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Abstract: While polyphenol consumption is often associated with an increased abundance of benefi-
cial microbes and decreased opportunistic pathogens, these relationships are not completely described
for polyphenols consumed via habitual diet, including culinary herb and spice consumption. This
analysis of the International Cohort on Lifestyle Determinants of Health (INCLD Health) cohort
uses a dietary questionnaire and 16s microbiome data to examine relationships between habitual
polyphenol consumption and gut microbiota in healthy adults (n = 96). In this exploratory analysis,
microbial taxa, but not diversity measures, differed by levels of dietary polyphenol consumption.
Taxa identified as exploratory biomarkers of daily polyphenol consumption (mg/day) included
Lactobacillus, Bacteroides, Enterococcus, Eubacterium ventriosum group, Ruminococcus torques group, and
Sutterella. Taxa identified as exploratory biomarkers of the frequency of polyphenol-weighted herb
and spice use included Lachnospiraceae UCG-001, Lachnospiraceae UCG-004, Methanobrevibacter, Lach-
noclostridium, and Lachnotalea. Several of the differentiating taxa carry out activities important for
human health, although out of these taxa, those with previously described pro-inflammatory qualities
in certain contexts displayed inverse relationships with polyphenol consumption. Our results suggest
that higher quantities of habitual polyphenol consumption may support an intestinal environment
where opportunistic and pro-inflammatory bacteria are represented in a lower relative abundance
compared to those with less potentially virulent qualities.

Keywords: microbiome; polyphenols; culinary herbs and spices; phytochemicals

1. Introduction

Polyphenols are phytochemicals present in various fruits, vegetables, nuts, bever-
ages, and culinary herbs and spices in the diet [1], and evidence suggests that certain
diet-derived phytochemicals (i.e., secondary plant metabolites), such as polyphenols, may
beneficially modulate gut microbiota and mediate other clinically relevant biological out-
comes through both microbiota-independent and microbiota-dependent mechanisms [2]
Independent of interactions with microbiota, polyphenols exert direct effects through
cell signaling, free-radical scavenging, and modulating gene expression and molecule
production, thus altering cellular activity [3–6]. Polyphenol bioactivity is also mediated,
at least in part, through interactions with gut microbiota [7,8]. Microbial metabolism of
polyphenols results in bioactive metabolites that exert physiological effects both systemi-
cally and locally at the intestinal mucosa [9,10]. Taken together, evidence suggests these
mechanisms beneficially impact microbial community structure [11–14], intestinal perme-
ability [15,16], oxidative stress [4,9,17], and inflammatory [9,18–20], neurological [21–23],
and cardiometabolic [24,25] processes.
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While polyphenol consumption is suggested to be associated with an increased abun-
dance of beneficial bacteria and a decrease in opportunistic and pro-inflammatory bacteria
in certain contexts [13,14], evidence regarding the impact of polyphenol consumption on
the abundance of specific taxa, microbial diversity, and functional communities is not
consistent. It is worth noting that variability in an individual’s cardiometabolic health,
substance use (e.g., smoking and alcohol use), exercise habits, healthy history, and several
other factors may be reflected in variable gut microbial communities [26–30] and subsequent
interactions with dietary polyphenols. Moreover, although the impacts of specific polyphenol-
based interventions have been described in some detail, the impacts are not well described for
polyphenols consumed via regular dietary habits, and consideration for the consumption of
herbs and spices used in culinary settings is even more limited. Further investigating these
relationships in the context of regular dietary habits in a cohort of generally healthy adults
will provide insight into how habitual polyphenol consumption may support a gut microbial
environment that facilitates health maintenance and, subsequently, disease prevention.

In our previous research exploring associations between culinary herb and spice use
and gut microbial taxa and diversity, we identified that the frequency of culinary herb and
spice use was associated with microbial taxa at the phylum level, particularly regarding
herbs and spices high in polyphenol content [31]. The current study aims to build on
these previous findings by using data from the same cohort to (1) explore relationships
between habitual dietary polyphenol consumption from food and beverage sources and
microbial taxa and diversity, and (2) further explore relationships between the frequency of
polyphenol-weighted herb and spice use and microbial taxa and diversity in healthy adults.
To achieve this, we first explored potential microbial biomarkers of polyphenol exposure
and then used these identified biomarkers in more targeted statistical comparisons. The
findings of this research further inform our understanding of the relationship between
habitual dietary patterns on microbiota and may inform future guidance on dietary intake
of polyphenols via diet.

2. Materials and Methods
2.1. Study Design and Participants

This study is a secondary analysis of the International Cohort on Lifestyle Determi-
nants of Health (INCLD Health) cohort data, the methods of which have been previously
described [32]. While the INCLD Health longitudinal cohort study collected data on
various aspects of health and wellness, diet, and the gut microbiome over several time
points at 6-month intervals, this secondary analysis only includes data from the baseline
visit analyzed in a cross-sectional manner. From the original sample, a subsample (n = 96)
was selected for this secondary analysis based on specific criteria. Inclusion criteria con-
sisted of the full completion of all survey questions and data collection methods utilized
for this secondary analysis, including data from the Demographic Questionnaire, Health
History Questionnaire, Herb and Spice Frequency Questionnaire, VioScreen dietary analysis
tool [33,34], and 16s rRNA microbiota analysis. Exclusion criteria consisted of past or current
inflammatory bowel syndrome, inflammatory bowel disease (ulcerative colitis or Crohn’s
disease), or celiac disease; past or current autoimmune disease; and current antibiotic use.

2.2. 16S rRNA Gene Sequencing and Processing

All 16sRNA gene sequencing and processing was performed by the Pacific Northwest
National Laboratory (Richland, WA, USA). The Quick-DNA Fecal/Soil Microbe Microprep
Kit (Zymo, Irvine, CA, USA) was used to extract microbial DNA from participant fecal
samples. An Illumina MiSeq was used to sequence the hypervariable V4 region of the 16S
rRNA gene using the 515F-806R primer set. The resulting 16S rRNA amplicon dataset
was processed using QIIME2 (v2021.4) [35]. The DADA2 (q2-dada2) [36] pipeline within
QIIME2 was used to denoise and cluster amplicon sequence variants (ASVs), which were
then taxonomically classified (q2-feature-classifer) using the SILVA database (v138) [37].
Processed data were exported from QIIME2 and converted into a comma-delimited file.
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2.3. Microbiome Data Filtering and Normalization

The data exported from QIIME2 were filtered and normalized in the MicrobiomeAna-
lyst online platform [38]. To remove features that may be a result of sequencing error or
low-level contamination, a Low Count Filter removed reads with less than 4 counts and
read that were present in less than 20% of the samples. To remove features that are close to
constant throughout the experimental conditions and thus are not likely to be associated
with the study conditions, a Low Variance Filter was applied to remove reads with less
than 10% variance across samples, determined based on the interquartile range (IQR). Data
were rarefied to minimum counts due to the large range in library sizes and data was scaled
using total sum scaling. No data transformation was performed.

2.4. Polyphenol Estimations from Vioscreen Dietary Data

To quantitate polyphenol intake from the VioScreen food frequency questionnaire
(FFQ) output [33,34], an Excel spreadsheet was developed to catalog all foods in which
participants identified in the FFQ. All mixed dishes were deconstructed to obtain individual
foods by using the Food Commodity Intake Database (FCID, https://fcid.foodrisk.org/
recipes/, accessed on 7 July 2023). All deconstructed recipes were reviewed by a team
of research dietitians. All foods presumed to have minimal polyphenol content were
removed from analysis. When foods were grouped together on the FFQ, individual foods
comprising the group were weighted using 2005–2018 National Health and Nutrition
Examination Survey (NHANES) data. The remaining foods were then matched to foods
and beverages in the Phenol-Explorer database (PED) version 3.6 [1,39]. The PED contains
data related to 501 individual polyphenols, which are further categorized into 18 sub-classes
within the following 5 major classes: flavonoids, phenolic acids, lignans, stilbenes, and
“other”. The flavonoids group contains 279 polyphenols; the phenolic acids group contains
108 polyphenols; the stilbenes group contains 10 polyphenols; the lignans group contains
29 polyphenols; and the “other” group contains 80 polyphenols. Content values in the PED
were chosen based on the appropriate method for the food matrix and/or polyphenol subclass
following previously published methods [40–42]. Retention factors were not applied.

2.5. Exposure Variables

There are two main exposure variables: estimated dietary polyphenol consumption
and frequency of polyphenol-weighted herb and spice use.

The estimated dietary polyphenol consumption variable is used both continuously and
categorically. As a continuous variable, it is defined as the total estimated milligrams
of polyphenols consumed per day (mg/day) from dietary food and beverage sources
other than herbs and spices. As a categorical variable, participants are stratified into low-,
medium-, or high-consumer groups based on the tertile distributions of the total estimated
polyphenols consumed per day (mg/day). These tertile distributions are determined by
the mg/day value of polyphenols consumed.

Since the Vioscreen dietary analysis tool does not account for the consumption of
individual herbs and spices, which may be high in polyphenols, the frequency of polyphenol-
weighted herb and spice use categorical variable allows us to explore relationships that these
polyphenol-rich sources may have with gut microbiota. To create this polyphenol-weighted
frequency variable, the frequency of use of each herb and spice was first reported by
participants and scored as follows: never (Score 0), once per month (Score 1), two-to-three
times per month (Score 2), once per week (Score 3), two-to-three times per week (Score 4),
three-to-four times per week (Score 5), five-to-six times per week (Score 6), or daily (Score 7).
Then, we stratified participants into groups of low-, medium-, and high-frequency users of
polyphenol-weighted herbs and spices based on the tertile distributions of calculated
polyphenol-weighted frequency scores. These tertile distributions are determined by the
value of frequency scores.

To calculate polyphenol-weighted frequency scores, we used the Phenol Explorer
Database [1,39] to categorize herbs and spices into one of four groups based on their to-

https://fcid.foodrisk.org/recipes/
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tal polyphenol contents in milligrams of total polyphenols per kilogram dry weight of the
herb/spice (mg/kg DW; Figure 1), as follows: >1000 mg/kg DW (Group 1); 1000–1999 mg/kg
DW (Group 2); 2000–2999 mg/kg DW (Group 3); and ≥3000 mg/kg DW (Group 4). We
calculated a weighted frequency score for each of these four groups by summing the fre-
quency scores of herbs within each group and then multiplying that summed score by the
group number.
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Figure 1. Average herb and spice use. Shown here are the average frequencies with which each herb
and spice was used by study participants. Each herb and spice are color labeled by the category of its
total polyphenol contents in milligrams (mg) of total polyphenols per kilogram (kg) dry weight of
the herb/spice (mg/kg DW).

For example, Group 4 contains herbs with a polyphenol content of ≥3000 mg/kg
DW according to the PED), and includes cinnamon, clove, and allspice; if a participant’s
frequency score for each herb is 4, 0, and 7, respectively, a summed frequency score for
Group 4 is created by 4 + 0 + 7 = 11. Then, a final weighted frequency score is created by
multiplying 11 (the summed score) by the group number: 11 × 4 = 44.

As the survey does not assess the actual quantity of herbs and spices consumed, only
the frequency of use, the weighted frequency score accounts for the fact that certain herbs
and spices may contribute more polyphenols per instance of consumption than others.

2.6. Statistical Analysis

The three gut microbial outcomes for this study include measures of alpha diver-
sity (Shannon Index), beta diversity (Bray–Curtis dissimilarity), and microbial taxa abun-
dance [38]. Differences in the alpha diversity (Shannon Index) between low-, medium-, and
high-exposure groups were assessed by Kruskal–Wallis test with a post-hoc Wilcoxon Rank
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Sum test. A Principal Coordinate Analysis (PCoA) based on Bray–Curtis dissimilarity
metrics was used to observe differences in bacterial communities between low-, medium-,
and high-exposure groups. Differences in Bray–Curtis distances were statistically analyzed
using a permutational analysis of variance (PERMANOVA) with alpha = 0.05.

Then, relationships between microbial taxa abundance and polyphenol consumption
were explored in a two-step approach. First, potential microbial biomarkers of polyphenol
intake were identified by using a linear discriminate analysis (LDA) effect size (LEfSe). This
LEfSe analysis assessed differences in bacterial taxa abundance between low-, medium-, and
high-exposure groups and the effect size of those differences with a threshold LDA score
of >2. As the purpose of this study was to explore microbial taxa that may be related to
differing quantities of polyphenol consumption, which could be used in the subsequent
targeted analysis, alpha = 0.01 for the LEfSe. Then, the microbial biomarkers identified via
LEfSe were used in a Spearman’s rank correlation and a heatmap of correlation coefficients
to explore relationships between microbial taxa abundance and the mg/day consumption
of total polyphenols, as well as the mg/day consumption of the specific major polyphenol
classes (e.g., flavonoids, phenolic acids, lignans, stilbenes, other).

The diversity and LeFSe analyses were performed in the MicrobiomeAnalyst online
platform [33], while the Spearman’s Rank analyses were performed in GraphPad Prism
10 for macOS (Version 10.0.2).

3. Results
3.1. Characteristics of Study Participants

Participant demographics, cardiometabolic measures, and substance use history (e.g.,
smoking history, frequency of alcohol use) are reported in Table 1. The majority of par-
ticipants were white (~78%), non-Hispanic (86.5%), and female (84.4%). Cardiometabolic
measures for participants were, on average, within normal physiological ranges. Addi-
tionally, the majority of participants were non-smokers (88.5%); out of the 11 participants
who reported being smokers, nine reported smoking 1–3 times per month and only two
reported smoking daily. Finally, around 60% of participants reported consuming alcoholic
beverages from never to three times per month, with only about 6% reporting use from five
times per week to daily. The distribution of these measures across the low-, medium-, and
high-polyphenol consumer groups are described in Supplementary Materials (Table S1).

Table 1. Characteristics of study participants (n = 96).

Variables Value

Age M(SD)

29.3 (6.1)

Sex Assigned at Birth n (%)

Male 14 (14.6)
Female 81 (84.4)
Intersex 1 (>1)

Race n (%)

White/Caucasian 75 (78.1)
Asian 5 (5.2)
African American 2 (2)
Middle Eastern 2 (2)
Native Hawaiian/Pacific Islander 1 (1)
American/Alaska Native 1 (1)
Mixed 6 (6.3)
Other/Unknown 4 (4.2)

Ethnicity n (%)

Hispanic/LatinX 9 (9.4)
Non-Hispanic/LatinX 83 (86.5)
Unknown 4 (4.2)
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Table 1. Cont.

Variables Value

Cardiometabolic Measures M(SD)

BMI (kg/m2) 23.7 (4.3)
Triglycerides (mg/dl) 88.5 (47.0)
Total cholesterol (mg/dl) 170 (29.1)
LDL (mg/dl) 73.4 (33.8)
HDL (mg/dl) 62.2 (21.4)
Systolic blood pressure (mmHg) 113.6 (12.2)
Diastolic blood pressure (mmHg) 65.2 (9.1)
Hemoglobin A1c (%) 4.3 (0.6)

Smoking History n (%)

Smoker 11 (11.5)
Non-smoker 85 (88.5%)

Alcohol Use Frequency n (%)

Never 21 (21.9)
1-3x/month 37 (38.5)
1-2x/week 19 (19.8)
3-4x/week 13 (13.5)
5-6x/week 4 (4.2)
Daily 2 (2.1)

Characteristics of study participants. Shown are demographic, cardiometabolic, and substance use history of
study participants (n = 96). M = mean; SD = standard deviation; n = count; % = percent of sample. BMI = body
mass index; LDL = low-density lipoprotein; HDL = high-density lipoprotein.

3.1.1. Dietary Polyphenol Consumption

The average estimated dietary polyphenol consumption is reported in Table 2. Values
for these exposure variables are reported for the entire sample in addition to being stratified
by low-, medium-, and high-consumer categories based on tertile distributions. The largest
major class of polyphenols consumed by all participants on average were flavonoids,
followed by phenolic acids, lignans, “other”, and stilbenes (Table 2). Flavonoids on average
comprised about half of the participants’ total polyphenol consumption.

Table 2. Estimated dietary polyphenol exposure of study participants (n=96).

Estimated Dietary Polyphenol Intake (mg/day)

Consumer Category All Low Med High

Total Polyphenols 1224.11 (661.67) 557.64 (198.68)
(n = 34)

1131.27 (169.97)
(n = 32)

1986.42 (467.70)
(n = 30)

Flavonoids 590.23 (343.00) 270.86 (80.89)
(n = 34)

504.37 (77.61)
(n = 32)

998.24 (258.16)
(n = 30)

Phenolic Acids 487.54 (445.01) 117.16 (53.24)
(n = 34)

363.62 (105.28)
(n = 32)

985.83 (430.02)
(n = 30)

Lignans 105.86 (80.79) 36.19 (12.66)
(n = 34)

85.16 (15.43)
(n = 32)

196.12 (77.21)
(n = 30)

Stilbenes 0.90 (1.47) 0.03 (0.04)
(n = 34)

0.38 (0.14)
(n = 32)

2.31 (1.89)
(n = 30)

Other 23.16 (15.65) 9.60 (3.79)
(n = 35)

20.08 (2.97)
(n = 30)

40.45 (14.78)
(n = 31)

Weighted Frequency Score

Frequency Category All Low Med High

Average Frequency Score 102.93 (19.27) 59.75 (19.99)
(n = 33)

96.81 (8.19)
(n = 28)

153.14 (29.61)
(n = 35)

Estimated dietary polyphenol exposure of study participants. Shown here are the mean estimated dietary
polyphenol intake values (mg/day) for study participants. The mean value (M) and standard deviation (SD) are
shown for all participants (All), as well as those stratified into low-, medium- (Med), and high-exposure groups
(n = population).
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3.1.2. Herb and Spice Use

Out of the 29 herbs measured, only six herbs and spices were, on average, consumed at
least once per week including black pepper, onion, garlic, cinnamon, ginger, and turmeric
(Figure 1). Three out of these six herbs fell into the >1000 mg/kg DW category, as listed
in the Phenol Explorer Database (PED): onion, garlic, and ginger. Black pepper, the most
frequently used herb, and turmeric both fell into the 1000–1999 mg/kg DW category. Only
one of these six herbs, cinnamon, fell into ≥3000 mg/kg DW category. In total, 14 of the
herbs and spices used fell into the >1000 mg/kg DW category, with 9 herbs and spices
in the 1000–1999 mg/kg DW category, 3 herbs and spices in the 2000–2999 mg/kg DW
category, and 3 herbs and spices in the ≥3000 mg/kg DW category.

3.2. Microbial Community Profiling Stratified by Estimated Dietary Polyphenol
Consumption Categories

Relative genus (Figure 2A) and phylum-level (Figure 2B) abundance for each partici-
pant is described and stratified by exposure categories. All groups were characterized by
the Firmicutes being the dominant phyla, followed by Bacteroidota, Actinobacteria, and
Proteobacteria with no significant differences between groups. There also appear to be two
outliers in the high group with respect to Proteobacteria abundance.
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dietary polyphenols.

3.3. Microbial Taxa Abundance, but Not Diversity, Differs by Estimated Dietary Polyphenol
Consumption Categories

Alpha (Figure 3A,B) and beta diversity (Figure 3C) measures were described for par-
ticipants and stratified by exposure categories. The Shannon Index values, a measure
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of alpha diversity, did not differ between low (M = 3.88, SD = 0.15), medium (M = 3.82,
SD = 0.19), and high (M = 3.79, SD = 0.28) consumers of dietary polyphenols in this sample
(Figure 3A). Observed richness, another measure of alpha diversity, also did not differ be-
tween low (M = 121.41, SD = 17.54), medium (M = 113.29, SD = 20.09), and high (M = 121.56,
SD = 26.56) consumers of dietary polyphenols in this sample (Figure 3B). Bray–Curtis dis-
similarity distances were plotted using Principal Coordinate Analysis (PCoA) plotted
Bray–Curtis dissimilarity metrics of low, medium, and high consumers of dietary polyphe-
nols (Figure 3C); PERMANOVA using these metrics revealed no differences in the beta
diversity of microbial communities between these groups.
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dietary polyphenols; PERMANOVA revealed that no significant features were detected.

When examining differences in taxa abundance at the genus level between low,
medium, and high consumers of dietary polyphenols (Figure 4A), the abundance of Lacto-
bacillus (p-value = 0.007) and Sutterella (p-value = 0.064) was highest in the high-consumer
group and lowest in the low-consumer group. Conversely, the abundance of Eubacterium
ventriosum group (p-value = 0.014), Ruminococcus torques group (p-value = 0.038), Bacteroides
(p-value = 0.052), and Enterococcus (p-value = 0.057) in the low-consumer group and lowest
in the high-consumer group (Figure 4A). A phylogenetic heat tree comparing abundances
between the low versus high consumer groups, including differential abundances analyzed
by Wilcoxon Rank Sum, are also represented (Figure 4B).
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Figure 4. Taxa abundance differs by estimated polyphenol consumption. Shown are taxa at the genus
level (A) which were identified as biomarkers of polyphenol consumption and differ by low, medium,
and high consumers; only taxa with p < 0.1 are displayed. A phylogenetic heat tree (B) displaying a
differential abundance of genera (p-value < 0.1) was detected by Wilcoxon Rank Sum comparing the
low and high consumers.

3.4. Microbial Taxa Abundance, but Not Diversity, Differs by the Frequency of
Polyphenol-Weighted Culinary Herb and Spice Use

Alpha and beta diversity measures were for participants and stratified by exposure
categories. The Shannon Index values, a measure of alpha diversity, did not differ be-
tween low-frequency (M = 3.79, SD = 0.26), medium-frequency (M = 3.82, SD = 0.22), and
high-frequency (M = 3.86, SD = 0.20) users of polyphenol-containing herbs and spices
(Figure 5A). Observed richness, another measure of alpha diversity, also did not differ be-
tween low (M = 118.04, SD = 23.32), medium (M = 118.57, SD = 20.54), and high (M = 116.11,
SD = 19.98) consumers of dietary polyphenols in this sample (Figure 5B). Principal Co-
ordinate Analysis (PCoA) plotted Bray–Curtis dissimilarity metrics of low-, medium-,
and high-frequency users of polyphenol-containing herbs and spices (Figure 5C); PER-
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MANOVA using these metrics revealed no differences in the beta diversity of microbial
communities between these groups.
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Figure 5. Diversity does not differ by frequency of polyphenol-weighted herb and spice use. Two
measures of alpha diversity, Shannon Index (A) and observed richness (B), are stratified by low-,
medium-, and high-frequency use of polyphenol-weighted herbs and spices; no significant features
were detected. Bray–Curtis dissimilarity metrics (C), a measure of beta diversity, are plotted between
low-, medium-, and high-frequency use of polyphenol-weighted herbs and spices; PERMANOVA
revealed that no significant features were detected.

When exploring differences in taxa abundance at the genus level between low-,
medium-, and high-frequency users of polyphenol-weighted herbs and spices (Figure 6A),
Lachnospiraceae UCG 004 (p-value = 0.006), Lachnotalea (p-value = 0.037), and Lachnospiraceae
UCG 001 (p-value = 0.085) had the lowest abundance in the low-frequency group. While
Lachnospiraceae UCG 004 had the highest abundance in the high-frequency group, both Lach-
notalea and Lachnospiraceae UCG 001 had the highest abundance in the medium-frequency
group. Conversely, the abundance of Lachnoclostridium (p-value = 0.025) and Methanobre-
vibacter (p-value = 0.092) were highest in the low-frequency group; the abundance of these
genera decreased as the frequency of use increased. A phylogenetic heat tree comparing
abundances between the low- and high-frequency users, whose differential abundances
were analyzed by Wilcoxon Rank Sum, is also represented (Figure 6B).

3.5. Correlations between Microbiota and Different Polyphenol Classes

Relationships between microbial taxa and dietary polyphenols were further explored
with Spearman’s rank correlations between relative abundance and the estimated daily
consumption (mg/day) of the major classes of polyphenols (Figure 7). The directionality of
relationships identified in the LEfSe model of participants stratified by total polyphenol
consumption (Figure 4A) was mirrored with continuous total polyphenol consumption
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(mg/day), in addition to several of the major polyphenol classes (Figure 5). Both Lacto-
bacillus (p-value = 0.002) and Sutterella (p-value = 0.031) abundance were significantly and
positively correlated with estimated total daily polyphenol consumption. When looking at
specific polyphenol classes, Lactobacillus abundance was significantly and positively corre-
lated with daily consumption of flavonoids (p-value = 0.001) and lignans (p-value = 0.008).
Similarly, the Sutterella abundance was also significantly and positively correlated with the
estimated daily consumption of flavonoids (p-value = 0.013) and lignans (p-value = 0.046).
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Figure 6. Taxa abundance differs by frequency of polyphenol-weighted herb and spice use. Shown
are taxa at the genus level (A) which were identified as biomarkers of polyphenol-weighted herb
and spice use and differ by low-, medium-, and high-frequency users; only taxa with p < 0.1 are
displayed. A phylogenetic heat tree (B) displaying a differential abundance of genera (p-value < 0.1)
was detected by Wilcoxon Rank Sum comparing the low- and high-frequency users.
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Figure 7. Spearman’s rank correlations between taxa abundance and estimated daily consumption
of major polyphenol classes. Microbial taxa identified as biomarkers of polyphenol exposure were
further explored by correlating the relative abundance of each with estimated daily polyphenol
consumption (“Total”; mg/day), and the five major polyphenol classes. Shown is a heat map
displaying the directionality (e.g., positive or inverse) and significance of the correlation coefficients.
* p < 0.05; ** p < 0.01; *** p < 0.001; t < 0.1.

The abundance of Eubacterium ventriosum (p-value = 0.001), the Ruminococcus torques
group (p-value = 0.009), Bacteroides (p-value = 0.014), and Enterococcus (p-value = 0.037)
were all inversely correlated with total polyphenol consumption. In addition, the Eu-
bacterium ventriosum group was also significantly and inversely correlated with the daily
consumption of flavonoids (p-value = <0.001), and the abundance of the Ruminococcus
torques group was significantly and inversely correlated with the daily consumption of
phenolic acids (p-value = 0.024). Both Bacteroides and Enterococcus abundance did not dis-
play any significant correlations with specific polyphenol classes, although Enterococcus
abundance displayed an inverse trending relationship (p-value < 0.1) with estimated daily
flavonoid consumption.

Regarding taxa previously identified as significant in the LEfSe models of participants
stratified by frequency of polyphenol-weighted herb and spice consumption (Figure 6A),
some but not all relationships indicated in the LEfSe models were mirrored with consump-
tion of the major polyphenol classes (Figure 7); none were significantly correlated with
total polyphenol consumption. The abundance of Lachnospiraceae UCG-004, Lachnospiraceae
UCG-001, and Lachnotalea was highest in either the high- or medium-frequency consumer
categories. Lachnospiraceae UCG-001 was significantly and positively correlated with the
estimated daily consumption of “other” polyphenols (p-value = 0.020) and Lachnotalea
was significantly and positively correlated with the estimated daily consumption of stil-
benes (p-value = 0.049). Lachnospiraceae UCG-004 displayed a positive trending relationship
(p-value < 0.1) with estimated daily lignan consumption. The abundance of Lachnoclostrid-
ium and Methanobrevibacter was highest in the low-frequency consumer categories. While
both Lachnoclostridium (p-value = 0.049) and Methanobrevibacter (p-value = 0.015) abundance
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was significantly correlated with phenolic acid consumption, Lachnoclostridium displayed
a negative correlation while Methanobrevibacter displayed a positive correlation. A full
correlation matrix with correlation coefficients, 95% CI’s, and p-values is available in
Supplementary Materials (Table S2).

4. Discussion

This study aimed to explore relationships between gut microbial measures and habit-
ual dietary polyphenol consumption in a sample of healthy adults. Although primarily
examining estimated dietary polyphenol consumption in the context of food and bev-
erage sources, we secondarily sought to explore relationships between the frequency of
polyphenol-weighted herb and spice consumption and gut microbial measures as well. In
the case of both exposures, differential trends in microbial taxa abundance but not alpha
or beta diversity measures were observed between low-, medium-, and high-exposure
groups, while the literature regarding the effect of dietary polyphenol consumption on gut
microbial diversity is conflicting and may be polyphenol and/or metabolite specific [43–45].

4.1. Microbiota Observed to Be Positively Correlated with Dietary Polyphenols

Previous studies examining changes in microbial taxa abundance in response to
polyphenol-based interventions are not consistent, and an increase or decrease in abun-
dance of specific taxa appears to differ with dietary source and/or dose of polyphenol, as
well as pathophysiological state (e.g., healthy vs. specific disease state). However, the rela-
tionship between estimated dietary polyphenol consumption and the abundance of several
microbial taxa observed in this study reflects the findings of some existing literature. For
example, we observed that individuals with higher estimated total polyphenol, flavonoid,
and lignan consumption also had a higher abundance of Lactobacillus and Sutterella. This
trend was previously described for both taxa in response to a flavonoid-enriched apple
intervention in healthy adults [46]; for Sutterella abundance in response to lignan-rich inter-
ventions (e.g., flaxseed meal [47,48] and psyllium husk [49]; and for Lactobacillus abundance
in response to other flavonoid-rich interventions [14,50]. There is previous evidence that
flavonoids promote Lactobacillus growth [51], and several Lactobacillus spp., are capable
of metabolizing both flavonoids and lignans [52,53]. It is important to note that other
studies observed either no change in Lactobacillus abundance [54] or a decrease in Sutterella
abundance [55].

The microbial taxa Lachnospiraceae UCG-004, Lachnospiraceae UCG-001, and Lachnotalea
were identified as possible biomarkers of polyphenol-weighted herb and spice use, displaying
the highest abundance in either the high- or medium-frequency user group. However, only
Lachnospiraceae UCG-001 and Lachnotalea displayed a weak positive correlation with consump-
tion of the other polyphenols and stilbenes, respectively. Little has been described regarding
the effects of polyphenol intake on Lachnospiraceae UCG-001 and Lachnospiraceae UCG-004,
except some in vitro and in vivo research [56,57], although polyphenol-based interventions
in clinical trials have noted increases in other Lachnospiraceae [54–56]. Likewise, there is
very limited research noting changes in Lachnotalea abundance [58,59] and Methanobrevibacter
abundance [60,61] in response to polyphenol and/or herb and spice interventions.

Regarding their relevance in health and disease, little is known about the role of
Lachnotalea, and while specific beneficial effects have not been widely described for Sut-
terella, its role as a commensal versus pathogenic bacteria may be species specific [62].
However, several of these other taxa are known to facilitate the regulation of immune,
cardiometabolic, and intestinal barrier function-related processes through multiple mech-
anisms. Methanobrevibacter [63] may play a role in cardiovascular health through the
depletion of trimethylamine (TMA), a precursor to the cardiovascular risk factor trimethy-
lamine oxide (TMAO), for methanogenesis [64], and was inversely associated with obesity
and BMI [65–67] and, separately, with serum TMAO levels [68].

Lactobacillus and Lachnospiraceae are producers of short-chain fatty acids (SCFA; [69,70])
and are involved in the transformation of bile acids [70,71], both of which are important im-
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munoregulatory [72,73] and cardiometabolic signaling molecules [74,75]. These molecules
regulate immune responses locally (i.e., at the intestinal mucosa) and systemically, subse-
quently supporting barrier integrity and anti-inflammatory activities [76,77], in addition
to modulating both glucose [78,79] and lipid metabolism [76,80]. Lactobacillus also play a
key role in maintaining intestinal health through several other mechanisms [81–88]. While
Lactobacillus and Lachnospiraceae promote beneficial regulatory processes under homeostatic
conditions, their overabundance has also been noted in certain systemic autoimmune
diseases (e.g., rheumatoid arthritis, systemic lupus erythematosus, Primary Sjogren’s
Syndrome [89–91]). Additionally, there are conflicting results regarding Lactobacillus over-
growth or depletion in cardiometabolic [92–94] and gastrointestinal conditions [92,95],
which also may be disease specific.

4.2. Microbiota Observed to Be Inversely Correlated with Dietary Polyphenols

Some microbial taxa in this study displayed an inverse relationship with total esti-
mated polyphenol consumption, including Eubacterium ventriosum group, Ruminococcus
torques group, Bacteroides, and Enterococcus, and several previous studies corroborate these
inverse relationships.

A dietary intervention using varying concentrations of fruit- and vegetable-derived
flavonoids demonstrated an inverse relationship between flavonoid intake and Bacteroides
abundance [96] and, separately, the use of other polyphenol-based interventions (e.g., red
wine polyphenol [14], cranberry [12]) also noted decreases in Bacteroides abundance. Red
wine is rich in flavonoids [1,39], and interestingly, the study that observed a decrease in Bac-
teroides abundance in response to a red wine polyphenol intervention also noted increases
in Lactobacillus [14]; this trend was also observed in our own study. However, Bacteroides
abundance was also observed to increase in response to certain polyphenol-based inter-
ventions [97,98]. Additionally, while several in vivo and in vitro studies using mixed [99]
or flavonoid-rich [50] interventions noted decreases in Enterococcus [100–102], studies in
human populations observed increases in Enterococcus abundance in conjunction with
increases in Lactobacillus. These differences may be influenced by the type of polyphenol
used, as some Bacteroides spp. and Enterococcus spp. are capable of metabolizing certain
types of flavonoids [103].

Both Ruminococcus torques and Eubacterium ventriosum groups were not only inversely
correlated with estimated total polyphenols, but also phenolic acid consumption and
flavonoid consumption, respectively. For the Ruminococcus torques group, the inverse re-
lationship with phenolic acid consumption and inverse trend with the consumption of
flavonoids and “other” polyphenols are reflected in clinical and in vivo studies that use
flavonoid-based [104,105], phenolic acid-based [106], and fermented vegetable juice [107]
interventions. While some Eubacterium spp. are capable of metabolizing certain flavonoids [103],
it is unclear if this extends to the Eubacterium ventriosum group specifically. Finally, Lach-
noclostridium, was inversely correlated with phenolic acid consumption. While we did
not identify phenolic acid-specific responses in the existing literature, inverse relation-
ships were observed between Lachnoclostridium and other polyphenols in vitro [51] and
in vivo [108].

Many of these bacteria are involved in the production of clinically relevant im-
munoregulatory molecules, such as short-chain fatty acids (e.g., Lachnoclostridum, [69,109],
Bacteroides [110], Eubacterium ventriosum [111]) and bile acids (e.g., Bacteroides, Enterococ-
cus [70,112]), and can play an important role in host nutrition availability [113]. However,
several are also well-known opportunistic pathogens (e.g., Enterococcus spp. [114,115], Bac-
teroides spp. [116]) and/or contain qualities, such as the mucolytic activity of Ruminococcus
torques group [117], which may have implications for gastrointestinal health and inflam-
mation [118]. Additionally, several of these taxa (e.g., Ruminococcus torques group, Lachno-
clostridium, Eubacterium ventriosum) have been implicated in the presence of cardiovascular
disease risk factors for obesity [119], obesity [120], and associated anthropometrics (e.g.,
visceral fat, BMI [121,122]), with evidence also highlighting a role for Lachnoclostridum in the
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biosynthesis of trimethylamine (TMA), a precursor to the cardiovascular disease biomarker
trimethylamine oxide (TMAO) [122]. There also appears to be a common thread with some
of these taxa being abundant in various nephropathies, either being correlated with dis-
ease outcomes (e.g., Lachnoclostridium, Bacteroides and Ruminococcus torques group [123]) or
their increased abundance observed in diseased individuals (e.g., Enterococcus, Eubacterium
ventriosum group, and Lachnoclostridium [124]).

4.3. Strengths and Limitations

One notable strength is that, unlike many other studies that have investigated the
response of microbiota to polyphenol-based interventions, the present research investigated
these relationships in habitual diet and incorporated habitual culinary herb and spice con-
sumption. As these data were from a sample of generally healthy adults absent of certain
physiological factors (e.g., cardiometabolic risk factors) that may be associated with shifts in
gut microbiota, these relationships between microbiota and polyphenol consumption may
be generalizable to the wider healthy US population. Additionally, this study also supports
the validity of an innovative algorithm for calculating the estimated polyphenol consump-
tion from VioScreen dietary analysis data. As many of the relationships observed in our
Spearman’s rank correlations between microbial taxa and individual classes mirror find-
ings from previous interventional and/or mechanistic studies, we can be confident in the
estimations provided. It is worth noting that the observed mean polyphenol consumption
in this sample also reflects average values of US adults (n = 9773), as reported in NHANES
data from five surveys spanning 2007–2016 [125]. These observations support the sample’s
dietary polyphenol consumption as being representative of the general population.

There are also several limitations of this study. This study is somewhat limited in
addressing the contribution of polyphenols from culinary herb and spice sources, as the
herb and spice questionnaire only provided data on the frequency of use, not on the quantity
consumed. It is also important to note that certain factors that may be associated with
gut microbiota (e.g., supplement usage, medication usage, smoking, alcohol consumption,
biological sex) were not included in statistical analyses, as the subgroups of these factors
were of vastly unequal sample sizes. Moreover, these data are from a relatively small sample
of healthy adults in a specific geographical location. While the relationships observed in
our Spearman’s rank correlations between microbial taxa and individual classes indicate
that these results are may be generalizable to the larger population of healthy adults (i.e.,
several relationships mirror findings from previous interventional and/or mechanistic
studies), growing this study to include a larger sample size and multiple geographical
locations would aid in its generalizability and translatability.

5. Conclusions

• In this study, we observed that microbial taxa, but not microbial diversity measures,
differed by levels of daily polyphenol consumption from dietary and herb and spice
sources in generally healthy US adults.

• Our results suggest that higher quantities of habitual polyphenol consumption may
support an intestinal environment where opportunistic and pathogenic bacteria are
represented in a lower relative abundance compared to those with less potentially
virulent qualities.

• These findings, particularly correlations between microbiota and daily consumptions
of specific polyphenol classes, may have implications for the development of precision
polyphenolic interventions for microbiota targets, as well as dietary guidelines for
polyphenolic intake.

• Future directions of implementing this investigation on a larger scale across different
geographical regions would help build a larger reference base for microbial biomark-
ers of polyphenol exposure in healthy US adults. This framework could be used
to investigate the relationships between habitual polyphenol consumption and gut
microbiota in specific disease populations to examine how these microbial biomark-
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ers of polyphenol exposure may differ in individuals already experiencing specific
pathologies or dysbiosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu16060773/s1, Table S1: Distribution of substance use history,
cardiometabolic measures, age, and sex across all participants (All), as well as those stratified into
Low, Medium (Med), and High polyphenol consumer groups; (n = population; % = percentage of n;
M = mean; SD = standard deviation). Table S2: Full data for correlations between microbiota and
polyphenol classes. Shown here are the Spearman’s rho (r) correlation coefficients, p-values, and 95%
confidence intervals (CI) for correlations between microbiota and daily con-sumption (mg/kg dry
weight) of total polyphenols and the major polyphenol classes.
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