Effects of Anthocyanins on Components of Metabolic Syndrome—A Review
Abstract
:1. Introduction
2. Criteria for the Diagnosis of MetS
3. The Occurrence and Content of Anthocyanins in Fruits and Vegetables and Their Processed Products
4. Structure of Anthocyanins
5. The Effects of Anthocyanins on the Prevention and Supportive Treatment of the Components of MetS
5.1. In Vitro Studies
Ref. | Laboratory Model | Properties | Food or Compound | Effects |
---|---|---|---|---|
[148] | B16-F10 metastatic melanoma murine cells | Antitumour effect | Blueberry | Inhibition of B16-F10 proliferation (at concentrations of >500 μg/mL); stimulation of apoptosis; ↑ total LDH activity |
[145] | Caco-2 cells | Hypocholesterolaemic effect | Black rice | ↓ Cholesterol uptake |
[143] | HUVECs | Anti-inflammatory effect | Blueberry | ↓ MCP-1, ICAM-1 and VCAM-1 production |
[139] | 3T3-L1 adipocytes | Antidiabetic effect | Purple corn pericarp and pure anthocyanins | ↑ Glucose uptake; activation of insulin signalling |
[149] | HepG2 cells (a human liver cancer cell line) | Antidiabetic effect | Mulberry | ↑ Glucose consumption, glycogen content and PEPCK and G6Pase activities; ↓ glucose production |
[140] | 3T3-L1 adipocytes | Regulation of glucose metabolism | Cyanidin-3- rutinoside | ↑ Glucose uptake |
[137] | Jejunum samples from RF/J mice; HT-29, Caco-2 and NCM460 cells (human intestinal cell lines) | Antidiabetic effect | Delphinidin | Inhibition of glucose absorption |
[144] | HUVECs | Anti-inflammatory effect | 13C5-cyanidin-3- glucoside | ↓ VCAM-1 and IL-6 production |
[147] | Caco-2 cells | Hypolipidaemic effect | Cyanidin-3- rutinoside | Inhibition of pancreatic cholesterol esterase and the formation of cholesterol micelles; ↓ cholesterol uptake |
[146] | Caco-2 cells | Hypolipidaemic effect | Thai berries | Inhibition of pancreatic lipase and cholesterol esterase; bind to primary and secondary bile acids; ↓ cholesterol uptake |
[150] | Osteoblast culture | Anti-osteoporotic effect | Red and yellow Cornus mas L. fruit | ↓ TRAP activity and the number of TRAP-positive multinucleated cells |
[138] | HepG2 cells | Antidiabetic effect | Blueberry | Inhibition of α-glucosidase |
5.2. In Vivo Studies with Animal Models
5.2.1. Effects on Carbohydrate Metabolism
5.2.2. Effects on Lipid Metabolism
5.2.3. Anti-Inflammatory Effects
5.2.4. Antioxidant Properties
5.2.5. Influence on Body Weight
5.2.6. Effects on BP
5.3. In Vivo Studies with Humans
5.3.1. Effects on Carbohydrate Metabolism
5.3.2. Effects on Lipid Metabolism
5.3.3. Anti-Inflammatory Effects
5.3.4. Antioxidant Properties
5.3.5. Influence on Body Composition and Measurements
5.3.6. Effects on BP
6. Summary and Observations
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gong, J.B.; Yu, X.W.; Yi, X.R.; Wang, C.H.; Tuo, X.P. Epidemiology of chronic noncommunicable diseases and evaluation of life quality in elderly. Aging Med. 2018, 1, 64–66. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Shi, X.; Pan, D.; Wang, H.; Zhang, X.; Pu, L.; Luo, M.; Li, J. Secular trend of non-communicable chronic disease prevalence throughout the life span who endured Chinese Great Famine (1959–1961). BMC Public Health 2023, 23, 1238. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Chen, S.; Chen, Y.; Ma, Y.; Wang, T.; Sun, X.; Wang, Y.; Ding, G.; Wang, Y. Trends in major non-communicable diseases and related risk factors in China 2002-2019: An analysis of nationally representative survey data. Lancet Reg. Health West. Pac. 2023, 43, 100809. [Google Scholar] [CrossRef] [PubMed]
- Lim, S. Targeting the pathophysiology and treatment of obesity and metabolic syndrome. J. Obes. Metab. Syndr. 2017, 26, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypert. Rep. 2018, 20, 12. [Google Scholar] [CrossRef]
- Wyszkowska, D.; Gabińska, M.; Romańska, S. Sytuacja Osób Starszych w Polsce w 2020 r; Główny Urząd Statystyczny: Warszawa, Poland; Białystok, Poland, 2020. [Google Scholar]
- Grund, S.M.; Brewer, H.B., Jr.; Cleeman, J.I.; Smith, S.C., Jr.; Lenfant, C. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention, National Heart, Lung, and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society, and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, N.; Rönnemaa, T.; Juonala, M.; Viikari, J.S.A.; Raitakari, O.T. The prevalence of the metabolic syndrome in young adults. The Cardiovascular Risk in Young FinnsStudy. J. Intern. Med. 2007, 261, 159–169. [Google Scholar] [CrossRef] [PubMed]
- AlShelleh, S.; AlAwwa, I.; Oweis, A.; AlRyalat, S.A.; Al-Essa, M.; Saeed, I.; Alhawari, H.H.; Alzoubi, K.H. Prevalence of metabolic syndrome in dialysis and transplant patients. Diabetes Metab. Syndr. Obes. 2019, 12, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Res. Clin. Pract. 2022, 188, 109924. [Google Scholar] [CrossRef] [PubMed]
- Belete, R.; Ataro, Z.; Abdu, A.; Sheleme, M. Global prevalence of metabolic syndrome among patients with type I diabetes mellitus: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2021, 13, 25. [Google Scholar] [CrossRef]
- Kwasny, C.; Manuwald, U.; Kugler, J.; Rothe, U. Systematic review of the epidemiology and natural history of the metabolic vascular syndrome and its coincidence with type 2 diabetes mellitus and cardiovascular diseases in different European countries. Horm. Metab. Res. 2018, 50, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Or, B.; Tsoi, M.F.; Cheung, C.L.; Cheung, B.M.Y. Prevalence of metabolic syndrome in the United States National Health and Nutrition Examination Survey 2011–18. Postgrad. Med. J. 2023, 99, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Scuteri, A.; Laurent, S.; Cucca, F.; Cockcroft, J.; Guimaraes Cunha, P.; Mañas, L.R.; Mattace Raso, F.U.; Muiesan, M.L.; Ryliškytė, L.; Rietzschel, E.; et al. Metabolic syndrome across Europe: Different clusters of risk factors. Eur. J. Prevent. Cardiol. 2015, 22, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Jayant, S.S.; Gupta, R.; Rastogi, A.; Sachdeva, N.; Ram, R.; Bhansali, D.A.; Bhadada, S.K. Incidence and predictors of metabolic syndrome in Asian-Indians: A 10-year population-based prospective cohort study. Int. J. Diabetes Dev. Ctries. 2023, 43, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Wang, L.; Hu, P.; Liu, J.; Tu, J.; Wang, J.; Li, J.; Ning, X. Burden of metabolic syndrome among a low-income population in China: A population-based cross-sectional study. Diabetes Metab. Syndr. Obes. 2022, 15, 2713–2723. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Qiu, X.; Ma, H.; Geng, Q. Incidence and long-term specific mortality trends of metabolic syndrome in the United States. Front. Endocrinol. 2023, 13, 1029736. [Google Scholar] [CrossRef] [PubMed]
- Dołowacka, A. Metabolic Syndrome as Another Disease of Affluence. Nurs. Public Health 2016, 6, 241–245. [Google Scholar] [CrossRef]
- Pinto, R.M.; Steinmetz, L.S.; Barbosa, J.M.G.; Mendes, A.F.C.S.; Curado, M.P.; da Cruz, A.D. The role of genetics in the pathophysiology of obesity: A systematic review. Obes. Res. Open J. 2019, 6, 11–17. [Google Scholar] [CrossRef]
- Bovolini, A.; Garcia, J.; Andrade, M.A.; Darte, J.A. Metabolic syndrome pathophysiology and predisposing factors. Int. J. Sports Med. 2021, 42, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Dobrowolski, P.; Prejbisz, A.; Kuryłowicz, A.; Baska, A.; Burchardt, P.; Chlebus, K.; Dzida, G.; Jankowski, P.; Jaroszewicz, J.; Jaworski, P.; et al. Metabolic syndrome—A new definition and management guidelines. Arter. Hypertens. 2022, 26, 99–121. [Google Scholar] [CrossRef]
- Ilow, R.; Regulska-Ilow, B.; Płonka, K.; Biernat, J. Ocena sposobu żywienia gimnazjalistów w Oleśnicy. Rocz. Panstw. Zakl. Hig. 2008, 59, 335–341. [Google Scholar] [PubMed]
- Martins, V.J.B.; Toledo Florêncio, T.M.M.; Grillo, L.P.; Franco, M.C.P.; Martins, P.A.; Clemente, A.P.G.; Santos, C.D.L.; Vieira, M.F.A.; Sawaya, A.L. Long-lasting effects of undernrition. Int. J. Environ. Res. Public Health 2011, 8, 1817–1846. [Google Scholar] [CrossRef] [PubMed]
- Bhutta, Z.A.; Lassi, Z.S.; Bergeron, G.; Koletzko, B.; Salam, R.; Diaz, A.; McLean, M.; Black, R.E.; De-Regil, L.M.; Christian, P.; et al. Delivering an action agenda for nutrition interventions addressing adolescent girls and young women: Priorities for implementation and research. Ann. N. Y. Acad. Sci. 2017, 1393, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Umer, A.; Kelley, G.A.; Cottrell, L.E.; Giacobbi, P., Jr.; Innes, K.E.; Lilly, C.L. Childhood obesity and adult cardiovascular disease risk factors: A systematic review with meta-analysis. BMC Public Health 2017, 17, 683. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, E.; Figurska-Ciura, D.; Łoźna, K.; Bienkiewicz, M.; Mazurek, D.; Wyka, J.; Węgiel, M.; Biernat, J.; Godyla-Jabłoński, M. Frequency of occurrence of metabolic syndrome risk factors in children and adolescents from the city of Wrocław and surroundings. Rocz. Panstw. Zakl. Hig. 2020, 71, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Farello, G.; D’Andrea, M.; Quarta, A.; Grossi, A.; Pompili, D.; Altobelli, E.; Stagi, S.; Balsano, C. Children and adolescents dietary habits and lifestyle changes during COVID-19 lockdown in Italy. Nutrients 2022, 14, 2135. [Google Scholar] [CrossRef] [PubMed]
- Güngör, N.K. Overweight and obesity in children and adolescents. J. Clin. Res. Pediatr. Endocrinol. 2014, 6, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Malczyk, E. Stan odżywienia dzieci i młodzieży w Polsce na podstawie piśmiennictwa z ostatnich 10 lat (2005–2015). Ann. Acad. Med. Siles 2016, 70, 56–65. [Google Scholar] [CrossRef]
- Kerns, J.; Fisher, M. Epidemiology, pathophysiology and etiology of obesity in children and adolescents. Curr. Probl. Pediatr. Adolesc. Health Care 2020, 50, 100869. [Google Scholar] [CrossRef] [PubMed]
- Klang, E.; Kassim, G.; Soffer, S.; Freeman, R.; Levin, M.A.; Reich, D.L. Severe obesity as an independent risk factor for COVID-19 mortality in hospitalized patients younger than 50. Obesity 2020, 28, 1595–1599. [Google Scholar] [CrossRef] [PubMed]
- Petrilli, C.M.; Jones, S.A.; Yang, J.; Rajagopalan, H.; O’Donnell, L.F.; Chernyak, Y.; Tobin, K.A.; Cerfolio, R.J.; Francois, F.; Horwitz, L.I. Factors associated with hospitalization and critical illness among 4103 patients with COVID-19 disease in New York City. BMJ 2020, 369, m1966. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Gupta, R.; Ghosh, A.; Misra, A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab. Syndr. 2020, 14, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, L.; Liu, J.; Fu, S.; Zhou, L.; Wang, Y. Obesity or increased body mass index and the risk of severe outcomes in patients with COVID-19: A protocol for systematic review and meta-analysis. Medicine 2022, 101, e28499. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, J.H.; Cordain, L. Cardiovascular disease resulting from a diet and lifestyle at odds with our paleolithic genome: How to become a 21st-century hunter-gatherer. Mayo Clin. Proc. 2004, 79, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Kapka-Skrzypczak, L.; Biliński, P.; Niedźwiecka, J.; Kulpa, P.; Skowron, J.; Wojtyła, A. Zmiana stylu życia człowieka jako metoda prewencji przewlekłych chorób niezakaźnych. Probl. Hig. Epodemiol. 2012, 93, 27–31. [Google Scholar]
- Egert, S.; Baxheinrich, A.; Lee-Barkey, Y.H.; Tschoepe, D.; Wahrburg, U.; Stratmann, B. Effects of an energy-restricted diet rich in plant-derived α-linolenic acid on systemic inflammation and endothelial function in overweight-to-obese patients with metabolic syndrome traits. Br. J. Nutr. 2014, 112, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- De la Iglesia, R.; Loria-Kohen, V.; Zulet, M.A.; Martinez, J.A.; Reglero, G.; Ramirez de Molina, A. Dietary strategies implicated in the prevention and treatment of metabolic syndrome. Int. J. Mol. Sci. 2016, 17, 1877. [Google Scholar] [CrossRef] [PubMed]
- Naseri, R.; Farzaei, F.; Haratipour, P.; Nabavi, S.F.; Habtemariam, S.; Farzaei, M.H.; Khodarahmi, R.; Tewari, D.; Momtaz, S. Anthocyanins in the management of metabolic syndrome: A pharmacological and biopharmaceutical review. Front. Pharmacol. 2018, 9, 1310. [Google Scholar] [CrossRef]
- Francini-Pesenti, F.; Spinella, P.; Calò, L.A. Potential role of phytochemicals in metabolic syndrome prevention and therapy. Diabetes Metab. Syndr. Obes. 2019, 12, 1987–2002. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, T. Regulation of adipocyte function by anthocyanins; possibility of preventing the metabolic syndrome. J. Agric. Food Chem. 2008, 56, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Jianga, X.; Lia, X.; Zhua, C.; Sunb, J.; Tiana, L.; Chenc, W.; Bai, W. The target cells of anthocyanins in metabolic syndrome. Crit. Rev. Food Sci. Nutr. 2019, 59, 921–946. [Google Scholar] [CrossRef] [PubMed]
- Takeoka, G.; Dao, L. Anthocyanins. In Methods of Analysis for Functional Foods and Nutraceuticals; Hurst, J., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 219–241. [Google Scholar]
- De Pascual-Teresa, S.; Sanchez-Ballesta, M.T. Anthocyanins: From plant to health. Phytochem. Rev. 2008, 7, 281–299. [Google Scholar] [CrossRef]
- Mazur, S.P.; Nes, A.; Wold, A.B.; Remberg, S.F.; Aaby, K. Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons. Food Chem. 2014, 160, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Šedbarė, R.; Sprainaitytė, S.; Baublys, G.; Viskelis, J.; Janulis, V. Phytochemical composition of cranberry (Vaccinium oxycoccos L.) fruits growing in protected areas of Lithuania. Plants 2023, 12, 1974. [Google Scholar] [CrossRef] [PubMed]
- Kratchanova, M.; Petrova, I.; Klisurova, D.; Georgiev, Y.; Ognyanov, M.; Yanakieva, I. Black chokeberry (Aronia melanocarpa (Michx.) Elliot) fruits and functional drinks differ significantly in their chemical composition and antioxidant activity. J. Chem. 2018, 2018, 9574587. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Ionica, M.E. Ascorbic acid, anthocyanins, organic acids and mineral content of some black and red currant cultivars. Fruits 2011, 66, 353–362. [Google Scholar] [CrossRef]
- Kostecka-Gugała, A.; Ledwożyw-Smoleń, I.; Augustynowicz, J.; Wyżgolik, G.; Kruczek, M.; Kaszycki, P. Antioxidant properties of fruits of raspberry and blackberry grown in central Europe. Open Chem. 2015, 13, 1313–1325. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; Da Pieve, S.; Butler, F. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innov. Food Sci. Emerg. Technol. 2009, 10, 308–313. [Google Scholar] [CrossRef]
- Martini, S.; Conte, A.; Tagliazucchi, D. Phenolic compounds profile and antioxidant properties of six sweet cherry (Prunus avium) cultivars. Food Res. Int. 2017, 97, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, B.; Dong, K.; Li, J.; Li, Y.; Sun, H. Identification and quantification of anthocyanins of 62 blueberry cultivars via UPLC-MS. Biotechnol. Biotechnol. Equip. 2022, 36, 587–597. [Google Scholar] [CrossRef]
- Bushmeleva, K.; Vyshtakalyuk, A.; Terenzhev, D.; Belov, T.; Nikitin, E.; Zobov, V. Antioxidative and immunomodulating properties of Aronia melanocarpa extract rich in anthocyanins. Plants 2022, 11, 3333. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Seruga, M. Influence of anthocyanins, flavonols and phenolic acids on the antiradical activity of berries and small fruits. Int. J. Food Prop. 2012, 15, 122–133. [Google Scholar] [CrossRef]
- Šedbarė, R.; Janulis, V.; Ramanauskiene, K. Edible gels with cranberry extract: Evaluation of anthocyanin release kinetics. Gels 2023, 9, 796. [Google Scholar] [CrossRef] [PubMed]
- Tendaj, M.; Sawicki, K.; Mysiak, B. The content of some chemical compounds in red cabbage (Brassica oleracea L. var. Capitata F. Rubra) after harvest and long-term storage. Electron. J. Pol. Agric. Univ. 2013, 16, 2. [Google Scholar]
- De Araújo, A.C.; Gomes, J.P.; Silva, F.B.; Nunes, J.S.; de Santos, F.S.; Silva, W.P.; Ferreira, J.P.L.; Queiroz, A.J.M.; Figueirêdo, R.M.F.; de Lima, G.S.; et al. Optimization of extraction method of anthocyanins from red cabbage. Molecules 2023, 28, 3549. [Google Scholar] [CrossRef] [PubMed]
- Roda-Serrat, M.C.; Razi Parjikolaei, B.; Mohammadifakhr, M.; Martin, J.; Norddahl, B.; Errico, M. A case study for the extraction, purification, and co-pigmentation of anthocyanins from Aronia melanocarpa juice pomace. Foods 2022, 11, 3875. [Google Scholar] [CrossRef] [PubMed]
- Dzhanfezova, T.; Barba-Espín, G.; Müller, R.; Joernsgaard, B.; Hegelund, J.N.; Madsen, B.; Larsen, D.H.; Martínez Vega, M.; Toldam-Andersen, T.B. Anthocyanin profile, antioxidant activity and total phenolic content of a strawberry (Fragaria × ananassa Duch) genetic resource collection. Food Biosci. 2020, 36, 620. [Google Scholar] [CrossRef]
- Sirijan, M.; Pipattanawong, N.; Saeng-on, B.; Chaiprasart, P. Anthocyanin content, bioactive compounds and physico-chemical characteristics of potential new strawberry cultivars rich in-anthocyanins. J. Berry Res. 2020, 10, 397–410. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, T.; Patel, H.; Akande, O.E.; Galam, D.C.A. Total anthocyanin content of strawberry and the profile changes by extraction methods and sample processing. Foods 2022, 11, 1072. [Google Scholar] [CrossRef] [PubMed]
- Toshima, S.; Hirano, T.; Kunitake, H. Comparison of anthocyanins, polyphenols, and antioxidant capacities among raspberry, blackberry, and Japanese wild Rubus species. Sci. Hortic. 2021, 285, 110204. [Google Scholar] [CrossRef]
- Veberic, R.; Slatnar, A.; Bizjak, J.; Stampar, F.; Mikulic-Petkovsek, M. Anthocyanin composition of different wild and cultivated berry species. LWT 2015, 60, 509–517. [Google Scholar] [CrossRef]
- Kapci, B.; Neradová, E.; Čížková, H.; Voldřich, M.; Rajchl, A.; Capanoglu, E. Investigating the antioxidant potential of chokeberry (Aronia melanocarpa) products. J. Food Nutr. Res. 2013, 52, 219–229. [Google Scholar]
- Tolić, M.T.; Jurčević, I.L.; Krbavčić, I.P.; Marković, K.; Vahčić, N. Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technol. Biotechnol. 2015, 53, 171–179. [Google Scholar] [CrossRef] [PubMed]
- King, E.S.; Bolling, B.W. Composition, polyphenol bioavailability, and health benefits of aronia berry: A review. J. Food Bioact. 2020, 11, 13–30. [Google Scholar] [CrossRef]
- Meng, L.; Zhu, J.; Ma, Y.; Sun, X.; Li, D.; Li, L.; Bai, H.; Xin, G.; Meng, X. Composition and antioxidant activity of anthocyanins from Aronia melanocarpa cultivated in Haicheng, Liaoning, China. Food Biosci. 2019, 30, 100413. [Google Scholar] [CrossRef]
- Wen, H.; Cui, H.; Tian, H.; Zhang, X.; Ma, L.; Ramassamy, C.; Li, J. Isolation of neuroprotective anthocyanins from black chokeberry (Aronia melanocarpa) against amyloid-β-induced cognitive impairment. Foods 2021, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Roda-Serrat, M.C.; Andrade, T.A.; Rindom, J.; Lund, P.B.; Norddahl, B.; Errico, M. Optimization of the recovery of anthocyanins from chokeberry juice pomace by homogenization in acidified water. Waste Biomass Valor. 2021, 12, 1815–1827. [Google Scholar] [CrossRef]
- Raczkowska, E.; Nowicka, P.; Wojdyło, A.; Styczyńska, M.; Lazar, Z. Chokeberry pomace as a component shaping the content of bioactive compounds and nutritional, health-promoting (anti-diabetic and antioxidant) and sensory properties of shortcrust pastries sweetened with sucrose and erythritol. Antioxidants 2022, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Torović, L.; Sazdanić, D.; Atanacković Krstonošić, M.; Mikulić, M.; Beara, I.; Cvejić, J. Compositional characteristics, health benefit and risk of commercial bilberry and black chokeberry juices. Food Biosci. 2023, 51, 102301. [Google Scholar] [CrossRef]
- Vlachojannis, C.; Zimmermann, B.F.; Chrubasik-Hausmann, S. Quantification of anthocyanins in elderberry and chokeberry dietary supplements. Phytother. Res. 2015, 29, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Dróżdż, P.; Šėžienė, V.; Pyrzynska, K. Phytochemical properties and antioxidant activities of extracts from wild blueberries and lingonberries. Plant Foods Hum. Nutr. 2017, 72, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Lätti, A.K.; Riihinen, K.R.; Kainulainen, P.S. Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J. Agric. Food Chem. 2008, 56, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Garzón, G.A.; Narváez, C.E.; Riedl, K.M.; Schwartz, S.J. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 2010, 122, 980–986. [Google Scholar] [CrossRef]
- Burdulis, D.; Ivanauskas, L.; Dirsė, V.; Kazlauskas, S.; Ražukas, A. Study of diversity of anthocyanin composition in bilberry (Vaccinium myrtillus L.) fruits. Medicina 2007, 43, 971. [Google Scholar] [CrossRef]
- Burdulis, D.; Janulis, V.; Milašius, A.; Jakštas, V.; Ivanauskas, L. Method development for determination of anthocyanidin content in bilberry (Vaccinium myrtillus L.) fruits. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 850–864. [Google Scholar] [CrossRef]
- Ponder, A.; Hallmann, E.; Kwolek, M.; Średnicka-Tober, D.; Kazimierczak, R. Genetic differentiation in anthocyanin content among berry fruits. Curr. Issues Mol. Biol. 2021, 43, 36–51. [Google Scholar] [CrossRef]
- Veberic, R.; Stampar, F.; Schmitzer, V.; Cunja, V.; Zupan, A.; Koron, D.; Mikulic-Petkovsek, M. Changes in the contents of anthocyanins and other compounds in blackberry fruits due to freezing and long-term frozen storage. Agric. Food Chem. 2014, 62, 6926–6935. [Google Scholar] [CrossRef] [PubMed]
- Memete, A.R.; Sărac, I.; Teusdea, A.C.; Budău, R.; Bei, M.; Vicas, S.I. Bioactive compounds and antioxidant capacity of several blackberry (Rubus spp.) fruits cultivars grown in Romania. Horticulturae 2023, 9, 556. [Google Scholar] [CrossRef]
- Vieira, L.M.; Guimarães Marinho, L.M.; Rocha, J.; Barros, F.; Stringheta, P. Chromatic analysis for predicting anthocyanin content in fruits and vegetables. Food Sci. Technol. 2019, 39, 415–422. [Google Scholar] [CrossRef]
- Šimerdová, B.; Bobríková, M.; Lhotská, I.; Kaplan, J.; Křenová, A.; Šatínský, D. Evaluation of anthocyanin profiles in various blackcurrant cultivars over a three-year period using a fast HPLC-DAD method. Foods 2021, 10, 1745. [Google Scholar] [CrossRef] [PubMed]
- Koss-Mikołajczyk, I.; Kusznierewicz, B.; Bartoszek, A. The relationship between phytochemical composition and biological activities of differently pigmented varieties of berry fruits; comparison between embedded in food matrix and isolated anthocyanins. Foods 2019, 8, 646. [Google Scholar] [CrossRef] [PubMed]
- Kikas, A.; Rätsep, R.; Kaldmäe, H.; Aluvee, A.; Libek, A.V. Comparison of polyphenols and anthocyanin content of different blackcurrant (Ribes nigrum L.) cultivars at the Polli Horticultural Research Centre in Estonia. Agron. Res. 2020, 18, 2715–2726. [Google Scholar] [CrossRef]
- Wagner, A.; Dussling, S.; Nowak, A.; Zimmermann, L.; Bach, P.; Ludwig, M.; Kumar, K.; Will, F.; Schweiggert, R.; Steingass, C.B. Explore all metrics. Investigations into the stability of anthocyanins in model solutions and blackcurrant juices produced with various dejuicing technologies. Eur. Food Res. Technol. 2023, 249, 1771–1784. [Google Scholar] [CrossRef]
- Raczkowska, E.; Wojdyło, A.; Nowicka, P. The use of blackcurrant pomace and erythritol to optimise the functional properties of shortbread cookies. Sci. Rep. 2024, 14, 3788. [Google Scholar] [CrossRef] [PubMed]
- Lapornik, B.; Prošek, M.; Golc Wondra, A. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 2005, 71, 214–222. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, J.; Wang, W.; Lyu, L.; Wu, W.; Li, W. The extraction and high antiproliferative effect of anthocyanin from Gardenblue blueberry. Molecules 2023, 28, 2850. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.C.; Hsu, S.H.; Meng, Y.Y.; Chen, S.F. Quantification of anthocyanins in blueberries (Vaccinium spp.) by modified QuEChERS and liquid chromatography-mass spectrometry. J. Chin. Chem. Soc. 2022, 69, 1070–1078. [Google Scholar] [CrossRef]
- Cásedas, G.; Les, F.; Gómez-Serranillos, M.P.; Smith, C.; López, V. Anthocyanin profile, antioxidant activity and enzyme inhibiting properties of blueberry and cranberry juices: A comparative study. Food Funct. 2017, 8, 4187–4193. [Google Scholar] [CrossRef] [PubMed]
- Mulabagal, V.; Lang, G.A.; DeWitt, D.L.; Dalavoy, S.S.; Nair, M.G. Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries. J. Agric. Food Chem. 2009, 57, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Filaferro, M.; Codeluppi, A.; Brighenti, V.; Cimurri, F.; González-Paramás, A.M.; Santos-Buelga, C.; Bertelli, D.; Pellati, F.; Vitale, G. Disclosing the antioxidant and neuroprotective activity of an anthocyanin-rich extract from sweet cherry (Prunus avium L.) using in vitro and in vivo models. Antioxidants 2022, 11, 211. [Google Scholar] [CrossRef] [PubMed]
- Enache, I.M.; Vasile, A.M.; Enachi, E.; Barbu, V.; Stănciuc, N.; Vizireanu, C. Co-microencapsulation of anthocyanins from cornelian cherry fruits and lactic acid bacteria in biopolymeric matrices by freeze-drying: Evidences on functional properties and applications in food. Polymers 2020, 12, 906. [Google Scholar] [CrossRef] [PubMed]
- Narwojsz, A.; Tańska, M.; Mazur, B.; Borowska, E.J. Fruit physical features, phenolic compounds profile and inhibition activities of cranberry cultivars (Vaccinium macrocarpon) compared to wild-grown cranberry (Vaccinium oxycoccus). Plant Foods Hum. Nutr. 2019, 74, 300–306. [Google Scholar] [CrossRef]
- Urbstaite, R.; Raudone, L.; Janulis, V. Phytogenotypic Anthocyanin profiles and antioxidant activity variation in fruit samples of the American cranberry (Vaccinium macrocarpon Aiton). Antioxidants 2022, 11, 250. [Google Scholar] [CrossRef] [PubMed]
- Seabra, I.J.; Braga, M.E.M.; Batista, M.T.P.; de Sousa, H.C. Fractioned high pressure extraction of anthocyanins from elderberry (Sambucus nigra L.) pomace. Food Bioprocess. Technol. 2010, 3, 674–683. [Google Scholar] [CrossRef]
- da Silva, R.F.R.; Barreira, J.C.M.; Heleno, S.A.; Barros, L.; Calhelha, R.C.; Ferreira, I.C.F.R. Anthocyanin profile of elderberry juice: A natural-based bioactive colouring ingredient with potential food application. Molecules 2019, 24, 2359. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.G.; Avula, B.; Katragunta, K.; Ali, Z.; Chittiboyina, A.G.; Khan, I.A. Elderberry extracts: Characterization of the polyphenolic chemical composition, quality consistency, safety, adulteration, and attenuation of oxidative stress- and inflammation-induced health disorders. Molecules 2023, 28, 3148. [Google Scholar] [CrossRef] [PubMed]
- Bowen-Forbes, C.S.; Zhang, Y.; Nair, M.G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J. Food Compos. Anal. 2010, 23, 554–560. [Google Scholar] [CrossRef]
- Paterson, A.; Kassim, A.; McCallum, S.; Woodhead, M.; Smith, K.; Zait, D.; Graham, J. Environmental and seasonal influences on red raspberry flavour volatiles and identification of quantitative trait loci (QTL) and candidate genes. Theor. Appl. Genet. 2013, 126, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Koraqi, H.; Ajazi, F.C. Analysis and characterization of anthocyanins in raspberry fruits (Rubus idaeus L.). In Proceedings of the UBT International Conference, Lipjan, Kosovo, 31 October 2020; Available online: https://knowledgecenter.ubt-uni.net/conference/2020/all_events/7 (accessed on 13 March 2024).
- Ludwig, I.Z.; Mena, P.; Calani, L.; Borges, G.; Pereira-Caro, G.; Bresciani, L.; Del Rio, D.; Lean, M.E.J.; Crozier, A. New insights into the bioavailability of red raspberry anthocyanins and ellagitannins. Free Radic. Biol. Med. 2015, 89, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Nthimole, C.T.; Kaseke, T.; Fawole, O.A. Micro-encapsulation and characterization of anthocyanin-rich raspberry juice powder for potential applications in the food industry. Processes 2022, 10, 1038. [Google Scholar] [CrossRef]
- Djordjević, B.; Šavikin, K.; Zdunić, G.; Janković, T.; Vulić, T.; Oparnica, Č.; Radivojević, D. Biochemical properties of red currant varieties in relation to storage. Plant Foods Hum. Nutr. 2010, 65, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Benchikh, Y.; Aissaoui, A.; Allouch, R.; Mohellebi, N. Optimising anthocyanin extraction from strawberry fruits using response surface methodology and application in yoghurt as natural colorants and antioxidants. J. Food Sci. Technol. 2021, 58, 1987–1995. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Chawla, N.; Singh Dhatt, A. Genotypic differences for anthocyanins in different parts of eggplant (Solanum melongena L.). Int. J. Adv. Res. Biol. Sci. 2018, 5, 12–18. [Google Scholar] [CrossRef]
- Colak, N.; Kurt-Celebi, A.; Gruz, J.; Strnad, M.; Hayirlioglu-Ayaz, S.; Choung, M.-G.; Esatbeyoglu, T.; Ayaz, F.A. The phenolics and antioxidant properties of black and purple versus white eggplant cultivars. Molecules 2022, 27, 2410. [Google Scholar] [CrossRef] [PubMed]
- Podsędek, A.; Redzynia, M.; Klewicka, E.; Koziołkiewicz, M. Matrix effects on the stability and antioxidant activity of red cabbage anthocyanins under simulated gastrointestinal digestion. Biomed. Res. Int. 2014, 2014, 365738. [Google Scholar] [CrossRef] [PubMed]
- Ahmadiani, N.; Robbins, R.J.; Collins, T.M.; Giusti, M.M. Anthocyanins contents, profiles, and color characteristics of red cabbage extracts from different cultivars and maturity stages. Agric. Food Chem. 2014, 62, 7524–7531. [Google Scholar] [CrossRef] [PubMed]
- Gachovska, T.; Cassada, D.; Subbiah, J.; Hanna, M.; Thippareddi, H.; Snow, D. Enhanced anthocyanin extraction from red cabbage using pulsed electric field processing. Food Sci. 2010, 75, 6. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.H.K.; Phuong, L.N.T.; Linh, P.; Truc, T.T.; Cang, M.H. Bioactive compounds from red cabbage by microwave-assisted extraction: Anthocyanins, total phenolic compounds and the antioxidant activity. Asian Life Sci. 2020, 12, 172–184. [Google Scholar]
- Ravanfar, R.; Tamadon, A.M.; Niakousari, M. Optimization of ultrasound assisted extraction of anthocyanins from red cabbage using Taguchi design method. J. Food Sci. Technol. 2015, 52, 8140–8147. [Google Scholar] [CrossRef] [PubMed]
- Ghareaghajlou, N.; Hallaj-Nezhadi, S.; Ghasempour, Z. Red cabbage anthocyanins: Stability, extraction, biological activities and applications in food systems. Food Chem. 2021, 365, 130482. [Google Scholar] [CrossRef] [PubMed]
- Netramai, S.; Kijchavengkul, T.; Samsudin, H.; Lertsiri, S. Enhanced extraction of anthocyanins from red cabbage (Brassica oleraces) using microwave assisted extraction. In Proceedings of the 21st Food Innovation Asia Conference, Bangkok, Thailand, 13–15 June 2019. [Google Scholar]
- Kan, L.; Nie, S.; Hu, J.; Wang, S.; Bai, Z.; Wang, J.; Zhou, Y.; Jiang, J.; Zeng, Q.; Song, K. Comparative study on the chemical composition, anthocyanins, tocopherols and carotenoids of selected legumes. Food Chem. 2018, 260, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Akond, A.S.M.G.M.; Berthold, J.; Gates, L.; Peters, K.; Delong, H.; Hossain, K. Anthocyanin, total polyphenols and antioxidant activity of common bean. Am. J. Food Technol. 2011, 6, 385–394. [Google Scholar] [CrossRef]
- Choung, M.G.; Choi, B.R.; An, Y.N.; Chu, Y.H.; Cho, Y.S. Anthocyanin profile of Korean cultivated kidney bean (Phaseolus vulgaris L.). J. Agric. Food Chem. 2003, 51, 7040–7043. [Google Scholar] [CrossRef]
- Anggraini, D.I.; Mirantana, L.P. Determination of anthocyanin level in kidney bean (Phaseolus vulgaris L.) Tempeh as a hepatoprotective agent. J. Farmasi Sains Praktis 2022, 8, 294–301. [Google Scholar] [CrossRef]
- Metrani, R.; Singh, J.; Acharya, P.; Jayaprakasha, G.K.; Patil, B.S. Comparative Metabolomics Profiling of Polyphenols, Nutrients and Antioxidant Activities of Two Red Onion (Allium cepa L.) Cultivars. Plants 2020, 9, 1077. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Gregorio, R.M.; García-Falcón, M.S.; Simal-Gándara, J.; Rodrigues, A.S.; Almeida, D.P.F. Identification and quantification of flavonoids in traditional cultivars of red and white onions at harvest. J. Food Compos. Anal. 2010, 23, 592–598. [Google Scholar] [CrossRef]
- Gennaro, L.; Leonardi, C.; Esposito, F.; Salucci, M.; Maiani, G.; Quaglia, G.; Fogliano, V. Flavonoid and carbohydrate contents in Tropea red onions: effects of homelike peeling and storage. J. Agric. Food Chem. 2002, 50, 1904–1910. [Google Scholar] [CrossRef] [PubMed]
- Stoica, F.; Râpeanu, G.; Nistor, O.V.; Enachi, E.; Stănciuc, N.; Mureșan, C.; Bahrim, G.E. Recovery of bioactive compounds from red onion skins using conventional solvent extraction and microwave assisted extraction. Ann. Univ. Dunarea Galati Fascicle VI Food Technol. 2020, 44, 104–126. [Google Scholar] [CrossRef]
- Maryuni, D.R.; Prameswari, D.A.; Astari, S.D.; Sari, S.P.; Putri, D.N. Identification of active compounds in red onion (Allium ascalonicum L.) peel extract by LC-ESI-QTOF-MS/MS and determination of its antioxidant activity. J. Teknol. Has. Pertan. 2022, 15, 20–33. [Google Scholar] [CrossRef]
- Koss-Mikołajczyk, I.; Bartoszek, A. Relationship between chemical structure and biological activity evaluated in vitro for six anthocyanidins most commonly occurring in edible plants. Molecules 2023, 28, 6156. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef] [PubMed]
- Sinopoli, A.; Calogero, G.; Bartolotta, A. Computational aspects of anthocyanidins and anthocyanins: A review. Food Chem. 2019, 297, 124898. [Google Scholar] [CrossRef] [PubMed]
- de Lima, A.A.; Sussuchi, E.M.; de Giovani, W.F. Electrochemical and antioxidant properties of anthocyanins and anthocyanidins. Croat. Chem. Acta 2007, 80, 29–34. [Google Scholar]
- Yañez-Apam, J.; Domínguez-Uscanga, A.; Herrera-González, A.; Contreras, J.; Mojica, L.; Mahady, G.; Luna-Vital, D.A. Pharmacological activities and chemical stability of natural and enzymatically acylated anthocyanins: A comparative review. Pharmaceuticals 2023, 16, 638. [Google Scholar] [CrossRef] [PubMed]
- Fei, P.; Zeng, F.; Zheng, S.; Chen, Q.; Hu, Y.; Cai, J. Acylation of blueberry anthocyanins with maleic acid: Improvement of the stability and its application potential in intelligent color indicator packing materials. Dye. Pigment. 2021, 184, 108852. [Google Scholar] [CrossRef]
- Fournier-Level, A.; Hugueney, P.; Verriès, C.; This, P.; Ageorges, A. Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.). BMC Plant Biol. 2011, 11, 179. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Lu, Y.; Zhou, Y.; Hao, X.; Chen, W. Functional analysis of a methyltransferase involved in anthocyanin biosynthesis from blueberries (Vaccinium corymbosum). J. Agric. Food Chem. 2022, 70, 16253–16262. [Google Scholar] [CrossRef] [PubMed]
- Pahlke, G.; Ahlberg, K.; Oertel, A.; Janson-Schaffer, T.; Grabher, S.; Mock, H.P.; Matros, A.; Marko, D. Antioxidant effects of elderberry anthocyanins in human colon carcinoma cells: A study on structure-activity relationships. Mol. Nutr. Food Res. 2021, 65, 17. [Google Scholar] [CrossRef]
- Chen, J.G.; Wu, S.F.; Zhang, Q.F.; Yin, Z.P.; Zhang, L. α-Glucosidase inhibitory effect of anthocyanins from Cinnamomum camphora fruit: Inhibition kinetics and mechanistic insights through in vitro and in silico studies. Int. J. Biol. Macromol. 2020, 143, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, J.; Teuber, S.; Morera, F.J.; Ojeda, C.; Flores, C.A.; Hidalgo, M.A.; Núñez, L.; Villalobos, C.; Burgos, R.A. Delphinidin reduces glucose uptake in mice jejunal tissue and human intestinal cells lines through FFA1/GPR40. Int. J. Mol. Sci. 2017, 18, 750. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.W.; Lü, H.; Du, L.L.; Li, J.; Chen, H.; Zhao, H.F.; Wu, W.L.; Chen, J.; Li, W.L. Five blueberry anthocyanins and their antioxidant, hypoglycemic, and hypolipidemic effects in vitro. Front. Nutr. 2023, 10, 1172982. [Google Scholar] [CrossRef] [PubMed]
- Luna-Vital, D.; Weiss, M.; Gonzalez de Mejia, E. Anthocyanins from purple corn ameliorated tumor necrosis factor-α-induced inflammation and insulin resistance in 3t3-l1 adipocytes via activation of insulin signaling and enhanced GLUT4 translocation. Mol. Nutr. Food Res. 2017, 61, 12. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.H.; Lee, H.A.; Park, M.H.; Han, J.S. Cyanidin-3-rutinoside increases glucose uptake by activating the PI3K/Akt pathway in 3T3-L1 adipocytes. Environ. Toxicol. Pharmacol. 2017, 54, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Zheng, X. Anthocyanin-rich mulberry fruit improves insulin resistance and protects hepatocytes against oxidative stress during hyperglycemia by regulating AMPK/ACC/mTOR pathway. J. Funct. Foods 2017, 30, 270–281. [Google Scholar] [CrossRef]
- Patanè, G.T.; Putaggio, S.; Tellone, E.; Barreca, D.; Ficarra, S.; Maffei, C.; Calderaro, A.; Laganà, G. Catechins and proanthocyanidins involvement in metabolic syndrome. Int. J. Mol. Sci. 2023, 24, 9228. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.Y.; Liu, Y.M.; Wang, J.; Wang, X.N.; Li, C.Y. Anti-inflammatory effect of the blueberry anthocyanins malvidin-3-glucoside and malvidin-3-galactoside in endothelial cells. Molecules 2014, 19, 12827–12841. [Google Scholar] [CrossRef] [PubMed]
- Warner, E.F.; Smith, M.J.; Zhang, Q.; Raheem, K.S.; O’Hagan, D.; O’Connell, M.A.; Kay, C.D. Signatures of anthocyanin metabolites identified in humans inhibit biomarkers of vascular inflammation in human endothelial cells. Mol. Nutr. Food Res. 2017, 61, 1700053. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.L.; Xu, Y.; Zhang, Y.Y.; Lu, Y.H. Black rice and anthocyanins induce inhibition of cholesterol absorption in vitro. Food Funct. 2013, 4, 1602–1608. [Google Scholar] [CrossRef] [PubMed]
- Chamnansilpa, N.; Aksornchu, P.; Adisakwattana, S.; Thilavech, T.; Mäkynen, K.; Dahlan, W.; Ngamukote, S. Anthocyanin-rich fraction from Thai berries interferes with the key steps of lipid digestion and cholesterol absorption. Heliyon 2020, 6, e05408. [Google Scholar] [CrossRef] [PubMed]
- Thilavech, T.; Adisakwattana, S. Cyanidin-3-rutinoside acts as a natural inhibitor of intestinal lipid digestion and absorption. BMC Complement. Altern. Med. 2019, 19, 242. [Google Scholar] [CrossRef] [PubMed]
- Bunea, A.; Rugină, D.; Sconţa, Z.; Pop, R.M.; Pintea, A.; Socaciu, C.; Tăbăran, F.; Grootaert, C.; Struijs, K.; VanCamp, J. Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma cells. Phytochemistry 2013, 95, 436–444. [Google Scholar] [CrossRef]
- Yan, F.; Dai, G.; Zheng, X. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. Nutr. Biochem. 2016, 13, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Sozański, T.; Lee, C.G.; Kucharska, A.Z.; Przybylska, D.; Piórecki, N.; Jeong, S.Y. A comparison of the antiosteoporotic effects of cornelian cherry (Cornus mas L.) extracts from red and yellow fruits containing different constituents of polyphenols and iridoids in osteoblasts and osteoclasts. Oxid. Med. Cell. Longev. 2022, 2022, 4122253. [Google Scholar] [CrossRef] [PubMed]
- Shindo, M.; Kasai, T.; Abe, A.; Kondo, Y. Effects of dietary administration of plant-derived anthocyanin-rich colors to spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. 2007, 53, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Hogan, S.; Canning, C.; Sun, S.; Sun, X.; Zhou, K. Effects of grape pomace antioxidant extract on oxidative stress and inflammation in diet induced obese mice. J. Agric. Food Chem. 2010, 58, 11250–11256. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.H.; Liu, L.K.; Chuang, C.M.; Chyau, C.C.; Huang, C.N.; Wang, C.J. Mulberry water extracts possess an anti-obesity effect and ability to inhibit hepatic lipogenesis and promote lipolysis. J. Agric. Food Chem. 2011, 59, 2663–2671. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.H.; Lee, S.O.; Kim, S.Y.; Yang, S.J.; Lim, Y. Anti-inflammatory and antiobesity effects of mulberry leaf and fruit extract on high fat diet-induced obesity. Exp. Biol. Med. 2013, 238, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Jurgoński, A.; Juśkiewicz, J.; Zduńczyk, Z. An anthocyanin-rich extract from Kamchatka honeysuckle increases enzymatic activity within the gut and ameliorates abnormal lipid and glucose metabolism in rats. Nutrition 2013, 29, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Vendrame, S.; Daugherty, A.; Kristo, A.S.; Riso, P.; Klimis-Zacas, D. Wild blueberry (Vaccinium angustifolium) consumption improves inflammatory status in the obese Zucker rat model of the metabolic syndrome. J. Nutr. Biochem. 2013, 24, 1508–1512. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Yu, Z.; Tang, Q.; Song, H.; Gao, Z.; Chen, W.; Zheng, X. Honeysuckle anthocyanin supplementation prevents diet-induced obesity in C57BL/6 mice. Food Funct. 2013, 4, 1654–1661. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.F.; Lu, J.; Zheng, Y.L.; Wu, D.M.; Hu, B.; Shan, Q.; Cheng, W.; Li, M.Q.; Sun, Y.Y. Purple sweet potato color attenuates hepatic insulin resistance via blocking oxidative stress and endoplasmic reticulum stress in high-fat-diet-treated mice. J. Nutr. Biochem. 2013, 24, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Sozański, T.; Kucharska, A.Z.; Szumnyc, A.; Magdalan, K.; Bielska, K.; Merwid-Ląd, A.; Wozniak, A.; Dzimira, S.; Piórecki, N.; Trocha, M. The protective effect of the Cornus mas fruits (cornelian cherry) on hypertriglyceridemia and atherosclerosis through PPAR activation in hypercholesterolemic rabbits. Phytomedicine 2014, 21, 1774–1784. [Google Scholar] [CrossRef]
- Daskalova, E.; Delchev, S.; Peeva, Y.; Vladimirova-Kitova, L.; Kratchanova, M.; Kratchanov, C.; Denev, P. Antiatherogenic and Cardioprotective Effects of Black Chokeberry (Aronia melanocarpa) Juice in Aging Rats. Evid. Based Complement. Alternat. Med. 2015, 2015, 717439. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kho, M.C.; Kim, H.Y.; Ahn, Y.M.; Lee, Y.J.; Kang, D.G.; Lee, H.S. Blackcurrant Suppresses Metabolic Syndrome Induced by High-Fructose Diet in Rats. Evid. Based Complement. Alternat. Med. 2015, 2015, 385976. [Google Scholar] [CrossRef] [PubMed]
- Sozański, T.; Kucharska, A.Z.; Rapak, A.; Szumny, D.; Trocha, M.; Merwid-Ląd, A.; Dzimira, S.; Piasecki, T.; Piorecki, N.; Magdalan, J.; et al. Iridoideloganic acid versus anthocyanins from the Cornus mas fruits (cornelian cherry): Common and different effects on diet-induced atherosclerosis, PPARs expression and inflammation. Atherosclerosis 2016, 254, 151–160. [Google Scholar] [CrossRef]
- Wu, T.; Yin, J.; Zhang, G.; Long, H.; Zheng, X. Mulberry and cherry anthocyanin consumption prevents oxidative stress and inflammation in diet-induced obese mice. Mol. Nutr. Food Res. 2016, 60, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Guo, X.; Zhang, M.; Yang, L.; Liu, R.; Yin, J. Anthocyanins in black rice, soybean and purple corn increase fecal butyric acid and prevent liver inflammation in high fat diet-induced obese mice. Food Funct. 2017, 8, 3178–3186. [Google Scholar] [CrossRef] [PubMed]
- Yamane, T.; Kozuka, M.; Imai, M.; Yamamoto, Y.; Ohkubo, I.; Sakamoto, T.; Nakagaki, T.; Nakano, Y. Reduction of blood pressure by aronia berries through inhibition of angiotensin-converting enzyme activity in the spontaneously hypertensive rat kidney. Funct. Food Health Dis. 2017, 7, 280–290. [Google Scholar] [CrossRef]
- Peixoto, T.C.; Moura, E.G.; de Oliveira, E.; Soares, P.N.; Guarda, D.S.; Bernardino, D.N.; Ai, X.X.; Rodrigues, V.D.S.T.; de Souza, G.R.; da Silva, A.J.R.; et al. Cranberry (Vaccinium macrocarpon) extract treatment improves triglyceridemia, liver cholesterol, liver steatosis, oxidative damage and corticosteronemia in rats rendered obese by high fat diet. Eur. J. Nutr. 2018, 57, 1829–1844. [Google Scholar] [CrossRef] [PubMed]
- Buko, V.; Zavodnik, I.; Kanuka, O.; Belonovskaya, E.; Naruta, E.; Lukivskaya, O.; Kirko, S.; Budryn, G.; Żyżelewicz, D.; Oracze, J.; et al. Antidiabetic effects and erythrocyte stabilization by red cabbage extract in streptozotocin-treated rats. Food Funct. 2018, 9, 1850–1863. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, Q.; Huangfu, G.; Wu, Y.; Zhang, J. Anthocyanin extracts of lingonberry (Vaccinium vitis-idaea L.) attenuate serum lipids and cholesterol metabolism in HCD-induced hypercholesterolaemic male mice. Int. J. Food Sci. Technol. 2019, 54, 1576–1587. [Google Scholar] [CrossRef]
- Wu, T.; Yang, L.; Guo, X.; Zhang, M.; Liu, R.; Sui, W. Raspberry anthocyanin consumption prevents diet-induced obesity by alleviating oxidative stress and modulating hepatic lipid metabolism. Food Funct. 2018, 9, 2112–2120. [Google Scholar] [CrossRef] [PubMed]
- Capcarova, M.; Kalafova, M.; Schwarzova, M.; Schneidgenova, M.; Svik, K.; Soltesova Prnovac, M.; Slovak, L.; Kovacik, A.; Lory, V.; Zorad, S.; et al. Cornelian cherry fruit improves glycaemia and manifestations of diabetes in obese Zucker diabetic fatty rats. Res. Vet. Sci. 2019, 126, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Dzydzan, O.; Bila, I.; Kucharska, A.Z.; Brodyak, I.; Sybirna, N. Antidiabetic effects of extracts of red and yellow fruits of cornelian cherries (Cornus mas L.) on rats with streptozotocin-induced diabetes mellitus. Food Funct. 2019, 10, 6459–6472. [Google Scholar] [CrossRef] [PubMed]
- Herawati, E.R.N.; Santosa, U.; Sentana, S.; Ariani, D. Protective effects of anthocyanin extract from purple sweet potato (Ipomoea batatas L.) on blood MDA levels, liver and renal activity, and blood pressure of hyperglycemic rats. Prev. Nutr. Food Sci. 2020, 25, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Strugała, P.; Dzydzan, O.; Brodyak, I.; Kucharska, A.Z.; Kuropka, P.; Liuta, M.; Kaleta-Kuratewicz, K.; Przewodowska, A.; Michałowska, D.; Gabrielska, J.; et al. Antidiabetic and antioxidative potential of the Blue Congo variety of purple potato extract in streptozotocin-induced diabetic rats. Molecules 2019, 24, 3126. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Shen, X.; Zhou, Y.; Zheng, X. Black rice anthocyanins alleviate hyperlipidemia, liver steatosis and insulin resistance by regulating lipid metabolism and gut microbiota in obese mice. Food Funct. 2021, 12, 10160–10170. [Google Scholar] [CrossRef]
- Song, H.; Shen, X.; Wang, F.; Li, Y.; Zheng, X. Black current anthocyanins improve lipid metabolism and modulate gut microbiota in high-fat diet-induced obese mice. Mol. Nutr. Food Red. 2021, 65, 6. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Liu, X.; Zhang, J.; Lang, Y.Z.; Lu, L.; Mi, J.; Cao, Y.L.; Yan, Y.M.; Ran, L.-W. Preventive effects of anthocyanins from Lycium ruthenicum Murray in high-fat diet-induced obese mice are related to the regulation of intestinal microbiota and inhibition of pancreatic lipase activity. Molecules 2022, 27, 2141. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Balandrano, D.D.; Chai, Z.; Hutabarat, R.P.; Beta, T.; Feng, J.; Ma, K.; Li, D.; Huang, W. Hypoglycemic and hypolipidemic effects of blueberry anthocyanins by AMPK activation: In vitro and in vivo studies. Redox Biol. 2021, 46, 102100. [Google Scholar] [CrossRef] [PubMed]
- Ugwu, P.; Ubom, R.; Madueke, P.; Okorie, P.; Nwachukwu, D. Anti-hypertensive effects of anthocyanins from Hibiscus sabdarifa calyx on the renin-angiotensin-aldosterone system in Wistar rats. Niger. J. Physiol. Sci. 2022, 37, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhu, J.; Gong, G.; Guo, L.; Zhang, Y.; Zhang, Z.; Ma, C. Anthocyanin attenuates high salt-induced hypertension via inhibiting the hyperactivity of the sympathetic nervous system. Clin. Exp. Hypertens. 2023, 45, 2233717. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, C.; Qian, T.; Guo, H.; Wang, D.; Zhang, F.; Yin, X. Extracts of black bean peel and pomegranate peel ameliorate oxidative stress-induced hyperglycemia in mice. Exp. Ther. Med. 2015, 9, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, X.; Zheng, J.; Herrera-Balandrano, D.D.; Zhang, X.; Huang, W.; Sui, Z. In vivo antioxidant activity of rabbiteye blueberry (Vaccinium ashei cv. ‘Brightwell’) anthocyanin extracts. J. Zhejiang Univ. Sci. 2023, B 24, 602–616. [Google Scholar] [CrossRef]
- Asemota, K.E.; Uyovwiesevwa, A.J.; Omoirri, M.A.; Olowe, G.T. Free radical scavenging activities of anthocyanin flavonoid. World J. Biol. Pharm. Health Sci. 2020, 4, 13–20. [Google Scholar] [CrossRef]
- Çoban, J.; Evran, B.; Özkan, F.; Çevık, A.; Doğru-Abbasoğlu, S.; Uysal, M. Effect of blueberry feeding on lipids and oxidative stress in the serum, liver and aorta of guinea pigs fed on a high-cholesterol diet. Biosci. Biotechnol. Biochem. 2013, 77, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Shishehbor, F.; Azemi, M.E.; Zameni, D.; Saki, A. Inhibitory effect of hydroalcoholic extracts of barberry, sour cherry and cornelian cherry on α-amylase and α-glucosidase activities. Int. J. Pharm. Res. Allied Sci. 2016, 5, 423–428. [Google Scholar]
- Jiang, T.; Shuai, X.; Li, J.; Yang, N.; Deng, L.; Li, S.; He, Y.; Guo, H.; Li, Y.; He, J. Protein-bound anthocyanin compounds of purple sweet potato ameliorate hyperglycemia by regulating hepatic glucose metabolism in high-fat diet/streptozotocin-induced diabetic mice. J. Agric. Food Chem. 2020, 68, 1596–1608. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, X.; Liu, S.; Zhang, M.; Wang, C.; Xia, X.; Loua, Y.; Xu, H. The effect of lipid metabolism regulator anthocyanins from Aronia melanocarpa on 3T3-L1 preadipocytes and C57BL/6 mice via activating AMPK signaling and gut microbiota. Food Funct. 2021, 12, 6254–6270. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Ma, R.; Shi, L.; Wang, S.; Liang, Y.; Zhang, Z. Anti-glycation and anti-inflammatory activities of anthocyanins from purple vegetables. Food Funct. 2023, 14, 2034–2044. [Google Scholar] [CrossRef] [PubMed]
- Pomilio, A.B.; Szewczuk, N.A.; Duchowicz, P.R. Dietary anthocyanins balance immune signs in osteoarthritis and obesity—Update of human in vitro studies and clinical trials. Crit. Rev. Food Sci. Nutr. 2022, 23, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Ngamsamer, C.; Sirivarasai, J.; Sutjarit, N. The benefits of anthocyanins against obesity-induced inflammation. Biomolecules 2022, 12, 852. [Google Scholar] [CrossRef]
- Tong, Y.; Li, L.; Meng, X. Anthocyanins from Aronia melanocarpa Bound to Amylopectin Nanoparticles: Tissue Distribution and In Vivo Oxidative Damage Protection. J. Agric. Food Chem. 2023, 71, 430–442. [Google Scholar] [CrossRef]
- Calderaro, A.; Barreca, D.; Bellocco, E.; Smeriglio, A.; Trombetta, D.; Laganà, G. Chapter Eight—Colored phytonutrients: Role and applications in the functional foods of anthocyanins. In Phytonutrients in Food; Nabavi, S.M., Suntar, I., Barreca, D., Khan, H., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 177–195. [Google Scholar]
- Wrolstad, R.E.; Durst, R.W.; Lee, J. Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Park, S.; Choi, M.; Lee, M. Effects of anthocyanin supplementation on reduction of obesity criteria: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2021, 13, 2121. [Google Scholar] [CrossRef] [PubMed]
- Neyestani, T.R.; Yari, Z.; Rasekhi, H.; Nikooyeh, B. How effective are anthocyanins on healthy modification of cardiometabolic risk factors: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2023, 15, 106. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Du, M.; Leyva, M.J.; Sanchez, K.; Betts, N.M.; Wu, M.; Aston, C.E.; Lyons, T.J. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J. Nutr. 2010, 140, 1582–1587. [Google Scholar] [CrossRef] [PubMed]
- Aboonabi, A.; Singh, I.; Rose’ Meyer, R. Cytoprotective effects of berry anthocyanins against induced oxidative stress and inflammation in primary human diabetic aortic endothelial cells. Chem. Biol. Interact. 2020, 317, 108940. [Google Scholar] [CrossRef] [PubMed]
- Asgary, S.; Kelishadi, R.; Rafieian-Kopaei, M.; Najafi, S.; Najafi, M.; Sahebkar, A. Investigation of the lipid-modifying and antiinflammatory effects of Cornus mas L. supplementation on dyslipidemic children and adolescents. Pediatr. Cardiol. 2013, 34, 1729–1735. [Google Scholar] [CrossRef] [PubMed]
- Wright, O.R.; Netzel, G.A.; Sakzewski, A.R. A randomized, double-blind, placebo-controlled trial of the effect of dried purple carrot on body mass, lipids, blood pressure, body composition, and inflammatory markers in overweight and obese adults: The QUENCH trial. Can. J. Physiol. Pharmacol. 2013, 91, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Betts, N.M.; Nguyen, A.; Newman, E.D.; Fu, D.; Lyons, T.J. Freeze-dried strawberries lower serum cholesterol and lipid peroxidation in adults with abdominal adiposity and elevated serum lipids. J. Nutr. 2014, 144, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Aghababaee, S.K.; Vafa, M.; Shidfar, F.; Tahavorgar, A.; Gohari, M.; Katebi, D.; Mohammadi, V. Effects of blackberry (Morus nigra L.) consumption on serum concentration of lipoproteins, apo A-I, apo B, and high-sensitivity-C-reactive protein and blood pressure in dyslipidemic patients. J. Res. Med. Sci. 2015, 20, 685–691. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Y.; Liu, Y.; Sun, R.; Xia, M. Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. J. Nutr. 2015, 145, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Novotny, J.A.; Baer, D.J.; Khoo, C.; Gebauer, S.K.; Charron, C.S. Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating c-reactive protein, triglyceride, and glucose concentrations in adults. J. Nutr. 2015, 145, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.W.; Chen, F.X.; Li, D.; Ling, W.H.; Guo, H.H. A CONSORT-compliant, randomized, double-blind, placebo-controlled pilot trial of purified anthocyanin in patients with nonalcoholic fatty liver disease. Medicine 2015, 94, e758. [Google Scholar] [CrossRef] [PubMed]
- Habanova, M.; Saraiva, J.A.; Haban, M.; Schwarzova, M.; Chlebo, P.; Predna, L.; Gažo, J.; Wyka, J. Intake of bilberries (Vaccinium myrtillus L.) reduced risk factors for cardiovascular disease by inducing favorable changes in lipoprotein profiles. Nutr. Res. 2016, 36, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Sorn, S.R.; Park, T.; Park, H.K. Anthocyanin rich-black soybean testa improved visceral fat and plasma lipid profiles in overweight/obese Korean adults: A randomized controlled trial. J. Med. Food 2016, 19, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Azzini, E.; Venneria, E.; Ciarapica, D.; Foddai, M.S.; Intorre, F.; Zaccaria, M.; Maiani, F.; Palomba, L.; Barnaba, L.; Tubili, C.; et al. Effect of red orange juice consumption on body composition and nutritional status in overweight/obese female: A pilot study. Oxid. Med. Cell. Longev. 2017, 2017, 1672567. [Google Scholar] [CrossRef] [PubMed]
- Paquette, M.; Larque, A.S.M.; Weisnagel, S.J.; Desjardins, Y.; Marois, J.; Pilon, G.; Dudonne, S.; Marette, A.; Jacques, H. Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: A parallel, double-blind, controlled and randomised clinical trial. Br. J. Nutr. 2017, 117, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Vance, T.; Kim, B.; Lee, S.G.; Caceres, C.; Wang, Y.; Hubert, P.A.; Lee, J.Y.; Chun, O.K.; Bolling, B.W. Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: A randomized controlled trial. Nutr. Res. 2017, 37, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Solverson, P.M.; Rumpler, W.V.; Leger, J.L.; Redan, B.W.; Ferruzzi, M.G.; Baer, D.J.; Castonguay, T.W.; Novotny, J.A. Blackberry feeding increases fat oxidation and improves insulin sensitivity in overweight and obese males. Nutrients 2018, 10, 1048. [Google Scholar] [CrossRef] [PubMed]
- Curtis, P.J.; Van Der Velpen, V.; Berends, L.; Jennings, A.; Feelisch, M.; Umpleby, A.M.; Evans, M.; Fernandez, B.O.; Meiss, M.S.; Minnion, M.; et al. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month; double-blind; randomized controlled trial. Am. J. Clin. Nutr. 2019, 109, 1535–1545. [Google Scholar] [CrossRef] [PubMed]
- Habanova, M.; Saraiva, J.A.; Holovicova, M.; Moreira, S.A.; Fidalgo, L.G.; Haban, M.; Gazo, J.; Schwarzova, M.; Chlebo, P.; Bronkowska, M. Effect of berries/apple mixed juice consumption on the positive modulation of human lipid profile. J. Funct. Foods 2019, 60, 103417. [Google Scholar] [CrossRef]
- Pokimica, B.; García-Conesa, M.T.; Zec, M.; Debeljak-Martačić, J.; Ranković, S.; Vidović, N.; Petrović-Oggiano, P.; Konić-Ristić, A.; Glibetić, M. Chokeberry juice containing polyphenols does not affect cholesterol or blood pressure but modifies the composition of plasma phospholipids fatty acids in individuals at cardiovascular risk. Nutrients 2019, 11, 850. [Google Scholar] [CrossRef] [PubMed]
- Nolan, A.; Brett, R.; Strauss, J.A.; Stewart, C.E.; Shepherd, S.O. Short-term, but not acute, intake of New Zealand blackcurrant extract improves insulin sensitivity and free-living postprandial glucose excursions in individuals with overweight or obesity. Eur. J. Nutr. 2021, 60, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Aboonabi, A.; Meyer, R.R.; Gaiz, A.; Singh, I. Anthocyanins in berries exhibited antiatherogenicity and antiplatelet activities in a metabolic syndrome population. Nutr. Res. 2020, 76, 82–93. [Google Scholar] [CrossRef]
- Aboonabi, A.; Aboonabi, A. Anthocyanins reduce inflammation and improve glucose and lipid metabolism associated with inhibiting nuclear factor-kappaB activation and increasing PPAR-γ gene expression in metabolic syndrome subjects. Free Rad. Biol. Med. 2020, 150, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Sangouni, A.A.; Sangsefid, S.Z.; Yarhosseini, F.; Hosseinzadeh, M.; Akhondi-Meybodi, M.; Ranjbar, A.; Madadizadeh, M.; Mozaffari-Khosravi, H. Effect of Cornus mas L. fruit extract on lipid accumulation product and cardiovascular indices in patients with non-alcoholic fatty liver disease: A double-blind randomized controlled trial. Clin. Nutr. ESPEN 2022, 47, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Masheta, D.Q.; Al-Azzawi, S.K.; Abbood, S.F. Anti-inflammatory activity of anthocyanin extract on diabetic and hypertensive patients. Sci. Pharm. Sci. 2023, 2, 68–74. [Google Scholar] [CrossRef]
- Basu, A.; Betts, N.M.; Ortiz, J.; Simmons, B.; Wu, M.; Lyons, T.J. Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr. Res. 2011, 31, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Kuntz, S.; Kunz, C.; Herrmann, J.; Borsch, C.H.; Abel, G.; Fröhling, B.; Dietrich, H.; Rudloff, S. Anthocyanins from fruit juices improve the antioxidant status of healthy young female volunteers without affecting anti-inflammatory parameters: Results from the randomised, double-blind, placebo-controlled, cross-over ANTHONIA (ANTHOcyanins in Nutrition Investigation Alliance) study. Brit J. Nutr. 2014, 112, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Rehman, R.; Wang, S.; Ji, Y.; Li, J.; Liu, S.; Wang, H. Blue honeysuckle extracts retarded starch digestion by inhibiting glycosidases and changing the starch structure. Food Funct. 2022, 13, 6072–6088. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tian, J.; Cheng, Z.; Teng, W.; Zhang, W.; Bao, Y.; Wang, Y.; Song, B.; Chen, Y.; Li, B. Hypoglycemic bioactivity of anthocyanins: A review on proposed targets and potential signaling pathways. Crit. Rev. Food Sci. Nutr. 2023, 63, 7878–7895. [Google Scholar] [CrossRef] [PubMed]
- Solverson, P.M.; Henderson, T.R.; Debelo, H.; Ferruzzi, M.G.; Baer, D.J.; Novotny, J.A. An Anthocyanin-rich mixed-berry intervention may improve insulin sensitivity in a randomized trial of overweight and obese adults. Nutrients 2019, 11, 2876. [Google Scholar] [CrossRef] [PubMed]
- Lin Lee, J.J.; Chan, B.; Chun, C.; Bhaskaran, K.; Chen, W.N. A preparation of β-glucans and anthocyanins (LoGiCarb™) lowers the in vitro digestibility and in vivo glycemic index of white rice. RSC Adv. 2020, 10, 5129–5133. [Google Scholar] [CrossRef] [PubMed]
- Kolehmainen, M.; Mykkänen, O.; Kirjavainen, P.V.; Leppänen, T.; Moilanen, E.; Adriaens, M.; Laaksonen, D.E.; Hallikainen, M.; Puupponen-Pimiä, R.; Pulkkinen, L.; et al. Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome. Mol. Nutr. Food Res. 2012, 56, 1501–1510. [Google Scholar] [CrossRef]
- Araki, R.; Yada, A.; Ueda, H.; Tominaga, K.; Isoda, H. Differences in the effects of anthocyanin supplementation on glucose and lipid metabolism according to the structure of the main anthocyanin: A meta-analysis of randomized controlled trials. Nutrients 2021, 13, 2003. [Google Scholar] [CrossRef] [PubMed]
- Djuricic, I.; Calder, P.C. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic acid: Physiological role, metabolism and nutritional implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef] [PubMed]
- Gao, C. Inhibitory Effects of Berry Anthocyanins on Palmitic Acid- or Lipopolysaccharide- Induced Inflammation in Human Preadipocytes. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2011; p. 1569. Available online: https://repository.lsu.edu/gradschool_theses/1569 (accessed on 13 March 2024).
- Speciale, A.; Bashllari, R.; Muscarà, C.; Molonia, M.S.; Saija, A.; Saha, S.; Wilde, P.J.; Cimino, F. Anti-inflammatory activity of an in vitro digested anthocyanin-rich extract on intestinal epithelial cells exposed to TNF-α. Molecules 2022, 27, 5368. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Yoon, Y.; Yoon, H.; Park, H.M.; Song, S.; Yeum, K.J. Dietary Anthocyanins against Obesity and Inflammation. Nutrients 2017, 9, 1089. [Google Scholar] [CrossRef] [PubMed]
- Speciale, A.; Saija, A.; Bashllari, R.; Molonia, M.S.; Muscarà, C.; Occhiuto, C.; Cimino, F.; Cristani, M. Anthocyanins As Modulators of Cell Redox-Dependent Pathways in Non-Communicable Diseases. Curr. Med. Chem. 2020, 27, 1955–1996. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, E.; Guldas, M.; Ellergezen, P.; Gul Acar, A.; Gurbuz, A. Obesity-associated pathways of anthocyanins. Food Sci. Technol. 2021, 41. [Google Scholar] [CrossRef]
- Istek, N.; Gurbuz, O. Investigation of the impact of blueberries on metabolic factors influencing health. J. Funct. Foods 2017, 38, 298–307. [Google Scholar] [CrossRef]
- Tiwari, V.; Sharma, S.; Tiwari, A.; Sheoran, B.; Kaur, S.; Sharma, A.; Yadav, M.; Bhatnagar, A.; Garg, M. Effect of dietary anthocyanins on biomarkers of type 2 diabetes and related obesity: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2023, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bertoia, M.L.; Rimm, E.B.; Mukamal, K.J.; Hu, F.B.; Willett, W.C.; Cassidy, A. Dietary flavonoid intake and weight maintenance: Three prospective cohorts of 124086 US men and women followed for up to 24 years. BMJ 2016, 352, i17. [Google Scholar] [CrossRef] [PubMed]
- Budiarto, D.; Wijianto, B.; IH, H. Study of anthocyanin molecule blocking as anti-hypertensive through the pathway of the renin-angiotensin-aldosterone system (RAAS). Indo. J. Chem. Res. 2023, 11, 49–58. [Google Scholar] [CrossRef]
- Godos, J.; Vitale, M.; Micek, A.; Ray, S.; Martini, D.; Del Rio, D.; Riccardi, G.; Galvano, F.; Grosso, G. Dietary polyphenol intake, blood pressure, and hypertension: A systematic review and meta-analysis of observational studies. Antioxidants 2019, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Ahles, S.; Joris, P.J.; Plat, J. Effects of berry anthocyanins on cognitive performance, vascular function and cardiometabolic risk markers: A systematic review of randomized placebo-controlled intervention studies in humans. Int. J. Mol. Sci. 2021, 22, 6482. [Google Scholar] [CrossRef] [PubMed]
- Olivas-Aguirre, F.J.; Rodrigo-García, J.; Martínez-Ruiz, N.d.R.; Cárdenas-Robles, A.I.; Mendoza-Díaz, S.O.; Álvarez-Parrilla, E.; González-Aguilar, G.A.; de la Rosa, L.A.; Ramos-Jiménez, A.; Wall-Medrano, A. Cyanidin-3-O-glucoside: Physical-chemistry, foodomics and health effects. Molecules 2016, 21, 1264. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Rauf, A.; Imran, M.; Qamar, M.; Riaz, M.; Mubarak, M.S. Black carrot (Daucus carota L.), dietary and health promoting perspectives of its polyphenols: A review. Trends Food Sci. Technol. 2017, 66, 36–47. [Google Scholar] [CrossRef]
- Fairlie-Jones, L.; Davison, K.; Fromentin, E.; Hill, A.M. The effect of anthocyanin-rich foods or extracts on vascular function in adults: A systematic review and meta-analysis of randomised controlled trials. Nutrients 2017, 20, 908. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mateos, A.; Heiss, C.; Borges, G.; Crozier, A. Berry (poly)phenols and cardiovascular health. J. Agric. Food Chem. 2014, 62, 3842–3851. [Google Scholar] [CrossRef] [PubMed]
- Kruger, M.J.; Davies, N.; Myburgh, K.H.; Lecour, S. Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res. Int. 2014, 59, 41–52. [Google Scholar] [CrossRef]
- Ponzo, V.; Goitre, I.; Fadda, M.; Gambino, R.; De Francesco, A.; Soldati, L.; Gentile, L.; Magistroni, P.; Cassander, M.; Bo, S. Dietary flavonoid intake and cardiovascular risk: A population-based cohort study. J. Transl. Med. 2015, 13, 218. [Google Scholar] [CrossRef]
Necessary Condition for Diagnosis | |
---|---|
Diagnosed android obesity | WC > 102 cm (men) and >88 cm (women) or BMI ≥ 30 kg/m2 |
At least two of the following are required | |
Disordered carbohydrate metabolism | FG ≥ 100 mg/dL or OGTT2h ≥ 140 mg/dL or HbA1c ≥ 5.7% or treatment started |
Arterial hypertension | SBP ≥ 130 mmHg or DBP ≥ 85 mmHg or (home measurement): SBP ≥ 130 mmHg or DBP ≥ 80 mmHg or treatment started |
Dyslipidaemia | Non-HDLc ≥ 130 mg/dL or use of hypolipidaemic treatment |
Fruit or Vegetable | Form | Anthocyanin Content | Source |
---|---|---|---|
Chokeberry | Fresh fruit | 278.2–686.0 mg/100 g FW | [49,69,70,71] |
Pomace | 1602.0–6280.0 mg/100 g DW | [68,72] | |
171.1 mg/100 g | [73] | ||
Juice | 38.8–1118.0 mg/L | [74,75] | |
808.0–1527.0 mg CGE/L | [68] | ||
Syrup | 188 mg/L | [75] | |
Fruit tea | 479.0–1557.0/100 g DW | [68] | |
Extract | 9360 mg/100 g | [55] | |
233.5 mg/L | [60] | ||
14,733.5 mg/kg FW | [56] | ||
Bilberry | Fresh fruit | 0.34–0.47 mg/100 g | [76] |
2878 mg/100 g DW | [77] | ||
329.0 mg CGE/100 g FW | [78] | ||
0.041–0.166 μg/mL | [79] | ||
Extract | 1.89–5.57% | [80] | |
Blackberry | Fresh fruit | 48.1–122.8 mg/100 g FW | [81,82] |
79.59–465.4 mg CGE/100 g FW | [51] | ||
Frozen fruit | 46.1–118.5 mg/100 g FW | [82] | |
Dried fruit | 113.08–3924.2 CGE/100 g DW | [83] | |
Extract | 5.3–4.5 mg/100 mL | [84] | |
Blackcurrant | Fresh fruit | 62.8–287.8 mg CGE/100 g | [50,85] |
113.8 mg/100 g | [81] | ||
Lyophilised | 163.1 mg/100 g DW | [86] | |
Frozen fruit | 183.0–446.0 mg CGE/100 g | [87] | |
Juice | 1529.0–2083.0 mg/L | [88] | |
Pomace | 55.1 mg/100 g | [89] | |
Extract | 86.0–340.0 mg/L | [90] | |
Blueberry | Fresh fruit | 0.1–534.2 mg/100 g | [54,76,81,91,92] |
Dried powder | 45,918.0 mg/100 g | [91] | |
Juice | 3909.0 mg/mL | [93] | |
Extract | 1301.2 mg/100 g FW | [56] | |
5.8–11.4 mg/mL | [84] | ||
Cherry | Fresh fruit | 0.2–344.9 mg/100 g | [53,94] |
20.0–120.0 mg CGE/100 g | [95] | ||
Extract | 117.2 mg/100 g FW | [56] | |
19.9 mg CGE/100 g DW | [96] | ||
Cranberry | Fresh fruit | 44.6–835.2 mg/100 g | [48,97,98] |
Juice | 0.398 mg/mL | [93] | |
Extract | 520.0 mg/100 g | [57] | |
Elderberry | Pomace | 30,500 mg/100 g DW | [99] |
Juice | 1090 mg/L | [100] | |
Extract | 443.6–1413.8 mg/100 g FW | [56,101] | |
Raspberry | Fresh fruit | 37.5–2199.0 mg/100 g | [47,81,102,103] |
12.0–325.5 mg CGE/100 g FW | [51] | ||
9.3 mg/100 g of dry material | [104] | ||
97.3 μM/100 g | [105] | ||
Lyophilised | 0.0–314.2 mg/100 g DW | [86] | |
Juice powder | 1.5–2.5 g/100 g | [106] | |
Extract | 67.1 mg/100 g | [56] | |
2.3–3.7 mg/100 mL | [84] | ||
Red currant | Fresh fruit | 5.0–19.3 mg/100 g | [81,107] |
12.1–22.1 mg CGE/100 g | [50] | ||
Frozen fruit | 10.7–28.4 mg/100 g | [107] | |
Juice | 5.8–25.6 mg/100 g | [107] | |
Extract | 1.8–6.8 g/L | [90] | |
Strawberry | Fresh fruit | 31.0–189.0 mg/100 g FW | [61,62] |
145.8–204.3 mg/100 g DW | [52] | ||
Extract | 16.6 mg/100 g FW | [56] | |
38.0 mg CGE/100 g fruit | [108] | ||
0.7–1.1 mg/100 mL | [84] | ||
Eggplant | Fresh vegetable | 0.01–72.4 mg/100 g | [109] |
Frozen pulp | 3.2–6.2 × 105 mg Del-3-glc/100 g FW | [110] | |
Peel | 0.04–112.2 mg/100 g | [109] | |
Frozen peel | 1208.1– 84,652.0 mg Del-3-glc/100 g FW | [110] | |
Extract | 0.5–3.8 mg/100 mL | [84] | |
Red cabbage | Fresh vegetable | 23.2–275.4 mg/100 g FW | [58,111] |
1111.0–1780.0 mg CGE/100 g DW | [112] | ||
16.0–889.0 μg/mL | [113] | ||
Extract | 24.7–191.4 mg/100 g | [59] | |
1.0–547.3 mg/L | [111,114,115,116] | ||
14.5–89.2 mg CGE/g FW | [117] | ||
Red kidney bean | Fresh vegetable | 8.1–10.5 mg/100 g | [118] |
Peel/seed coat | 0.1–0.5 mg/g | [119] | |
0.0–2.8 mg/g dried seed | [120] | ||
Extract | 39.6–40.8 mg/100 g | [121] | |
Red onion | Fresh vegetable | 28.7–103.0 μg/g FW | [122,123,124] |
1.6–1.8 mg CGE/g DW | [125] | ||
Extract | 17.9 mg/L | [126] |
Ref. | Study Group | Daily Intake | Period of Consumption | Effect on the Body |
---|---|---|---|---|
[151] | Spontaneously hypertensive rats | Purple corn, purple sweet potato and red radish (1 mass% of diets) | 15 weeks | ↓ SBP and HR |
[152] | Diet-induced obese mice | Norton grape pomace extract (250 mg/kg bw) | 12 weeks | ↓ hsCRP; no effect on oxidative stress |
[153] | Hamsters | Mulberry aqueous extracts | 12 weeks | ↓ Body weight, visceral fat, TG, free fatty acids and hepatic lipids |
[154] | Obese mice | Combination of mulberry leaf extract (MLE) and mulberry fruit extract (MFE): 133 mg/kg bw or 333 mg/kg bw MLE or 133 mg MLE and 67 mg MFE/kg bw or 333 mg MLE and 167 mg MFE/kg bw | 12 weeks | ↓ TG, liver lipid peroxidation and adipocyte size; improvement in hepatic steatosis, body weight gain, fasting plasma glucose and insulin, hsCRP, TNF-α and IL-1 in liver and adipose tissue |
[155] | 24 adult male Wistar rats | Honeysuckle berry extract (2 g/kg bw) | 4 weeks | ↑ Bacterial α-glucosidase and β-glucosidase activity; normalisation of plasma TG and insulin levels as well as insulin resistance |
[156] | Obese Zucker rats | Diet with 8% wild blueberries | 8 weeks | ↓ TNF-α, IL-6 and hsCRP; ↑ adiponectin |
[157] | Mice fed a high-fat diet | Honeysuckle anthocyanins (50, 100 or 200 mg/kg bw) | 8 weeks | Honeysuckle anthocyanins at 100 or 200 mg/kg bw: suppression of body weight gain; ↓ serum and liver lipids, insulin and leptin; ↑ adiponectin |
[158] | Mice fed a high-fat diet | Sweet potato | 20 weeks | Improvement in fasting blood glucose as well as glucose and insulin tolerance; suppression of ROS; restoration of antioxidant enzyme activities |
[159] | Rabbits fed 1% cholesterol | Cornelian cherry (100 mg/kg bw) | 60 days | ↓ Serum TG and proinflammatory cytokine levels; ↑ PPARα protein expression in the liver |
[160] | 18 male Wistar rats | 25 mL of black chokeberry (Aronia melanocarpa) juice | 90 days | ↓ TC, LDLc and atherogenic risk |
[161] | Sprague Dawley rats | 100 or 300 mg/kg bw blackcurrant (Ribes nigrum) | 8 weeks | Suppression of increased liver weight and epididymal fat weight, oral glucose tolerance and expression IRS-1 and p-AMPK in muscle; ↓ hsCRP, total bilirubin, leptin, insulin, TC, TG and LDLc |
[162] | Rabbits fed 1% cholesterol | Loganic acid (20 mg/kg bw) or a mixture of anthocyanins (10 mg/kg bw) | 60 days | Loganic acid or anthocyanin mixture: ↓ TC, LDLc, TG and ox-LDL in the plasma ↑ HDLc; loganic acid alone: ↓ TNF-α and IL-6; anthocyanin mixture alone: ↑ PPARγ and PPARα in the liver |
[163] | 60 mice | Cherry and mulberry anthocyanins (200 mg/kg bw) | 8 weeks | ↓ Body weight gain, serum glucose, leptin and TNFα and IL-6 expression; ↑ SOD and GSH-PX activities; |
[164] | Obesity induced in C57BL/6 mice by feeding a high-fat diet | Black rice, black soybean or purple corn anthocyanins (200 mg/kg bw) | 12 weeks | ↓ body weight and TNF-α and IL-6 expression; ↑ faecal butyric acid levels and SOD and GSH-PX activities |
[165] | Spontaneously hypertensive rats | Normal diet with 10% freeze-dried aronia berries | 28 days | Inhibition of the kidney renin–angiotensin system; ↓ BP; no effect on body weight |
[166] | Wistar rats | Cranberry extract (200 mg/kg bw) | 30 days | ↓ Body mass gain, TG, corticosterone, hepatic cholesterol and fatty acid synthase; ↓ lipid peroxidation, protein carbonylation (liver and adipose tissue) and accumulation of fat in the liver |
[167] | Streptozotocin-induced diabetic rats | Red cabbage extract (800 mg/kg bw) | 4 weeks | ↓ Blood glucose; ↓ glycated and foetal Haemoglobin; improvement in glucose tolerance; ↑ serum insulin, proinsulin C-peptide and the number of pancreatic β-cells |
[168] | High-cholesterol-diet-induced hypercholesterolaemic mice | Extract with lingonberry anthocyanins | 10 weeks | ↓ Body weight, daily food intake, liver weight, visceral adipose content, TC, LDLc and fasting blood glucose; ↑ HDLc |
[169] | C57BL/6 mice | Raspberry anthocyanins (200 mg/kg bw) | 12 weeks | ↓ Body weight gain and TNFα and IL-6 expression; ↑ faecal butyric acid levels and SOD and GSH-PX activities |
[170] | Zucker diabetic fatty rats | Cornelian cherry (500 or 1000 mg/kg bw) | 10 weeks | Both doses: no effect on HOMA-IR; 1000 mg/kg bw: ↓ glucose |
[171] | Rat model of type 1 diabetes mellitus | Cornelian cherry (20 mg/kg bw) | 14 days | ↓ Blood glucose; ↑ reduced glutathione; improvement in glucose tolerance |
[172] | Hyperglycaemic rats | Purple sweet potatoes (50 or 100 mg/kg bw) | 35 days | ↓ MDA in the blood, liver and kidney; urea and creatinine levels; serum glutamate oxalacetate transaminase and glutamate pyruvate transaminase levels |
[173] | Streptozotocin-induced diabetic rats | Purple potato (the Blue Congo variety) extract | 2 weeks | ↓ Blood glucose; improvement in glucose tolerance; ↓ glycated haemoglobin and MDA; reinstatement of antioxidant enzyme activities |
[174] | C57BL/6J mice fed a high-fat diet | Black rice anthocyanins | 14 weeks | ↓ Body weight gain, TG, TC, steatosis scores and insulin resistance index |
[175] | C57BL/6J mice fed a high-fat diet | Blackcurrant anthocyanins | 12 weeks | Alleviated high-fat-diet-induced obesity, hyperlipaemia and hepatic steatosis; improvement in hepatic lipid metabolism |
[176] | C57BL/6J mice fed a high-fat diet | Pure water containing 0.8% of a crude extract of anthocyanins from Lycium ruthenicum fruit | 14 weeks | ↓ Body weight, TC and LDLc; inhibition of lipid accumulation in liver and white adipose tissue and pancreatic lipase activity; regulation of the intestinal microbiota |
[177] | Streptozotocin- induced diabetic mice | 100 and 400 mg/kg blueberry anthocyanin extracts | 5 weeks | ↓ Body weight, blood and urine glucose, TG and TC; ↑ AMPK activity |
[178] | Wistar rats | (50, 100 or 200 mg/kg bw) | 4 weeks | ↓ SBP, DBP, MABP and HR |
[179] | Sprague Dawley rats | Infusion of anthocyanins (10 mg/kg bw, 0.4 μL/h) | 4 weeks | ↓ Caspase-1, IL-1β, TNF-α, ROS and BP |
[180] | Streptozotocin- induced diabetic mice | Black bean peel extract (containing 40% anthocyanin, 400 mg/kg bw) | 4 weeks | ↑ T-AOC; ↓GSH |
[181] | C57BL/6J mice | 100, 400, or 800 mg/kg bw blueberry anthocyanin extract | 0.1–12 h | ↑ T-AOC; ↓ MDA |
[182] | Wistar rats | 100, 200, 300 or 400 mg/kg bw of anthocyanin extract | 4 weeks | ↓ CAT, MDA, GSH-PX, SOD |
[183] | Dankin Hartley guinea pigs | Diet with 8% blueberries | 75 days | ↓ TG, MDA |
Ref. | Study Group | Daily Intake | Period of Consumption | Effect on the Body |
---|---|---|---|---|
[195] | 48 people with MetS | 480 mL of water with vanilla extract and 50 g of freeze-dried blueberries | 8 weeks | ↓ SBP, DBP, oxidised LDLc, MDA and hydroxynonenal; no effect on glucose levels and the lipid profile |
[196] | 36 people with MetS | 480 mL of cranberry juice | 8 weeks | ↑ Plasma antioxidant capacity; ↓ oxidised LDL and malondialdehyde |
[197] | 40 children with dyslipidaemia (9–16 years old) | 50 g of Cornus mas L. fruit | 6 weeks | ↑ HDLc and apo A-I; ↓TC, LDLc, TG and apo B |
[198] | 16 women with obesity and normal lipid and inflammatory marker levels | Dried purple carrot delivering 118.5 mg/day of anthocyanins and 259.2 mg/day of phenolic acids | 4 weeks | ↓ HDLc; no effect on body mass, body composition, TC, LDLc, BP and CRP |
[199] | 60 people with abdominal adiposity and elevated serum lipids | 25 or 50 g of freeze-dried strawberries reconstituted in 2 cups (474 mL) of water | 12 weeks | ↓ TC and LDLc; no effect on measures of adiposity, BP, glycaemia, HDLc, TG and CRP |
[200] | 72 people with dyslipidaemia | 300 mL/day of blackberry juice with pulp | 8 weeks | ↑ HDLc and SBP; ↓ hsCRP |
[201] | 58 people with diabetes mellitus | Supplementation with 320 mg of anthocyanins | 24 weeks | ↑ HDLc and TRAP; ↓ LDLc, TG, HOMA-IR, IL-6 and TNF-α |
[202] | 56 people with a BMI of 20–38 kg/m2 and in basic good health | 240 mL of low-calorie cranberry juice | 8 weeks | ↓ TG, CRP, DBP, FBG and HOMA-IR |
[203] | 74 people with NAFLD | Purified anthocyanins (320 mg/day) from bilberry and blackcurrant | 12 weeks | ↓ FBG and HOMA-IR |
[204] | 36 apparently healthy people (25 men and 11 women) | 150 g of frozen bilberries (Vaccinium myrtillus L.) 3 times per week | 6 weeks | Men and women: ↑ HDLc; ↓ TG, glucose, albumin, aspartate aminotransferase and γ-glutamyltransferase; men only: ↑ LDLc; women only: ↓ LDLc |
[205] | 63 people with BMI >23 kg/m2 or WC > 90 cm (for men) or >85 cm (for women) | 2.5 g/day of black soybean testa extracts | 8 weeks | ↓ WC; hip circumference; TG; LDLc; non-HDLc; and arteriosclerosis indicators such as (TC)/HDLc and LDLc/HDLc |
[206] | 11 women with overweight or obesity | 500 mL of commercial pasteurised red orange juice (250 mg of anthocyanins/day) | 12 weeks | ↓ TC and LDLc; no effect on weight loss |
[207] | 41 people with overweight or obesity (BMI ≥ 25 kg/m2) with insulin resistance (fasting plasma insulin level >60 pmol/L) | Beverage with 1.84 g of a mixture of dry strawberry (Fragaria × ananassa Duch) and cranberry (Vaccinium macrocarpon L.) (333 mg of polyphenol) | 6 weeks | ↑ Insulin sensitivity based on the hyperinsulinaemic–euglycaemic clamp and C-peptide; no effect on the lipid profile and markers of inflammation and oxidative stress |
[208] | 49 healthy adult former smokers | 500 mg of chokeberry extract | 12 weeks | ↓ TC, LDLc; no effect on BP and biomarkers of inflammation and oxidative stress |
[209] | 27 men with overweight or obesity (BMI > 25 kg/m2) | High-fat diet (40% of energy from fat) that contained 600 g/day blackberries (~1476 mg of flavonoids and ~361 mg of total anthocyanins per day) | 1 week | ↓ iAUC for insulin; ↑ AUC for NEFAs |
[210] | 115 adults with overweight or obesity (BMI ≥ 25 kg/m2) | 0.5 or 1 cup blueberries/day (182 or 364 mg of anthocyanins and 439 or 879 mg phenolics, respectively) | 6 weeks | ↑ HDLc; no effect on TC, LDLc, HOMA-IR, HbA1c and BP |
[211] | 50 healthy people (36 women and 14 men) | 300 mL/day of a 50%/50% mixture of berry and apple juice | 21 days | Men and women: ↑ HDLc and total antioxidant status; men only: ↓ TC and LDLc |
[212] | 84 people ‘at cardiovascular risk’ | 100 mL/day of chokeberry juice with a high or low dose of polyphenols (177.11 or 294.28 mg total polyphenols and 113.3 mg/100 mL or 28.3 mg/100 mL total cyanidin-3-glucoside equivalents, respectively) | 4 weeks | ↑ SFAs; ↓ PUFAs; no effect on TC, LDLc, SBP and DBP |
[213] | 25 people with overweight (BMI > 25 kg/m2) | New Zealand blackcurrant extract (600 mg/day) | 8 days | ↓ hsCRP; improvement in circulating insulin |
[214] | 55 people with MetS | Supplementation with 320 mg of anthocyanins | 4 weeks | Men and women: ↓ FBG, TG and LDLc; women only: ↓ CRP; no effect on uric acid and HDLc |
[215] | 35 women and men (with MetS or healthy) | Veg-encapsulated anthocyanin extract taken two times a day (320 mg of anthocyanins) | 4 weeks | ↑ PPAR-γ and SOD gene expression; ↓ hsCRP and the expression of NF-κB-dependent genes (TNF-α, IL-6 and IL-1α) |
[216] | 18 people with NAFLD | 20 mL/day of cornelian cherry fruit extract as liquid form (32 mg total anthocyanins) | 12 weeks | No effect on LAP, AIP, CRI and AC |
[217] | 50 people with type 2 diabetes mellitus or hypertension | Two 300 mg capsules of anthocyanin extract (total of 600 mg/day) | 30 days | ↓ hsCRP; no effect on BP and blood glucose levels |
[218] | 36 adults with features of metabolic syndrome | 480 mL cranberry juice (24 mg total anthocyanins) | 8 weeks | ↓ ox-LDL and MDA; ↑ antioxidant capacity in plasma; no effect on biomarkers of inflammation, glucose and lipids |
[219] | 30 healthy females | 330 mL juice or smoothie (total phenolics: juice—3227; smoothie—3435 mg/L) | 14 days | ↓ MDA; no effect on IL-2, IL-6, IL-8 and IL-10, CRP, TNF-α, SOD and GSH-PX |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godyla-Jabłoński, M.; Raczkowska, E.; Jodkowska, A.; Kucharska, A.Z.; Sozański, T.; Bronkowska, M. Effects of Anthocyanins on Components of Metabolic Syndrome—A Review. Nutrients 2024, 16, 1103. https://doi.org/10.3390/nu16081103
Godyla-Jabłoński M, Raczkowska E, Jodkowska A, Kucharska AZ, Sozański T, Bronkowska M. Effects of Anthocyanins on Components of Metabolic Syndrome—A Review. Nutrients. 2024; 16(8):1103. https://doi.org/10.3390/nu16081103
Chicago/Turabian StyleGodyla-Jabłoński, Michaela, Ewa Raczkowska, Anna Jodkowska, Alicja Zofia Kucharska, Tomasz Sozański, and Monika Bronkowska. 2024. "Effects of Anthocyanins on Components of Metabolic Syndrome—A Review" Nutrients 16, no. 8: 1103. https://doi.org/10.3390/nu16081103
APA StyleGodyla-Jabłoński, M., Raczkowska, E., Jodkowska, A., Kucharska, A. Z., Sozański, T., & Bronkowska, M. (2024). Effects of Anthocyanins on Components of Metabolic Syndrome—A Review. Nutrients, 16(8), 1103. https://doi.org/10.3390/nu16081103