Circadian Syndrome Is Associated with Dietary Patterns among Middle-Older Americans: The Health and Retirement Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outcome Measure
Circadian Syndrome
2.2. Exposure Measure
Dietary Patterns
2.3. Covariates
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Galassi, A.; Reynolds, K.; He, J. Metabolic syndrome and risk of cardiovascular disease: A meta-analysis. Am. J. Med. 2006, 119, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Gami, A.S.; Witt, B.J.; Howard, D.E.; Erwin, P.J.; Gami, L.A.; Somers, V.K.; Montori, V.M. Metabolic syndrome and risk of incident cardiovascular events and death: A systematic review and meta-analysis of longitudinal studies. J. Am. Coll. Cardiol. 2007, 49, 403–414. [Google Scholar] [CrossRef]
- Ford, E.S. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: A summary of the evidence. Diabetes Care 2005, 28, 1769–1778. [Google Scholar] [CrossRef]
- Stocks, T.; Bjorge, T.; Ulmer, H.; Manjer, J.; Haggstrom, C.; Nagel, G.; Engeland, A.; Johansen, D.; Hallmans, G.; Selmer, R.; et al. Metabolic risk score and cancer risk: Pooled analysis of seven cohorts. Int. J. Epidemiol. 2015, 44, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef]
- Rabinovich-Nikitin, I.; Lieberman, B.; Martino, T.A.; Kirshenbaum, L.A. Circadian-Regulated Cell Death in Cardiovascular Diseases. Circulation 2019, 139, 965–980. [Google Scholar] [CrossRef]
- Crnko, S.; Du Pré, B.C.; Sluijter, J.P.G.; Van Laake, L.W. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat. Rev. Cardiol. 2019, 16, 437–447. [Google Scholar] [CrossRef]
- Ferraz-Bannitz, R.; Beraldo, R.A.; Coelho, P.O.; Moreira, A.C.; Castro, M.; Foss-Freitas, M.C. Circadian Misalignment Induced by Chronic Night Shift Work Promotes Endoplasmic Reticulum Stress Activation Impacting Directly on Human Metabolism. Biology 2021, 10, 197. [Google Scholar] [CrossRef]
- Zimmet, P.; Alberti, K.; Stern, N.; Bilu, C.; El-Osta, A.; Einat, H.; Kronfeld-Schor, N. The Circadian Syndrome: Is the Metabolic Syndrome and much more! J. Intern. Med. 2019, 286, 181–191. [Google Scholar] [CrossRef]
- Shi, Z.; Tuomilehto, J.; Kronfeld-Schor, N.; Alberti, G.K.; Stern, N.; El-Osta, A.; Bilu, C.; Einat, H.; Zimmet, P. The circadian syndrome predicts cardiovascular disease better than metabolic syndrome in Chinese adults. J. Intern. Med. 2021, 289, 851–860. [Google Scholar] [CrossRef]
- Shi, Z.; Tuomilehto, J.; Kronfeld-Schor, N.; Alberti, G.; Stern, N.; El-Osta, A.; Chai, Z.; Bilu, C.; Einat, H.; Zimmet, P. The Circadian Syndrome Is a Significant and Stronger Predictor for Cardiovascular Disease than the Metabolic Syndrome—The NHANES Survey during 2005–2016. Nutrients 2022, 14, 5317. [Google Scholar] [CrossRef]
- Xiao, Y.; Yin, S.; Cui, J.; Bai, Y.; Yang, Z.; Wang, J.; Wang, J. Association between the prevalence rates of circadian syndrome and testosterone deficiency in US males: Data from NHANES (2011–2016). Front. Nutr. 2023, 10, 1137668. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Zhang, Y.; Liu, J. Relationship between circadian syndrome and stroke: A cross-sectional study of the national health and nutrition examination survey. Front. Neurol. 2022, 13, 946172. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Yin, S.; Bai, Y.; Yang, Z.; Wang, J.; Cui, J.; Wang, J. Association between circadian syndrome and the prevalence of kidney stones in overweight adults: A cross-sectional analysis of NHANES 2007–2018. BMC Public Health 2023, 23, 960, Erratum in BMC Public Health 2023, 23, 1105. [Google Scholar] [CrossRef]
- Fabiani, R.; Naldini, G.; Chiavarini, M. Dietary Patterns and Metabolic Syndrome in Adult Subjects: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2056. [Google Scholar] [CrossRef] [PubMed]
- Akbar, Z.; Shi, Z. Dietary Patterns and Circadian Syndrome among Adults Attending NHANES 2005–2016. Nutrients 2023, 15, 3396. [Google Scholar] [CrossRef] [PubMed]
- Bloom, D.E.; Luca, D.L. The Global Demography of Aging. In Handbook of the Economics of Population Aging; Piggott, J., Woodland, A., Eds.; Handbook of the Economics of Population Aging; North-Holland: Amsterdam, The Netherlands, 2016; Volume 1, pp. 3–56. [Google Scholar]
- U.S. Census Bureau. 2017 National Population Projections Tables: Main Series. Available online: https://www.census.gov/data/tables/2017/demo/popproj/2017-summary-tables.html (accessed on 12 February 2024).
- Medina, L.; Sabo, S.; Vespa, J. Living Longer: Historical and Projected Life Expectancy in the United States, 1960 to 2060. Available online: https://www.census.gov/content/dam/Census/library/publications/2020/demo/p25-1145.pdf (accessed on 12 February 2024).
- United States Census Bureau. 2020 Census: 1 in 6 People in the United States Were 65 and Over. Available online: https://www.census.gov/library/stories/2023/05/2020-census-united-states-older-population-grew.html#:~:text=The%20older%20population%20reached%2055.8,less%20than%201%20in%2020 (accessed on 25 September 2023).
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed]
- Shlisky, J.; Bloom, D.E.; Beaudreault, A.R.; Tucker, K.L.; Keller, H.H.; Freund-Levi, Y.; Fielding, R.A.; Cheng, F.W.; Jensen, G.L.; Wu, D.; et al. Nutritional Considerations for Healthy Aging and Reduction in Age-Related Chronic Disease. Adv. Nutr. 2017, 8, 17–26. [Google Scholar] [CrossRef] [PubMed]
- CDC’s National Center for Chronic Disease Prevention and Health Promotion. 6 Tips for Healthy Aging. Available online: https://www.cdc.gov/chronicdisease/resources/infographic/healthy-aging.htm (accessed on 23 September 2023).
- Choi, Y.J.; Crimmins, E.M.; Kim, J.K.; Ailshire, J.A. Food and nutrient intake and diet quality among older Americans. Public Health Nutr. 2021, 24, 1638–1647. [Google Scholar] [CrossRef]
- Zhao, H.; Andreyeva, T. Diet Quality and Health in Older Americans. Nutrients 2022, 14, 1198. [Google Scholar] [CrossRef] [PubMed]
- Bishop, N.J.; Zuniga, K.E.; Ramirez, C.M. Latent profile analysis of dietary intake in a community-dwelling sample of older Americans. Public Health Nutr. 2020, 23, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Long, T.; Zhang, K.; Chen, Y.; Wu, C. Trends in Diet Quality Among Older US Adults From 2001 to 2018. JAMA Netw. Open 2022, 5, e221880. [Google Scholar] [CrossRef] [PubMed]
- Yuguang, L.; Chang, Y.; Li, H.; Li, F.; Zou, Q.; Liu, X.; Chen, X.; Cui, J. Inflammation mediates the relationship between diet quality assessed by healthy eating index-2015 and metabolic syndrome. Front. Endocrinol. 2024, 15, 1293850. [Google Scholar] [CrossRef]
- Sonnega, A.; Faul, J.D.; Ofstedal, M.B.; Langa, K.M.; Phillips, J.W.; Weir, D.R. Cohort Profile: The Health and Retirement Study (HRS). Int. J. Epidemiol. 2014, 43, 576–585. [Google Scholar] [CrossRef]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef]
- Health and Retirement Study. Health Care and Nutrition Study (HCNS) 2013: Data Description; University of Michigan: Ann Arbor, MI, USA, 2018; Available online: https://hrsdata.isr.umich.edu/sites/default/files/documentation/data-descriptions/2013HCNS_data_description_nt.pdf (accessed on 1 December 2023).
- Radloff, L.S. The CES-D scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, F.; Wu, C.; Zhang, Y.; Huang, X.; Qin, F.; Yuan, J. The Circadian Syndrome Predicts Lower Urinary Tract Symptoms Suggestive of Benign Prostatic Hyperplasia Better Than Metabolic Syndrome in Aging Males: A 4-Year Follow-Up Study. Front. Med. 2021, 8, 715830. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Monforte, M.; Sánchez, E.; Barrio, F.; Costa, B.; Flores-Mateo, G. Metabolic syndrome and dietary patterns: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2017, 56, 925–947. [Google Scholar] [CrossRef] [PubMed]
- Shab-Bidar, S.; Golzarand, M.; Hajimohammadi, M.; Mansouri, S. A posteriori dietary patterns and metabolic syndrome in adults: A systematic review and meta-analysis of observational studies. Public Health Nutr. 2018, 21, 1681–1692. [Google Scholar] [CrossRef]
- Hassannejad, R.; Kazemi, I.; Sadeghi, M.; Mohammadifard, N.; Roohafza, H.; Sarrafzadegan, N.; Talaei, M.; Mansourian, M. Longitudinal association of metabolic syndrome and dietary patterns: A 13-year prospective population-based cohort study. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 352–360. [Google Scholar] [CrossRef]
- Agodi, A.; Maugeri, A.; Kunzova, S.; Sochor, O.; Bauerova, H.; Kiacova, N.; Barchitta, M.; Vinciguerra, M. Association of Dietary Patterns with Metabolic Syndrome: Results from the Kardiovize Brno 2030 Study. Nutrients 2018, 10, 898. [Google Scholar] [CrossRef]
- Zulyniak, M.A.; de Souza, R.J.; Mente, A.; Kandasamy, S.; Nundy, M.; Desai, D.; Raman, K.; Hasso, R.; Pare, G.; Beyene, J.; et al. A randomized controlled trial of the effects of a prudent diet on cardiovascular risk factors, gene expression, and DNA methylation—The Diet and Genetic Intervention (DIGEST) Pilot study. BMC Nutr. 2016, 2, 34. [Google Scholar] [CrossRef]
- Chen, M.; Xu, Y.; Wang, X.; Shan, S.; Cheng, G. Association between the prudent dietary pattern and blood pressure in Chinese adults is partially mediated by body composition. Front. Nutr. 2023, 10, 1131126. [Google Scholar] [CrossRef]
- Yu, E.; Malik, V.S.; Hu, F.B. Cardiovascular Disease Prevention by Diet Modification: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018, 72, 914–926. [Google Scholar] [CrossRef] [PubMed]
- Atkins, J.L.; Whincup, P.H.; Morris, R.W.; Lennon, L.T.; Papacosta, O.; Wannamethee, S.G. Dietary patterns and the risk of CVD and all-cause mortality in older British men. Br. J. Nutr. 2016, 116, 1246–1255. [Google Scholar] [CrossRef]
- Cao, Y.; Taylor, A.W.; Wittert, G.; Adams, R.; Shi, Z. Dietary patterns and sleep parameters in a cohort of community dwelling Australian men. Asia Pac. J. Clin. Nutr. 2017, 26, 1158–1169. [Google Scholar] [CrossRef] [PubMed]
- Lassale, C.; Batty, G.D.; Baghdadli, A.; Jacka, F.; Sánchez-Villegas, A.; Kivimäki, M.; Akbaraly, T. Healthy dietary indices and risk of depressive outcomes: A systematic review and meta-analysis of observational studies. Mol. Psychiatry 2019, 24, 965–986. [Google Scholar] [CrossRef] [PubMed]
- Panda, S. The arrival of circadian medicine. Nat. Rev. Endocrinol. 2019, 15, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Solis, R.; Sassone-Corsi, P. Epigenetic control and the circadian clock: Linking metabolism to neuronal responses. Neuroscience 2014, 264, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Boege, H.L.; Bhatti, M.Z.; St-Onge, M.P. Circadian rhythms and meal timing: Impact on energy balance and body weight. Curr. Opin. Biotechnol. 2021, 70, 1–6. [Google Scholar] [CrossRef]
- Thosar, S.S.; Butler, M.P.; Shea, S.A. Role of the circadian system in cardiovascular disease. J. Clin. Investig. 2018, 128, 2157–2167. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Scheer, F. Circadian System and Glucose Metabolism: Implications for Physiology and Disease. Trends Endocrinol. Metab. 2016, 27, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Stenvers, D.J.; Scheer, F.; Schrauwen, P.; la Fleur, S.E.; Kalsbeek, A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 2019, 15, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Kumar Jha, P.; Challet, E.; Kalsbeek, A. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Mol. Cell. Endocrinol. 2015, 418 Pt 1, 74–88. [Google Scholar] [CrossRef]
- Rüger, M.; Scheer, F.A. Effects of circadian disruption on the cardiometabolic system. Rev. Endocr. Metab. Disord. 2009, 10, 245–260. [Google Scholar] [CrossRef]
- Li, M.D.; Li, C.M.; Wang, Z. The role of circadian clocks in metabolic disease. Yale J. Biol. Med. 2012, 85, 387–401. [Google Scholar] [PubMed]
- Staels, B. When the Clock stops ticking, metabolic syndrome explodes. Nat. Med. 2006, 12, 54–55, discussion 55. [Google Scholar] [CrossRef]
- Javeed, N.; Matveyenko, A.V. Circadian Etiology of Type 2 Diabetes Mellitus. Physiology 2018, 33, 138–150. [Google Scholar] [CrossRef]
- Prasai, M.J.; George, J.T.; Scott, E.M. Molecular clocks, type 2 diabetes and cardiovascular disease. Diab. Vasc. Dis. Res. 2008, 5, 89–95. [Google Scholar] [CrossRef]
- Grant, P.J. The clock stopped, never to go again. Diab. Vasc. Dis. Res. 2008, 5, 75. [Google Scholar] [CrossRef] [PubMed]
- Smolensky, M.H.; Hermida, R.C.; Castriotta, R.J.; Portaluppi, F. Role of sleep-wake cycle on blood pressure circadian rhythms and hypertension. Sleep Med. 2007, 8, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Vgontzas, A.N.; Bixler, E.O.; Chrousos, G.P. Sleep apnea is a manifestation of the metabolic syndrome. Sleep Med. Rev. 2005, 9, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Gramaglia, C.; Gambaro, E.; Bartolomei, G.; Camera, P.; Chiarelli-Serra, M.; Lorenzini, L.; Zeppegno, P. Increased Risk of Metabolic Syndrome in Antidepressants Users: A Mini Review. Front. Psychiatry 2018, 9, 621. [Google Scholar] [CrossRef] [PubMed]
- Ghanei Gheshlagh, R.; Parizad, N.; Sayehmiri, K. The Relationship Between Depression and Metabolic Syndrome: Systematic Review and Meta-Analysis Study. Iran. Red Crescent Med. J. 2016, 18, e26523. [Google Scholar] [CrossRef]
- Al-Khatib, Y.; Akhtar, M.A.; Kanawati, M.A.; Mucheke, R.; Mahfouz, M.; Al-Nufoury, M. Depression and Metabolic Syndrome: A Narrative Review. Cureus 2022, 14, e22153. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Cai, X.; Zheng, C.; Qiu, S.; Ke, H.; Huang, Y. Update on the Relationship Between Depression and Neuroendocrine Metabolism. Front. Neurosci. 2021, 15, 728810. [Google Scholar] [CrossRef] [PubMed]
- JE, L.L.; Trujillo, R.; Sroga, G.E.; Figueiro, M.G.; Vashishth, D. Circadian rhythm disruption with high-fat diet impairs glycemic control and bone quality. FASEB J. 2021, 35, e21786. [Google Scholar] [CrossRef]
- Lotti, S.; Dinu, M.; Colombini, B.; Amedei, A.; Sofi, F. Circadian rhythms, gut microbiota, and diet: Possible implications for health. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1490–1500. [Google Scholar] [CrossRef]
- Pickel, L.; Sung, H.K. Feeding Rhythms and the Circadian Regulation of Metabolism. Front. Nutr. 2020, 7, 39. [Google Scholar] [CrossRef]
- Varraso, R.; Garcia-Aymerich, J.; Monier, F.; Le Moual, N.; De Batlle, J.; Miranda, G.; Pison, C.; Romieu, I.; Kauffmann, F.; Maccario, J. Assessment of dietary patterns in nutritional epidemiology: Principal component analysis compared with confirmatory factor analysis. Am. J. Clin. Nutr. 2012, 96, 1079–1092. [Google Scholar] [CrossRef]
- Marques-Vidal, P.; Waeber, G.; Vollenweider, P.; Guessous, I. Socio-demographic and lifestyle determinants of dietary patterns in French-speaking Switzerland, 2009–2012. BMC Public Health 2018, 18, 131. [Google Scholar] [CrossRef]
Total | Men | Women | p-Value | |
---|---|---|---|---|
n = 4253 | n = 1736 | n = 2517 | ||
Age, (years) | 65.4 (10.0) | 66.0 (9.6) | 65.0 (10.2) | 0.001 |
Sex | <0.001 | |||
Men | 1736 (40.8%) | 1736 (100.0%) | 0 (0.0%) | |
Women | 2517 (59.2%) | 0 (0.0%) | 2517 (100.0%) | |
Race | 0.008 | |||
White | 3286 (77.5%) | 1379 (79.8%) | 1907 (75.9%) | |
Black African American | 632 (14.9%) | 225 (13.0%) | 407 (16.2%) | |
Other | 323 (7.6%) | 124 (7.2%) | 199 (7.9%) | |
Education | <0.001 | |||
High school graduate or below | 2073 (48.8%) | 816 (47.0%) | 1257 (50.0%) | |
Some college/college graduate | 1085 (25.5%) | 393 (22.7%) | 692 (27.5%) | |
Post-college | 1092 (25.7%) | 526 (30.3%) | 566 (22.5%) | |
Smoking | <0.001 | |||
None | 1934 (45.7%) | 613 (35.5%) | 1321 (52.7%) | |
Ex-smoker | 1889 (44.6%) | 932 (53.9%) | 957 (38.2%) | |
Current smoker | 410 (9.7%) | 183 (10.6%) | 227 (9.1%) | |
Alcohol consumption | <0.001 | |||
No | 1838 (43.3%) | 632 (36.4%) | 1206 (48.0%) | |
Yes | 2411 (56.7%) | 1102 (63.6%) | 1309 (52.0%) | |
Vigorous physical activity | <0.001 | |||
<2 times/week | 3183 (75.2%) | 1219 (70.5%) | 1964 (78.5%) | |
≥2 times/week | 1047 (24.8%) | 510 (29.5%) | 537 (21.5%) | |
Central obesity | 2849 (71.6%) | 1065 (65.0%) | 1784 (76.3%) | <0.001 |
Elevated glucose | 2129 (50.3%) | 940 (54.4%) | 1189 (47.4%) | <0.001 |
Elevated | 1504 (35.4%) | 642 (37.0%) | 862 (34.2%) | 0.067 |
Reduced high-density lipoprotein cholesterol | 1059 (24.9%) | 413 (23.8%) | 646 (25.7%) | 0.16 |
Elevated blood pressure | 2966 (69.8%) | 1231 (70.9%) | 1735 (69.0%) | 0.17 |
Depression | 543 (12.8%) | 175 (10.1%) | 368 (14.6%) | <0.001 |
Sleep disorder | 1345 (31.6%) | 602 (34.7%) | 743 (29.6%) | <0.001 |
Metabolic syndrome | 2055 (48.3%) | 841 (48.4%) | 1214 (48.2%) | 0.89 |
Circadian syndrome | 1527 (35.9%) | 619 (35.7%) | 908 (36.1%) | 0.78 |
Energy intake (kcal/day) | 1830.0 (793.5) | 1932.3 (823.9) | 1759.4 (764.0) | <0.001 |
Protein intake (g/day) | 71.9 (33.2) | 74.4 (33.6) | 70.2 (32.9) | <0.001 |
Fat intake (g/day) | 67.5 (32.1) | 70.9 (33.7) | 65.2 (30.8) | <0.001 |
Carbohydrate intake (g/day) | 229.7 (109.0) | 239.2 (109.6) | 223.1 (108.0) | <0.001 |
Western dietary pattern | 0.00 (1.00) | −0.09 (0.96) | 0.06 (1.02) | <0.001 |
Prudent dietary pattern | −0.00 (1.00) | 0.19 (1.05) | −0.13 (0.94) | <0.001 |
Quartiles of Intake | Intake as a Continuous Variable | |||||
---|---|---|---|---|---|---|
Q1 (Low) | Q2 | Q3 | Q4 (High) | p-Value * | ||
Prudent Pattern | ||||||
Model 1 | 1.00 | 0.76 (0.59–0.98) | 0.71 (0.54–0.93) | 0.64 (0.51–0.81) | 0.004 | 0.88 (0.80–0.96) |
Model 2 | 1.00 | 0.80 (0.62–1.04) | 0.75 (0.56–1.00) | 0.61 (0.46–0.81) | 0.005 | 0.85 (0.76–0.95) |
Model 3 | 1.00 | 0.83 (0.65–1.06) | 0.85 (0.64–1.14) | 0.72 (0.55–0.94) | 0.086 | 0.91 (0.82–1.01) |
Western Pattern | ||||||
Model 1 | 1.00 | 0.99 (0.78–1.27) | 1.15 (0.90–1.46) | 1.46 (1.16–1.83) | <0.001 | 1.21 (1.12–1.31) |
Model 2 | 1.00 | 1.08 (0.83–1.41) | 1.33 (1.05–1.69) | 1.84 (1.41–2.40) | <0.001 | 1.42 (1.27–1.59) |
Model 3 | 1.00 | 1.01 (0.78–1.30) | 1.23 (0.96–1.58) | 1.47 (1.10–1.95) | <0.001 | 1.29 (1.16–1.44) |
Prudent Pattern Patterns | ||||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | p for Trend | p for Interaction | |
Sex | 0.216 | |||||
Men | 1.00 | 0.88 (0.63–1.23) | 0.97 (0.64–1.45) | 0.96 (0.62–1.51) | 0.926 | |
Women | 1.00 | 0.75 (0.54–1.05) | 0.74 (0.52–1.06) | 0.58 (0.42–0.80) | 0.004 | |
Age | 0.478 | |||||
<65 | 1.00 | 0.90 (0.63–1.28) | 0.79 (0.50–1.25) | 0.71 (0.47–1.09) | 0.111 | |
≥65 | 1.00 | 0.80 (0.62–1.03) | 1.00 (0.74–1.34) | 0.84 (0.58–1.22) | 0.640 | |
Race | 0.008 | |||||
White | 1.00 | 0.83 (0.64–1.09) | 0.85 (0.62–1.16) | 0.75 (0.56–1.02) | 0.090 | |
Black African American | 1.00 | 1.28 (0.70–2.33) | 1.91 (0.86–4.21) | 0.62 (0.28–1.40) | 0.915 | |
Other | 1.00 | 0.36 (0.13–0.97) | 0.34 (0.11–1.09) | 0.65 (0.25–1.68) | 0.367 | |
Education | 0.695 | |||||
High school graduate or below | 1.00 | 0.87 (0.63–1.19) | 1.00 (0.68–1.46) | 0.99 (0.71–1.39) | 0.954 | |
Some college/college graduate | 1.00 | 0.88 (0.55–1.39) | 0.87 (0.53–1.45) | 0.68 (0.42–1.10) | 0.131 | |
Post-college | 1.00 | 0.64 (0.40–1.04) | 0.61 (0.38–0.98) | 0.48 (0.30–0.77) | 0.005 | |
Vigorous physical activity | 0.172 | |||||
<2 times/week | 1.00 | 0.78 (0.61–0.99) | 0.81 (0.61–1.09) | 0.62 (0.47–0.81) | 0.004 | |
≥2 times/week | 1.00 | 1.31 (0.63–2.72) | 1.46 (0.72–2.93) | 1.76 (0.83–3.77) | 0.106 | |
Smoking | 0.721 | |||||
None | 1.00 | 0.79 (0.56–1.11) | 0.87 (0.50–1.49) | 0.68 (0.42–1.11) | 0.225 | |
Ex-smoker | 1.00 | 0.77 (0.53–1.11) | 0.80 (0.53–1.21) | 0.72 (0.45–1.14) | 0.185 | |
Current smoker | 1.00 | 1.26 (0.65–2.47) | 0.93 (0.51–1.73) | 1.21 (0.40–3.60) | 0.857 | |
Alcohol consumption | 0.760 | |||||
No | 1.00 | 0.80 (0.58–1.10) | 0.82 (0.55–1.22) | 0.69 (0.47–1.01) | 0.073 | |
Yes | 1.00 | 0.88 (0.63–1.24) | 0.92 (0.61–1.37) | 0.81 (0.51–1.28) | 0.452 |
Western Diet Pattern Patterns | ||||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | p for Trend | p for Interaction | |
Sex | 0.059 | |||||
Men | 1.00 | 1.02 (0.72–1.43) | 1.12 (0.75–1.67) | 1.11 (0.72–1.71) | 0.574 | |
Women | 1.00 | 0.93 (0.66–1.30) | 1.20 (0.87–1.65) | 1.74 (1.13–2.69) | 0.010 | |
Age | 0.214 | |||||
<65 | 1.00 | 0.84 (0.59–1.20) | 1.02 (0.69–1.52) | 1.33 (0.81–2.19) | 0.212 | |
≥65 | 1.00 | 1.21 (0.86–1.69) | 1.47 (1.04–2.08) | 1.50 (0.99–2.25) | 0.020 | |
Race | 0.428 | |||||
White | 1.00 | 1.08 (0.82–1.41) | 1.26 (0.98–1.63) | 1.49 (1.10–2.01) | 0.005 | |
Black African American | 1.00 | 0.85 (0.42–1.71) | 1.58 (0.81–3.07) | 1.52 (0.60–3.86) | 0.233 | |
Other | 1.00 | 0.43 (0.18–1.03) | 0.73 (0.29–1.78) | 0.80 (0.27–2.40) | 0.588 | |
Education | 0.384 | |||||
High school graduate or below | 1.00 | 0.95 (0.70–1.28) | 0.98 (0.69–1.38) | 1.01 (0.68–1.51) | 0.909 | |
Some college/college graduate | 1.00 | 0.89 (0.52–1.53) | 1.53 (0.94–2.49) | 1.66 (0.97–2.84) | 0.025 | |
Post-college | 1.00 | 1.13 (0.64–2.00) | 1.26 (0.66–2.39) | 2.41 (1.22–4.76) | 0.038 | |
Vigorous physical activity | 0.897 | |||||
<2 times/week | 1.00 | 0.99 (0.75–1.30) | 1.14 (0.87–1.51) | 1.33 (0.98–1.81) | 0.046 | |
≥2 times/week | 1.00 | 0.94 (0.53–1.67) | 1.42 (0.77–2.62) | 1.61 (0.80–3.23) | 0.125 | |
Smoking | 0.136 | |||||
None | 1.00 | 1.22 (0.84–1.77) | 1.60 (1.16–2.21) | 2.21 (1.34–3.64) | <0.001 | |
Ex-smoker | 1.00 | 0.86 (0.61–1.21) | 1.04 (0.73–1.48) | 1.09 (0.73–1.62) | 0.498 | |
Current smoker | 1.00 | 0.39 (0.13–1.16) | 0.39 (0.16–0.93) | 0.41 (0.17–0.95) | 0.185 | |
Alcohol consumption | 0.108 | |||||
No | 1.00 | 0.78 (0.53–1.14) | 1.24 (0.89–1.74) | 1.40 (0.94–2.09) | 0.017 | |
Yes | 1.00 | 1.20 (0.89–1.62) | 1.19 (0.83–1.70) | 1.45 (0.96–2.18) | 0.119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljahdali, A.A.; Shi, Z. Circadian Syndrome Is Associated with Dietary Patterns among Middle-Older Americans: The Health and Retirement Study. Nutrients 2024, 16, 760. https://doi.org/10.3390/nu16060760
Aljahdali AA, Shi Z. Circadian Syndrome Is Associated with Dietary Patterns among Middle-Older Americans: The Health and Retirement Study. Nutrients. 2024; 16(6):760. https://doi.org/10.3390/nu16060760
Chicago/Turabian StyleAljahdali, Abeer Ali, and Zumin Shi. 2024. "Circadian Syndrome Is Associated with Dietary Patterns among Middle-Older Americans: The Health and Retirement Study" Nutrients 16, no. 6: 760. https://doi.org/10.3390/nu16060760
APA StyleAljahdali, A. A., & Shi, Z. (2024). Circadian Syndrome Is Associated with Dietary Patterns among Middle-Older Americans: The Health and Retirement Study. Nutrients, 16(6), 760. https://doi.org/10.3390/nu16060760