossRef]
- Aredes, M.A.; da Camara, A.O.; de Paula, N.S.; Fraga, K.Y.D.; do Carmo, M.D.G.; Chaves, G.V. Efficacy of ω-3 supplementation on nutritional status, skeletal muscle, and chemoradiotherapy toxicity in cervical cancer patients: A randomized, triple-blind, clinical trial conducted in a middle-income country. Nutrition 2019, 67, 110528. [Google Scholar] [CrossRef]
- Sakamoto, K.; Arakawa, H.; Mita, S.; Ishiko, T.; Ikei, S.; Egami, H.; Hisano, S.; Ogawa, M. Elevation of circulating interleukin 6 after surgery: Factors influencing the serum level. Cytokine 1994, 6, 181–186. [Google Scholar] [CrossRef]
- Wortel, C.H.; van Deventer, S.J.; Aarden, L.A.; Lygidakis, N.J.; Büller, H.R.; Hoek, F.J.; Horikx, J.; ten Cate, J.W. Interleukin-6 mediates host defense responses induced by abdominal surgery. Surgery 1993, 114, 564–570. [Google Scholar]
Citation | Study Design | Aim | Sample | Type of Nutritional Supplement | Protocol | Follow-Up | Outcomes | Main Results | Conclusion |
---|---|---|---|---|---|---|---|---|---|
Ashida et al. [57] Japan | RCT | To investigate whether preoperative enteral diets enriched with EPA supplementation can reduce the incidence of hypercytokinemia | EG: (11), mean age = 64 (SD = 11) GC:(9), mean age = 69 (SD = 6) | Liquid | EG: supplementation (600 kcal/day) containing 2.0 g/d of EPA + 1200 kcal of regular food GC: standard isocaloric, isonitrogenous diet (600 kcal/d) without EPA + 1200 kcal of regular food | Supplementation for 7 days preoperatively | Primary: postoperative serum IL-6 concentration Secondary: postoperative nutritional status (serum albumin, prealbumin, transferrin, and EPA/AA ratio) and incidence of operative infectious complications | No statistically significant differences were identified in serious levels of IL-6 (p = 0.68), serum albumin (p = 0.56), prealbumin, transferrin (p = 0.65) and EPA/AA ratio after intervention | EPA supplementation had no marked impact on postoperative hypercytokinemia and nutritional status |
Akita et al. [58] Japan | RCT | To clarify the usefulness of EPA-enriched supplementation during neoadjuvant chemoradiotherapy | EG: (31), mean age = 67.8 (SD = 10.7) GC: (31), mean age = 66.4 (SD = 9.8) | Liquid | EG: 2 vials (440 mL) (560 kcal) of EPA (Prosure®; Abbott Japan) per day + normal diet + 3 nutritional consultations (before, 3 weeks, and after radiotherapy). CG: Normal diet + 3 nutritional consultations (before, 3 weeks, and after radiotherapy). | During neoadjuvant chemoradiotherapy (about 5 weeks) | Primary: post/pre ratio of skeletal muscle mass and PMA cm2 Secondary: nutritional parameters (serum prealbumin, serum albumin, BMI, and lymphocyte count | Only 45.2% of the EG patients consumed more than 50% of the supplement with EPA. No significant differences in nutritional parameters and skeletal muscle mass post-pre ratio were observed. However, patients who consumed 50% of the supplement had significantly better values than the CG. The PMA post/pre ratio was significantly higher in EG. | EPA supplementation can potentially improve the nutritional status of patients with pancreatic cancer under neoadjuvant chemoradiotherapy |
Werner et al. [59] Germany | RCT | To compare low-dose MPL and FO supplementation with the same amount of omega-3 in stabilizing weight. | EG FO: (18), mean age = 70.3 (SD = 8.24) EG MPL: (15), mean age = 71.3 (SD = 7.51) | Capsule | EG FO:500 mg capsule 3× daily: 60% FO, 40% MCT (6.9 g/100 g EPA and 13.6 g/100 g DHA) EG MPL: 500 mg capsule 3× daily: 35% omega-3 fatty acids phospholipids (mainly phosphatidylcholine) + 65% lipids neutral (8.5 g/100 g EPA and 12.3 g/100 g DHA); The final dose of omega-3 was 300 mg/day in both groups | During chemotherapy, radiotherapy, palliative care for 6 weeks | Primary: change in weight Secondary: nutritional status and quality of life | Weight stabilization EG FO (p = 0.001) and EG MPL (p = 0.003). Significant increase in EPA in plasma triglycerides of EG FO (p = 0.001) and EG MPL (p = 0.01) | The administration of omega-3 as FO or MPL is highly accepted, resulting in weight stabilization, and reflected in the increase in omega-3 in plasma lipids. However, MPL was better tolerated and accepted in the study group. In both groups, there were no significant changes in quality of life after 6 weeks. |
Bauer et al. [60] (Australia) | RCT | To evaluate the effect of adherence to the nutritional prescription of an oral nutritional supplement with omega-3 and dense in protein and energy | EG: (87), mean age = 66.87 (SD = 1.0) GC MPL: (98), mean age = 68.37 (SD = 1.1) | Liquid | EG: 2 cans/day of a nutritional supplement rich in protein and energy + omega-3 fatty acids (1.1 g EPA). GC: isocaloric and nitrogenated control supplement without omega-3 fatty acids. Consume 1.5 cans/day (465 kcal and 24 g of protein) for both groups. | 8 weeks | Primary: body composition and food intake Secondary: quality of life | There was a significant difference in energy and protein intake between patients in the EG compared to the CG (p < 0.05). The EG had an increase in weight of 0.5 kg compared to the CG, which decreased by 0.7 kg. | Adherence to the prescription of a protein- and energy-dense oral omega-3 supplement improved outcomes related to the nutritional status of patients with pancreatic cancer |
Fearon et al. [61] Multicentric (UK, Netherlands, Canada, Italy, Belgium, and Australia) | RCT | To compare an omega-3-enriched protein and energy-dense supplement with an isocaloric, isonitrogenous supplement | EG: (95) mean age = 67 (SD = 1.0) CG: (105) mean age = 67 (SD = 1.0) | Liquid | EG:2 cans/day of omega-3-enriched protein and energy-dense supplement (480 mL, 620 kcal, 32 g protein, 2.2 g EPA) CG: 2 cans/day of the supplement (480 mL, 620 kcal, 32 g protein) without EPA | 8 weeks | Primary: Weight, lean body mass, and food intake Secondary: quality of life | Compared with baseline loss rates, weight, and lean body mass loss were significantly attenuated in both study groups at four and eight weeks (p < 0.001 for all group comparisons). | At the average dose taken, enrichment with EPA did not provide a therapeutic advantage, and both supplements were equally effective in halting weight loss. The post hoc dose–response analysis suggests that, if taken in sufficient quantity, only the EPA-rich supplement results in weight gain and lean body mass. Weight gain was only associated with improved quality of life (p < 0.01) in EG. |
Barber et al. [63] Glasgow, UK | NRCT | To examine the effect of a fish oil-enriched nutritional supplement on various mediators believed to play a role in cancer cachexia. | EG: (20) Median age = 62 (min/max: 51–75) | Liquid | EG: 2 cans/day supplement enriched with fish oil (2.2 g EPA and 0.96 g DHA) | 3 weeks | Primary: weight Secondary: serum concentrations of interleukin IL-6, TNF-a, cortisol, insulin, and leptin | Significant drop in IL-6 production (p = 0.015), increase in the serum insulin concentration (p = 0.0064), decrease in the cortisol/insulin ratio (p = 0.0084), and these changes occurred in association with weight gain (median 1 kg, p= 0.024) | Several mediators of catabolism in cachexia were modulated by the administration of a nutritional supplement enriched with fish oil in patients with pancreatic cancer, which may explain the reversal of loss of weight in these patients |
Wigmore et al. [64] Scotland, UK | NRCT | To evaluate the acceptability and effects of oral supplementation with high-purity EPA in patients with advanced pancreatic cancer on weight loss | EG: (26), Median age = 56 (min/max: 39–75) | Capsule | EG: capsule containing 500 mg of EPA | EPA at 1 g/day in the 1st week, 2 g/day in the 2nd week, 4 g/day in the 3rd week, and 6 g/day after that | Weight and body composition | Supplementation was well tolerated. After supplementation, the weight remained stable. After 4 weeks of EPA supplementation, patients had a median weight gain of 0.5 kg (p = 0.0009 vs. baseline weight loss rate), and this weight stabilization persisted through the study period. 12-week study. | EPA is well tolerated, may stabilize weight in patients with cachectic pancreatic cancer, and should be tested as an anti-cachectic agent in RCT |
Barber et al. [62] Scotland, UK | NRCT | To determine the effects of administering a nutritional supplement containing EPA-rich fish oil on acute-phase protein response levels | EG: (18) Median age = 64 (min/max: 56–66) CG: (18) Median age = 60 (min/max: 54–70) Healthy CG: (6) Median age = 54 (min/max: 50–56) | Liquid | EG: 2 cans/day supplement enriched with fish oil (2.18 g EPA and 0.92 g DHA) in a volume of 480 mL CG: full support without EPA and DHA supplementation | 3 weeks | Primary: Positive and negative acute phase protein Minor: weight | Increased transferrin in EG (p = 0.048). In the CG, there was a reduction in albumin, transferrin, and prealbumin(p = 0.012; p = 0.0048 and p= 0.038, respectively) and increase in the positive concentration of CRP (p = 00013). The EG gained an average of 1 kg, and the CG lost an average of 2.8 kg of body weight | Acute-phase CRP can be stabilized by administering a nutritional supplement enriched with fish oil. This may have implications for reducing atrophy in these patients. |
* Domains ROBINS-I | Overall Judgment ROBINS-I | |||||||
---|---|---|---|---|---|---|---|---|
Study | Confounding Bias | Participant Selection Bias | Classification of Intervention Bias | Bias Due to Intervention Deviations | Incomplete Data Bias | Outcome Measurement Bias | Selective Outcome Reporting Bias | |
Barber et al. [63] | Low | Moderate | Low | Low | Moderate | Moderate | Low | Moderate |
Wigmore et al. [64] | Low | Moderate | Low | Low | Low | Moderate | Low | Moderate |
Barber et al. [62] | Moderate | Moderate | Low | Low | Low | Moderate | Low | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, L.B.C.; Salaroli, L.B.; Podesta, O.P.G.d.; Haraguchi, F.K.; Lopes-Júnior, L.C. Omega-3 Supplementation and Nutritional Status in Patients with Pancreatic Neoplasms: A Systematic Review. Nutrients 2024, 16, 4036. https://doi.org/10.3390/nu16234036
Pires LBC, Salaroli LB, Podesta OPGd, Haraguchi FK, Lopes-Júnior LC. Omega-3 Supplementation and Nutritional Status in Patients with Pancreatic Neoplasms: A Systematic Review. Nutrients. 2024; 16(23):4036. https://doi.org/10.3390/nu16234036
Chicago/Turabian StylePires, Luciana Bicalho Cevolani, Luciane Bresciani Salaroli, Olívia Perim Galvão de Podesta, Fabiano Kenji Haraguchi, and Luís Carlos Lopes-Júnior. 2024. "Omega-3 Supplementation and Nutritional Status in Patients with Pancreatic Neoplasms: A Systematic Review" Nutrients 16, no. 23: 4036. https://doi.org/10.3390/nu16234036
APA StylePires, L. B. C., Salaroli, L. B., Podesta, O. P. G. d., Haraguchi, F. K., & Lopes-Júnior, L. C. (2024). Omega-3 Supplementation and Nutritional Status in Patients with Pancreatic Neoplasms: A Systematic Review. Nutrients, 16(23), 4036. https://doi.org/10.3390/nu16234036