Ethanolic Extract of Propolis and CAPE as Cardioprotective Agents against LPS and IFN-α Stressed Cardiovascular Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of EEP
2.2. HGF-1 Cell Culture
2.3. LPS, IFN-α, LPS + IFN-α Stimulation of HGF-1 and EEP or CAPE Treatments
2.4. Cell Viability Assay
2.5. Multiplex Bead-Based Cytokine and Adhesive Molecules Assay
2.6. Statistical Analysis
3. Results
3.1. Effect of EEP on IL-6, IL-10, E-Selectin, ET-1, and ICAM-1 Secretion in LPS, IFN-α, and LPS + IFN-α-Induced HGF-1
3.2. Effect of CAPE on IL-6, IL-10, E-Selectin, ET-1, and ICAM-1 Secretion in LPS, IFN-α, LPS + IFN-α-Induced HGF-1
3.3. Comparative Effect of EEP and CAPE on IL-6, IL-10, E-Selectin, ET-1, and ICAM-1 Secretion in LPS, IFN-α, LPS + IFN-α-Induced HGF-1
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sanz, M.; Marco del Castillo, A.; Jepsen, S.; Gonzalez-Juanatey, J.R.; D’Aiuto, F.; Bouchard, P.; Chapple, I.; Dietrich, T.; Gotsman, I.; Graziani, F.; et al. Periodontitis and Cardiovascular Diseases. Consensus Report. Glob. Heart 2020, 15, 1. [Google Scholar] [CrossRef]
- Zardawi, F.; Gul, S.; Abdulkareem, A.; Sha, A.; Yates, J. Association Between Periodontal Disease and Atherosclerotic Cardiovascular Diseases: Revisited. Front. Cardiovasc. Med. 2021, 7, 625579. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Walczyńska-Dragon, K.; Felitti, R.; Baron, S.; Olczyk, P. Propolis and Diet Rich in Polyphenols as Cariostatic Agents Reducing Accumulation of Dental Plaque. Molecules 2022, 27, 271. [Google Scholar] [CrossRef]
- Prabhu, S.D.; Frangogiannis, N.G. The Biological Basis for Cardiac Repair after Myocardial Infarction: From Inflammation to Fibrosis. Circ. Res. 2016, 119, 91–112. [Google Scholar] [CrossRef]
- Hope, S.A.; Meredith, I.T. Cellular Adhesion Molecules and Cardiovascular Disease. Part II. Their Association with Conventional and Emerging Risk Factors, Acute Coronary Events and Cardiovascular Risk Prediction. Intern. Med. J. 2003, 33, 450–462. [Google Scholar] [CrossRef]
- Perkins, L.A.; Anderson, C.J.; Novelli, E.M. Targeting P-Selectin Adhesion Molecule in Molecular Imaging: P-Selectin Expression as a Valuable Imaging Biomarker of Inflammation in Cardiovascular Disease. J. Nucl. Med. 2019, 60, 1691–1697. [Google Scholar] [CrossRef]
- Sagris, M.; Theofilis, P.; Antonopoulos, A.S.; Oikonomou, E.; Simantiris, S.; Papaioannou, S.; Tsioufis, C.; Tousoulis, D. Adhesion Molecules as Prognostic Biomarkers in Coronary Artery Disease. Curr. Top. Med. Chem. 2023, 23, 481–490. [Google Scholar] [CrossRef]
- Tan, J.; Ma, Z.; Han, L.; Du, R.; Zhao, L.; Wei, X.; Hou, D.; Johnstone, B.H.; Farlow, M.R.; Du, Y. Caffeic Acid Phenethyl Ester Possesses Potent Cardioprotective Effects in a Rabbit Model of Acute Myocardial Ischemia-Reperfusion Injury. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H2265–H2271. [Google Scholar] [CrossRef]
- Silva, H.; Francisco, R.; Saraiva, A.; Francisco, S.; Carrascosa, C.; Raposo, A. The Cardiovascular Therapeutic Potential of Propolis—A Comprehensive Review. Biology 2021, 10, 27. [Google Scholar] [CrossRef]
- Daleprane, J.B.; Abdalla, D.S. Emerging Roles of Propolis: Antioxidant, Cardioprotective, and Antiangiogenic Actions. Evid. Based Complement. Alternat. Med. 2013, 2013, 175135. [Google Scholar] [CrossRef]
- Tolba, M.F.; Azab, S.S.; Khalifa, A.E.; Abdel-Rahman, S.Z.; Abdel-Naim, A.B. Caffeic Acid Phenethyl Ester, a Promising Component of Propolis with a Plethora of Biological Activities: A Review on Its Anti-Inflammatory, Neuroprotective, Hepatoprotective, and Cardioprotective Effects. IUBMB Life 2013, 65, 699–709. [Google Scholar] [CrossRef]
- Parra-Izquierdo, I.; Castaños-Mollor, I.; López, J.; Gómez, C.; Román, J.A.S.; Crespo, M.S.; García-Rodríguez, C. Calcification Induced by Type I Interferon in Human Aortic Valve Interstitial Cells Is Larger in Males and Blunted by a Janus Kinase Inhibitor. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2148–2159. [Google Scholar] [CrossRef]
- Hsia, J.; Aragaki, A.; Bloch, M.; LaCroix, A.Z.; Wallace, R. Predictors of Angina Pectoris versus Myocardial Infarction from the Women’s Health Initiative Observational Study. Am. J. Cardiol. 2004, 93, 673–678. [Google Scholar] [CrossRef]
- Tziakas, D.N.; Chalikias, G.K.; Hatzinikolaou, H.I.; Parissis, J.T.; Papadopoulos, E.D.; Trypsianis, G.A.; Papadopoulou, E.; Tentes, I.K.; Karas, S.M.; Hatseras, D.I. Anti-Inflammatory Cytokine Profile in Acute Coronary Syndromes: Behavior of Interleukin-10 in Association with Serum Metalloproteinases and Proinflammatory Cytokines. Int. J. Cardiol. 2003, 92, 169–175. [Google Scholar] [CrossRef]
- Kelly, J.J.; Whitworth, J.A. Endothelin-1 as a Mediator in Cardiovascular Disease. Clin. Exp. Pharmacol. Physiol. 1999, 26, 158–161. [Google Scholar] [CrossRef]
- Sütsch, G.; Barton, M. Endothelin in heart failure. Curr. Sci. Inc. 1999, 1, 62–68. [Google Scholar] [CrossRef]
- Rai, H.; Joner, M.; Wilson, H.; McGovern, L.; Richards, G.; Colleran, R.; Byrne, R.A. Interleukin-10-1082 G/A Polymorphism and Its Association with Early or Severe Presentation of Coronary Artery Disease: A Systematic Review and Meta-Analysis. Cytokine 2023, 162, 156103. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Kłósek, M.; Pietsz, G.; Czuba, Z.P.; Kolayli, S.; Can, Z.; Balwierz, R.; Olczyk, P. The Phenolic Profile and Anti-Inflammatory Effect of Ethanolic Extract of Polish Propolis on Activated Human Gingival Fibroblasts-1 Cell Line. Molecules 2023, 28, 7477. [Google Scholar] [CrossRef] [PubMed]
- Priyamvara, A.; Dey, A.K.; Bandyopadhyay, D.; Katikineni, V.; Zaghlol, R.; Basyal, B.; Barssoum, K.; Amarin, R.; Bhatt, D.L.; Lavie, C.J. Periodontal Inflammation and the Risk of Cardiovascular Disease. Curr. Atheroscler. Rep. 2020, 22, 28. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, R.; Asopa, S.; Joseph, M.; Singh, B.; Rajguru, J.; Saidath, K.; Sharma, U. Red Complex: Polymicrobial Conglomerate in Oral Flora: A Review. J. Fam. Med. Prim. Care 2019, 8, 3480. [Google Scholar] [CrossRef]
- Wang, P.L.; Ohura, K. Porphyromonas Gingivalis Lipopolysaccharide Signaling in Gingival Fibroblasts—CD14 and Toll-like Receptors. Crit. Rev. Oral Biol. Med. 2002, 13, 132–142. [Google Scholar] [CrossRef]
- Zulhendri, F.; Lesmana, R.; Tandean, S.; Christoper, A.; Chandrasekaran, K.; Irsyam, I.; Suwantika, A.A.; Abdulah, R.; Wathoni, N. Recent Update on the Anti-Inflammatory Activities of Propolis. Molecules 2022, 27, 8473. [Google Scholar] [CrossRef]
- Martinello, M.; Mutinelli, F.; Zooprofilattico, I.; Delle Venezie, S. Antioxidant Activity in Bee Products: A Review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef]
- Bankova, V.; Bertelli, D.; Borba, R.; Conti, B.J.; Barbosa Da, I.; Cunha, S.; Danert, C.; Eberlin, M.N.; Falcão, S.I.; Inés, M.; et al. Anticancer Activity of Propolis and Its Compounds. Nutrients 2021, 13, 2594. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.; Gao, M.; Bai, X.; Chen, Z. Neuroprotective Effect of Several Phytochemicals and Its Potential Application in the Prevention of Neurodegenerative Diseases. Geriatrics 2016, 1, 29. [Google Scholar] [CrossRef] [PubMed]
- Ripari, N.; Sartori, A.A.; Honorio, M.D.S.; Conte, F.L.; Tasca, K.I.; Santiago, K.B.; Sforcin, J.M. Propolis Antiviral and Immunomodulatory Activity: A Review and Perspectives for COVID-19 Treatment. J. Pharm. Pharmacol. 2021, 73, 281–299. [Google Scholar] [CrossRef] [PubMed]
- Przybyłek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [PubMed]
- Zullkiflee, N.; Taha, H.; Usman, A. Propolis: Its Role and Efficacy in Human Health and Diseases. Molecules 2022, 27, 6120. [Google Scholar] [CrossRef] [PubMed]
- Oršolić, N.; Jurčević, I.L.; Đikić, D.; Rogić, D.; Odeh, D.; Balta, V.; Junaković, E.P.; Terzić, S.; Jutrić, D. Effect of Propolis on Diet-Induced Hyperlipidemia and Atherogenic Indices in Mice. Antioxidants 2019, 8, 156. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Pan, Y.; Xu, S.; Yu, C.; Ji, J.; Chen, M.; Hu, F. Propolis Ameliorates Restenosis in Hypercholesterolemia Rabbits with Carotid Balloon Injury by Inhibiting Lipid Accumulation, Oxidative Stress, and TLR4/NF-ΚB Pathway. J. Food Biochem. 2021, 45, e13577. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Silva, B.; Kawamoto, D.; Ando-Suguimoto, E.S.; Casarin, R.C.V.; Alencar, S.M.; Rosalen, P.L.; Mayer, M.P.A. Brazilian Red Propolis Effects on Peritoneal Macrophage Activity: Nitric Oxide, Cell Viability, pro-Inflammatory Cytokines and Gene Expression. J. Ethnopharmacol. 2017, 207, 100–107. [Google Scholar] [CrossRef]
- Oliveira, L.P.G.; Conte, F.L.; de Oliveira Cardoso, E.; Conti, B.J.; Santiago, K.B.; de Assis Golim, M.; da Silva Feltran, G.; Zambuzzi, W.F.; Sforcin, J.M. A New Chemotherapeutic Approach Using Doxorubicin Simultaneously with Geopropolis Favoring Monocyte Functions. Life Sci. 2019, 217, 81–90. [Google Scholar] [CrossRef]
- Governa, P.; Cusi, M.G.; Borgonetti, V.; Sforcin, J.M.; Terrosi, C.; Baini, G.; Miraldi, E.; Biagi, M. Beyond the Biological Effect of a Chemically Characterized Poplar Propolis: Antibacterial and Antiviral Activity and Comparison with Flurbiprofen in Cytokines Release by LPS-Stimulated Human Mononuclear Cells. Biomedicines 2019, 7, 73. [Google Scholar] [CrossRef]
- Bueno-Silva, B.; Rosalen, P.L.; Alencar, S.M.; Mayer, M.P.A. Anti-Inflammatory Mechanisms of Neovestitol from Brazilian Red Propolis in LPS-Activated Macrophages. J. Funct. Foods 2017, 36, 440–447. [Google Scholar] [CrossRef]
- Touzani, S.; Embaslat, W.; Imtara, H.; Kmail, A.; Kadan, S.; Zaid, H.; Elarabi, I.; Badiaa, L.; Saad, B.; Kabir, Y. In Vitro Evaluation of the Potential Use of Propolis as a Multitarget Therapeutic Product: Physicochemical Properties, Chemical Composition, and Immunomodulatory, Antibacterial, and Anticancer Properties. BioMed Res. Int. 2019, 2019, 4836378. [Google Scholar] [CrossRef]
- Zhang, W.; Cai, Y.; Chen, X.; Ji, T.; Sun, L. Optimized Extraction Based on the Terpenoids of Heterotrigona Itama Propolis and Their Antioxidative and Anti-Inflammatory Activities. J. Food Biochem. 2020, 44, e13296. [Google Scholar] [CrossRef]
- Gross, M.D.; Bielinski, S.J.; Suarez-Lopez, J.R.; Reiner, A.P.; Bailey, K.; Thyagarajan, B.; Carr, J.J.; Duprez, D.A.; Jacobs, D.R. Circulating Soluble Intercellular Adhesion Molecule 1 and Subclinical Atherosclerosis: The Coronary Artery Risk Development in Young Adults Study. Clin. Chem. 2012, 58, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, A.; Nowicka, G. Adhesion Molecules in the Diagnosis of Ischemic Heart Disease. Postępy Nauk. Med. 2010, 10, 807–812. [Google Scholar]
- Zaccaria, V.; Curti, V.; Di Lorenzo, A.; Baldi, A.; Maccario, C.; Sommatis, S.; Mocchi, R.; Daglia, M. Effect of Green and Brown Propolis Extracts on the Expression Levels of MicroRNAs, MRNAs and Proteins, Related to Oxidative Stress and Inflammation. Nutrients 2017, 9, 1090. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, B.; Wang, D.; Zhu, Y.; Miao, X.; Yang, W. The Chemical Composition of Brazilian Green Propolis and Its Protective Effects on Mouse Aortic Endothelial Cells against Inflammatory Injury. Molecules 2020, 25, 4612. [Google Scholar] [CrossRef] [PubMed]
- Jubeli, E.; Moine, L.; Vergnaud-Gauduchon, J.; Barratt, G. E-Selectin as a Target for Drug Delivery and Molecular Imaging. J. Control. Release 2012, 158, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Klósek, M.; Sedek, L.; Lewandowska, H.; Czuba, Z.P. The Effect of Ethanolic Extract of Brazilian Green Propolis and Artepillin C on AFGF-1, Eselectin, and CD40L Secreted by Human Gingival Fibroblasts. Cent. Eur. J. Immunol. 2021, 46, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Choi, Y.J.; Park, S.H.; Kang, J.S.; Kang, Y.H. Flavones Mitigate Tumor Necrosis Factor-Alpha-Induced Adhesion Molecule Upregulation in Cultured Human Endothelial Cells: Role of Nuclear Factor-Kappa B. J. Nutr. 2004, 134, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.J.; Choi, Y.J.; Choi, J.S.; Kwon, H.M.; Kang, S.W.; Bae, J.Y.; Lee, S.S.; Kang, J.S.; Han, S.J.; Kang, Y.H. Attenuation of Monocyte Adhesion and Oxidised LDL Uptake in Luteolin-Treated Human Endothelial Cells Exposed to Oxidised LDL. Br. J. Nutr. 2007, 97, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.M.; Tai, C.T.; Hsieh, M.H.; Tsai, C.F.; Lin, Y.K.; Yu, W.C.; Tsao, H.M.; Lee, S.H.; Ding, Y.A.; Chang, M.S.; et al. Endothelin Receptor Antagonists in Congestive Heart Failure: A New Therapeutic Principle for the Future? J. Am. Coll. Cardiol. 2001, 37, 1493–1505. [Google Scholar] [CrossRef]
- Hu, F.; Li, Y.; Chen, M.; Xuan, H. Effects of Encapsulated Propolis on Blood Glycemic Control, Lipid Metabolism, and Insulin Resistance in Type 2 Diabetes Mellitus Rats. Evid. Based Complement. Alternat. Med. 2012, 2012, 981896. [Google Scholar] [CrossRef]
- Sun, Y.; Han, M.; Shen, Z.; Huang, H.; Miao, X. Anti-Hypertensive and Cardioprotective Effects of a Novel Apitherapy Formulation via Upregulation of Peroxisome Proliferator-Activated Receptor-α and -γ in Spontaneous Hypertensive Rats. Saudi J. Biol. Sci. 2018, 25, 213–219. [Google Scholar] [CrossRef]
Sample | IL-6 | SD | p | IL-10 | SD | p | E-Selectin | SD | p | ICAM-1 | SD | p | ET-1 | SD | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control line (EI) | 37.83 | 0.00 | 4.00 | 0.00 | 1.01 | 0.000 | 3398 | 0.000 | 80.28 | 0.000 | |||||
Control DMSO (EI) | 29.44 | 3.29 | 2.60 | 0.89 | 1.87 | 1.23 | 3333 | 230 | 74.00 | 6.52 | |||||
Control IFN-α (E) | 26.90 | 2.17 | 1.21 | 0.69 | 1.39 | 0.86 | 3397 | 126 | 49.70 | 4.08 | |||||
EEP 10 µg/mL | 20.82 | 3.88 | 0.0764 | 0.87 | 1.07 | 0.0000 | 1.67 | 0.59 | 0.3026 | 3269 | 256 | 0.8464 | 50.03 | 3.03 | 0.0000 |
EEP 25 µg/mL | 20.35 | 9.12 | 0.0690 | 0.22 | 0.01 | 0.0000 | 0.82 | 0.16 | 0.7711 | 2670 | 423 | 0.2783 | 32.25 | 1.27 | 0.0000 |
EEP 50 µg/mL | 32.43 | 17.94 | 0.5675 | 0.20 | 0.00 | 0.0000 | 0.91 | 0.71 | 0.8849 | 2557 | 351 | 0.2117 | 18.38 | 2.19 | 0.0000 |
EEP 100 µg/mL | 29.32 | 2.09 | 0.3686 | 0.20 | 0.01 | 0.0000 | 0.27 | 0.16 | 0.2517 | 2116 | 593 | 0.0599 | 14.33 | 1.63 | 0.0000 |
EEP 10 µg/mL + IFN-α | 62.62 | 4.56 | 0.0000 | 0.18 | 0.01 | 0.0006 | 0.73 | 0.74 | 0.1516 | 2305 | 671 | 0.0247 | 28.81 | 2.83 | 0.0000 |
EEP 25 µg/mL + IFN-α | 75.45 | 4.56 | 0.0000 | 0.19 | 0.01 | 0.0007 | 0.18 | 0.00 | 0.0100 | 2626 | 802 | 0.1074 | 14.81 | 1.77 | 0.0000 |
EEP 50 µg/mL + IFN-α | 77.70 | 5.75 | 0.0000 | 0.20 | 0.01 | 0.0007 | 0.36 | 0.16 | 0.0270 | 2699 | 78.9 | 0.1441 | 13.60 | 1.54 | 0.0000 |
EEP 100 µg/mL + IFN-α | 52.32 | 9.57 | 0.0004 | 0.18 | 0.01 | 0.0005 | 0.27 | 0.16 | 0.0164 | 2000 | 417 | 0.0048 | 13.51 | 1.81 | 0.0000 |
Control line (EL) | 30.99 | 0.00 | 0.20 | 0.00 | 0.45 | 0.00 | 644 | 0.000 | 71.33 | 0.00 | |||||
Control DMSO (EL) | 26.31 | 1.06 | 0.20 | 0.01 | 0.46 | 0.48 | 2009 | 115 | 69.15 | 0.61 | |||||
Control LPS (E) | 35.43 | 4.00 | 0.20 | 0.01 | 0.45 | 0.48 | 1737 | 1001 | 77.11 | 1.79 | |||||
Control LPS + IFN-α (E) | 36.00 | 10.82 | 0.19 | 0.01 | 1.02 | 0.97 | 1612 | 1059 | 50.41 | 6.41 | |||||
EEP 10 µg/mL + LPS | 38.00 | 10.14 | 0.6989 | 0.20 | 0.00 | 0.9972 | 0.64 | 0.42 | 0.6846 | 2224 | 1022 | 0.3059 | 34.94 | 7.46 | 0.0000 |
EEP 25 µg/mL + LPS | 21.80 | 9.28 | 0.0459 | 0.18 | 0.01 | 0.9499 | 0.55 | 0.42 | 0.8388 | 1184 | 677 | 0.2447 | 26.44 | 2.03 | 0.0000 |
EEP 50 µg/mL + LPS | 36.37 | 15.88 | 0.8872 | 0.19 | 0.01 | 0.9638 | 0.27 | 0.16 | 0.6760 | 1902 | 345 | 0.7273 | 17.63 | 1.29 | 0.0000 |
EEP 100 µg/mL + LPS | 40.23 | 6.91 | 0.4726 | 0.19 | 0.01 | 0.9805 | 0.64 | 0.32 | 0.6843 | 2157 | 185 | 0.3763 | 13.87 | 0.67 | 0.0000 |
EEP 10 µg/mL + LPS + IFN-α | 78.07 | 5.24 | 0.0000 | 0.18 | 0.001 | 0.9791 | 0.46 | 0.48 | 0.2185 | 2315 | 508 | 0.1413 | 25.60 | 2.55 | 0.0000 |
EEP 25 µg/mL + LPS + IFN-α | 80.54 | 9.89 | 0.0000 | 0.21 | 0.00 | 0.9568 | 0.55 | 0.42 | 0.3001 | 2740 | 363 | 0.0206 | 13.88 | 0.13 | 0.0000 |
EEP 50 µg/mL + LPS + IFN-α | 85.80 | 4.39 | 0.0000 | 0.19 | 0.01 | 0.9847 | 0.64 | 0.32 | 0.4032 | 2455 | 564 | 0.0794 | 13.11 | 0.72 | 0.0000 |
EEP 100 µg/mL + LPS + IFN-α | 52.04 | 2.92 | 0.0199 | 0.19 | 0.01 | 0.9944 | 0.55 | 0.42 | 0.3001 | 2454 | 601 | 0.0799 | 14.60 | 0.00 | 0.0000 |
Sample | IL-6 | SD | p | IL-10 | SD | p | E-Selectin | SD | p | ICAM-1 | SD | p | ET-1 | SD | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control Line (CI) | 68.97 | 0.00 | 2.57 | 0.00 | 0.02 | 0.00 | 3086 | 0.00 | 12.26 | 0.00 | |||||
Control DMSO (CI) | 94.20 | 34.70 | 1.99 | 0.62 | 0.22 | 0.33 | 3138 | 121 | 12.16 | 0.42 | |||||
Control IFN-α (C) | 129.5 | 21.07 | 1.16 | 0.21 | 0.41 | 0.33 | 3209 | 482 | 12.79 | 0.52 | |||||
CAPE 10 µg/mL | 72.42 | 5.26 | 0.9704 | 1.70 | 0.24 | 0.1440 | 0.42 | 0.69 | 0.6459 | 3284 | 535 | 0.7092 | 10.11 | 0.36 | 0.0110 |
CAPE 25 µg/mL | 93.92 | 6.35 | 0.7887 | 1.57 | 0.12 | 0.0947 | 0.02 | 0.00 | 0.9984 | 3083 | 288 | 0.9953 | 10.29 | 1.10 | 0.0191 |
CAPE 50 µg/mL | 109.1 | 12.47 | 0.6667 | 0.57 | 0.10 | 0.0014 | 0.22 | 0.33 | 0.8242 | 3514 | 571 | 0.4233 | 11.02 | 0.61 | 0.1334 |
CAPE 100 µg/mL | 144.0 | 33.74 | 0.4218 | 2.15 | 0.45 | 0.4775 | 0.12 | 0.16 | 0.9119 | 3059 | 165 | 0.9588 | 10.00 | 0.49 | 0.0078 |
CAPE 10 µg/mL + IFN-α | 133.9 | 7.78 | 0.9473 | 1.84 | 0.71 | 0.1097 | 0.22 | 0.33 | 0.7549 | 2951 | 847 | 0.4941 | 12.03 | 1.40 | 0.1937 |
CAPE 25 µg/mL + IFN-α | 152.9 | 4.95 | 0.7224 | 1.69 | 0.47 | 0.2043 | 0.32 | 0.51 | 0.8818 | 3077 | 502 | 0.7254 | 11.50 | 0.88 | 0.0294 |
CAPE 50 µg/mL + IFN-α | 163.6 | 13.57 | 0.6057 | 2.12 | 0.65 | 0.0253 | 0.03 | 0.00 | 0.5335 | 3469 | 399 | 0.4907 | 11.31 | 0.73 | 0.0135 |
CAPE 100 µg/mL + IFN-α | 210.9 | 28.17 | 0.2204 | 1.24 | 0.43 | 0.8563 | 0.41 | 0.45 | 0.9966 | 3407 | 695 | 0.5994 | 10.30 | 0.97 | 0.0001 |
Control Line (CL) | 77.52 | 0.00 | 1.11 | 0.00 | 0.02 | 0.00 | 3007 | 0.00 | 11.13 | 0.00 | |||||
Control DMSO (CL) | 65.22 | 3.82 | 2.96 | 0.21 | 0.02 | 0.00 | 3648 | 262 | 11.51 | 0.33 | |||||
Control LPS (C) | 2680 | 200.10 | 2.49 | 0.25 | 9.15 | 1.47 | 4626 | 362 | 12.79 | 0.00 | |||||
Control LPS + IFN-α (C) | 3128 | 98.89 | 2.97 | 0.90 | 12.24 | 0.72 | 4834 | 179 | 13.63 | 0.76 | |||||
CAPE 10 µg/mL + LPS | 2099 | 226.5 | 0.0000 | 3.01 | 0.16 | 0.2172 | 6.81 | 1.06 | 0.0005 | 4075 | 725 | 0.1487 | 13.63 | 0.76 | 0.1497 |
CAPE 25 µg/mL + LPS | 1444 | 25.10 | 0.0000 | 1.75 | 0.46 | 0.0762 | 3.85 | 0.67 | 0.0000 | 3547 | 326 | 0.0062 | 12.25 | 0.54 | 0.3500 |
CAPE 50 µg/mL + LPS | 1392 | 49.98 | 0.0000 | 2.47 | 0.95 | 0.9511 | 4.75 | 1.04 | 0.0000 | 3618 | 464 | 0.0102 | 11.89 | 0.32 | 0.1219 |
CAPE 100 µg/mL + LPS | 1618 | 69.18 | 0.0000 | 2.20 | 0.50 | 0.4757 | 4.18 | 0.34 | 0.0000 | 4304 | 82 | 0.3937 | 11.50 | 0.88 | 0.0287 |
CAPE 10 µg/mL + LPS + IFN-α | 2716 | 111.80 | 0.0000 | 2.31 | 0.72 | 0.4166 | 9.74 | 0.94 | 0.0033 | 4335 | 781 | 0.4893 | 13.79 | 0.84 | 0.5289 |
CAPE 25 µg/mL + LPS + IFN-α | 1818 | 40.27 | 0.0000 | 2.39 | 0.44 | 0.1701 | 5.43 | 0.86 | 0.0000 | 4042 | 110 | 0.0403 | 11.61 | 0.44 | 0.0010 |
CAPE 50 µg/mL + LPS + IFN-α | 1808 | 37.06 | 0.0000 | 1.95 | 0.53 | 0.0173 | 4.53 | 1.17 | 0.0000 | 3871 | 225 | 0.0138 | 12.08 | 0.32 | 0.0094 |
CAPE 100 µg/mL + LPS + IFN-α | 1994 | 63.41 | 0.0000 | 2.49 | 0.25 | 0.2554 | 6.35 | 1.44 | 0.0000 | 3622 | 300 | 0.0024 | 11.51 | 0.33 | 0.0006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurek-Górecka, A.; Kłósek, M.; Pietsz, G.; Balwierz, R.; Olczyk, P.; Czuba, Z.P. Ethanolic Extract of Propolis and CAPE as Cardioprotective Agents against LPS and IFN-α Stressed Cardiovascular Injury. Nutrients 2024, 16, 627. https://doi.org/10.3390/nu16050627
Kurek-Górecka A, Kłósek M, Pietsz G, Balwierz R, Olczyk P, Czuba ZP. Ethanolic Extract of Propolis and CAPE as Cardioprotective Agents against LPS and IFN-α Stressed Cardiovascular Injury. Nutrients. 2024; 16(5):627. https://doi.org/10.3390/nu16050627
Chicago/Turabian StyleKurek-Górecka, Anna, Małgorzata Kłósek, Grażyna Pietsz, Radosław Balwierz, Paweł Olczyk, and Zenon P. Czuba. 2024. "Ethanolic Extract of Propolis and CAPE as Cardioprotective Agents against LPS and IFN-α Stressed Cardiovascular Injury" Nutrients 16, no. 5: 627. https://doi.org/10.3390/nu16050627
APA StyleKurek-Górecka, A., Kłósek, M., Pietsz, G., Balwierz, R., Olczyk, P., & Czuba, Z. P. (2024). Ethanolic Extract of Propolis and CAPE as Cardioprotective Agents against LPS and IFN-α Stressed Cardiovascular Injury. Nutrients, 16(5), 627. https://doi.org/10.3390/nu16050627