Nutrition for European Elite Fencers: A Practical Tool for Coaches and Athletes
Abstract
:1. The Art of Fencing
2. Materials and Methods
3. Training and Competition Schedules
4. Stress and Fatigue
5. Nutrition for Elite Fencers
5.1. Body Composition
5.2. Nutrients
5.3. Meals’ Timing
5.4. Hydration
5.5. Supplements
6. Practical Constrains for Optimal Nutrition Implementation
7. Injuries Prevention and Recovery
8. Limitations
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Turner, A.; James, N.; Dimitriou, L.; Greenhalgh, A.; Moody, J.; Fulcher, D.; Mias, E.; Kilduff, L. Determinants of olympic fencing performance and implications for strength and conditioning training. J. Strength Cond. Res. 2014, 28, 3001–3011. [Google Scholar] [CrossRef]
- Milia, R.; Roberto, S.; Pinna, M.; Palazzolo, G.; Sanna, I.; Omeri, M.; Piredda, S.; Migliaccio, G.; Concu, A.; Crisafulli, A. Physiological responses and energy expenditure during competitive fencing. Appl. Physiol. Nutr. Metab. 2014, 39, 324–328. [Google Scholar] [CrossRef]
- Roi, G.S.; Bianchedi, D. The science of fencing: Implications for performance and injury prevention. Sports Med. 2008, 38, 465–481. [Google Scholar] [CrossRef] [PubMed]
- EFC-CEE. Competition EU. 2023. Available online: https://www.eurofencing.info/competitions/championships (accessed on 12 September 2023).
- FIE. Competitions International. 2023. Available online: https://fie.org/competitions (accessed on 12 September 2023).
- Chryssanthopoulos, C.; Tsolakis, C.; Bottoms, L.; Toubekis, A.; Zacharogiannis, E.; Pafili, Z.; Maridaki, M. Effect of a Carbohydrate-Electrolyte Solution on Fluid Balance and Performance at a Thermoneutral Environment in International-Level Fencers. J. Strength Cond. Res. 2020, 34, 152–161. [Google Scholar] [CrossRef]
- Russell, S.; Jenkins, D.; Smith, M.; Halson, S.; Kelly, V. The application of mental fatigue research to elite team sport performance: New perspectives. J. Sci. Med. Sport. 2019, 22, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Bottoms, L.; Tarrago, R.; Muniz, D.; Chaverri, D.; Irurtia, A.; Castizo-Olier, J.; Carrasco, M.; Rodriguez, F.A.; Iglesias, X. Physiological demands and motion analysis of elite foil fencing. PLoS ONE 2023, 18, e0281600. [Google Scholar] [CrossRef]
- Varesco, G.; Pageaux, B.; Cattagni, T.; Sarcher, A.; Martinent, G.; Doron, J.; Jubeau, M. Fatigue in elite fencing: Effects of a simulated competition. Scand. J. Med. Sci. Sports 2023, 33, 2250–2260. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.; Reed, D.B.; Crouse, S.F.; Armstrong, R.B. Pre- and post-season dietary intake, body composition, and performance indices of NCAA division I female soccer players. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Reale, R.; Burke, L.M.; Cox, G.R.; Slater, G. Body composition of elite Olympic combat sport athletes. Eur. J. Sport Sci. 2020, 20, 147–156. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef] [PubMed]
- Mouelhi Guizani, S.; Bouzaouach, I.; Tenenbaum, G.; Ben Kheder, A.; Feki, Y.; Bouaziz, M. Simple and choice reaction times under varying levels of physical load in high skilled fencers. J. Sports Med. Phys. Fit. 2006, 46, 344–351. [Google Scholar]
- Vander, L.B.; Franklin, B.A.; Wrisley, D.; Scherf, J.; Kogler, A.A.; Rubenfire, M. Physiological profile of national-class National Collegiate Athletic Association fencers. JAMA 1984, 252, 500–503. [Google Scholar] [CrossRef]
- Stellingwerff, T.; Morton, J.P.; Burke, L.M. A Framework for Periodized Nutrition for Athletics. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Castell, L.M.; Casa, D.J.; Close, G.L.; Costa, R.J.S.; Desbrow, B.; Halson, S.L.; Lis, D.M.; Melin, A.K.; Peeling, P.; et al. International Association of Athletics Federations Consensus Statement 2019: Nutrition for Athletics. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Franchini, E. Energy System Contributions during Olympic Combat Sports: A Narrative Review. Metabolites 2023, 13, 297. [Google Scholar] [CrossRef]
- Yang, W.H.; Park, J.H.; Shin, Y.C.; Kim, J. Physiological Profiling and Energy System Contributions During Simulated Epee Matches in Elite Fencers. Int. J. Sports Physiol. Perform. 2022, 17, 943–950. [Google Scholar] [CrossRef]
- Kelardeh, B.M. Effect of Fencing Championship on Muscular Damage Indicators in Fencer Females. Rep. Health Care 2019, 5, 14–23. [Google Scholar]
- Turner, A.N.; Kilduff, L.P.; Marshall, G.J.G.; Phillips, J.; Noto, A.; Buttigieg, C.; Gondek, M.; Hills, F.A.; Dimitriou, L. Competition Intensity and Fatigue in Elite Fencing. J. Strength Cond. Res. 2017, 31, 3128–3136. [Google Scholar] [CrossRef] [PubMed]
- Harmer, P.A. Getting to the point: Injury patterns and medical care in competitive fencing. Curr. Sports Med. Rep. 2008, 7, 303–307. [Google Scholar] [CrossRef]
- Potgieter, S. Sport nutrition: A review of the latest guidelines for exercise and sport nutrition from the American College of Sport Nutrition, the International Olympic Committee and the International Society for Sports Nutrition. S. Afr. J. Clin. Nutr. 2013, 26, 6–16. [Google Scholar] [CrossRef]
- Burke, L.; Maughan, R. The Governor has a sweet tooth—Mouth sensing of nutrients to enhance sports performance. Eur. J. Sport Sci. 2015, 15, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Januszko, P.; Lange, E. Nutrition, supplementation and weight reduction in combat sports: A review. AIMS Public Health 2021, 8, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, E.; Williams, C.; McComb, G.; Oram, C. Improved recovery from prolonged exercise following the consumption of low glycemic index carbohydrate meals. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Slater, G.; Phillips, S.M. Nutrition guidelines for strength sports: Sprinting, weightlifting, throwing events, and bodybuilding. J. Sports Sci. 2011, 29 (Suppl. S1), S67–S77. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.; Rosenbloom, C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr. Rev. 2018, 76, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Reale, R.; Slater, G.; Burke, L.M. Individualised dietary strategies for Olympic combat sports: Acute weight loss, recovery and competition nutrition. Eur. J. Sport Sci. 2017, 17, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.L. Regulation of muscle glycogen repletion, muscle protein synthesis and repair following exercise. J. Sports Sci. Med. 2004, 3, 131–138. [Google Scholar] [PubMed]
- Martinez; Skinner, S.; Burd, N. Protein Intake for Optimal Sports Performance. In Nutrition and Enhanced Sports Performance, 3rd ed.; Bagchi, D., Nair, D., Sen, C., Eds.; Academic Press: London, UK, 2019; pp. 461–470. [Google Scholar]
- di Corcia, M.; Tartaglia, N.; Polito, R.; Ambrosi, A.; Messina, G.; Francavilla, V.C.; Cincione, R.I.; Della Malva, A.; Ciliberti, M.G.; Sevi, A.; et al. Functional Properties of Meat in Athletes’ Performance and Recovery. Int. J. Environ. Res. Public Health 2022, 19, 5145. [Google Scholar] [CrossRef]
- Terasawa, N.; Okamoto, K.; Nakada, K.; Masuda, K. Effect of Conjugated Linoleic Acid Intake on Endurance Exercise Performance and Anti-fatigue in Student Athletes. J. Oleo Sci. 2017, 66, 723–733. [Google Scholar] [CrossRef]
- Gammone, M.A.; Riccioni, G.; Parrinello, G.; D’Orazio, N. Omega-3 Polyunsaturated Fatty Acids: Benefits and Endpoints in Sport. Nutrients 2018, 11, 46. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 104–125. [Google Scholar] [CrossRef] [PubMed]
- Judge, L.W.; Bellar, D.M.; Popp, J.K.; Craig, B.W.; Schoeff, M.A.; Hoover, D.L.; Fox, B.; Kistler, B.M.; Al-Nawaiseh, A.M. Hydration to Maximize Performance and Recovery: Knowledge, Attitudes, and Behaviors Among Collegiate Track and Field Throwers. J. Hum. Kinet. 2021, 79, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Belval, L.N.; Hosokawa, Y.; Casa, D.J.; Adams, W.M.; Armstrong, L.E.; Baker, L.B.; Burke, L.; Cheuvront, S.; Chiampas, G.; Gonzalez-Alonso, J.; et al. Practical Hydration Solutions for Sports. Nutrients 2019, 11, 1550. [Google Scholar] [CrossRef] [PubMed]
- Millard-Stafford, M.; Snow, T.K.; Jones, M.L.; Suh, H. The Beverage Hydration Index: Influence of Electrolytes, Carbohydrate and Protein. Nutrients 2021, 13, 2933. [Google Scholar] [CrossRef] [PubMed]
- Jagim, A.R.; Harty, P.S.; Tinsley, G.M.; Kerksick, C.M.; Gonzalez, A.M.; Kreider, R.B.; Arent, S.M.; Jager, R.; Smith-Ryan, A.E.; Stout, J.R.; et al. International society of sports nutrition position stand: Energy drinks and energy shots. J. Int. Soc. Sports Nutr. 2023, 20, 2171314. [Google Scholar] [CrossRef] [PubMed]
- Mata, F.; Dominguez, R.; Lopez-Samanes, A.; Sanchez-Gomez, A.; Jodra, P.; Sanchez-Oliver, A.J. Analysis of the consumption of sports supplements in elite fencers according to sex and competitive level. BMC Sports Sci. Med. Rehabil. 2021, 13, 50. [Google Scholar] [CrossRef]
- Bottoms, L.; Greenhalgh, A.; Gregory, K. The effect of caffeine ingestion on skill maintenance and fatigue in epee fencers. J. Sports Sci. 2013, 31, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Kozlowska, L.; Mizera, O.; Gromadzinska, J.; Janasik, B.; Mikolajewska, K.; Mroz, A.; Wasowicz, W. Changes in Oxidative Stress, Inflammation, and Muscle Damage Markers Following Diet and Beetroot Juice Supplementation in Elite Fencers. Antioxid 2020, 9, 571. [Google Scholar] [CrossRef] [PubMed]
- Kozlowska, L.; Mizera, O.; Mroz, A. An Untargeted Metabolomics Approach to Investigate the Metabolic Effect of Beetroot Juice Supplementation in Fencers-A Preliminary Study. Metabolites 2020, 10, 100. [Google Scholar] [CrossRef]
- Kaszuba, M.; Klocek, O.; Spieszny, M.; Filip-Stachnik, A. The Effect of Caffeinated Chewing Gum on Volleyball-Specific Skills and Physical Performance in Volleyball Players. Nutrients 2022, 15, 91. [Google Scholar] [CrossRef]
- Clemente-Suarez, V.J.; Bustamante-Sanchez, A.; Mielgo-Ayuso, J.; Martinez-Guardado, I.; Martin-Rodriguez, A.; Tornero-Aguilera, J.F. Antioxidants and Sports Performance. Nutrients 2023, 15, 2371. [Google Scholar] [CrossRef]
- Jones, A.M. Dietary nitrate supplementation and exercise performance. Sports Med. 2014, 44 (Suppl. S1), S35–S45. [Google Scholar] [CrossRef] [PubMed]
- Pedlar, C.R.; Brugnara, C.; Bruinvels, G.; Burden, R. Iron balance and iron supplementation for the female athlete: A practical approach. Eur. J. Sport Sci. 2018, 18, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.S.; McKay, A.K.A.; Kuikman, M.; Ackerman, K.E.; Harris, R.; Elliott-Sale, K.J.; Stellingwerff, T.; Burke, L.M. Managing Female Athlete Health: Auditing the Representation of Female versus Male Participants among Research in Supplements to Manage Diagnosed Micronutrient Issues. Nutrients 2022, 14, 3372. [Google Scholar] [CrossRef]
- Abrego-Guandique, D.M.; Bonet, M.L.; Caroleo, M.C.; Cannataro, R.; Tucci, P.; Ribot, J.; Cione, E. The Effect of Beta-Carotene on Cognitive Function: A Systematic Review. Brain Sci. 2023, 13, 1468. [Google Scholar] [CrossRef]
- Elechi, J.O.G.; Guandique, D.M.A.; Cannataro, R. Creatine in Cognitive Performance: A Commentary. Curr. Mol. Pharmacol. 2024, 17, e18761429272915. [Google Scholar] [CrossRef]
- Venderley, A.M.; Campbell, W.W. Vegetarian diets: Nutritional considerations for athletes. Sports Med. 2006, 36, 293–305. [Google Scholar] [CrossRef]
- Simoncini, L.; Lago-Rodriguez, A.; Lopez-Samanes, A.; Perez-Lopez, A.; Dominguez, R. Effects of Nutritional Supplements on Judo-Related Performance: A Review. J. Hum. Kinet. 2021, 77, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Close, G.L.; Sale, C.; Baar, K.; Bermon, S. Nutrition for the Prevention and Treatment of Injuries in Track and Field Athletes. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 189–197. [Google Scholar] [CrossRef]
- Kyriakidou, Y.; Wood, C.; Ferrier, C.; Dolci, A.; Elliott, B. The effect of Omega-3 polyunsaturated fatty acid supplementation on exercise-induced muscle damage. J. Int. Soc. Sports Nutr. 2021, 18, 9. [Google Scholar] [CrossRef]
- Turnagol, H.H.; Kosar, S.N.; Guzel, Y.; Aktitiz, S.; Atakan, M.M. Nutritional Considerations for Injury Prevention and Recovery in Combat Sports. Nutrients 2021, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Levenhagen, D.K.; Gresham, J.D.; Carlson, M.G.; Maron, D.J.; Borel, M.J.; Flakoll, P.J. Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E982–E993. [Google Scholar] [CrossRef] [PubMed]
- Hespel, P.; Op’t Eijnde, B.; Van Leemputte, M.; Urso, B.; Greenhaff, P.L.; Labarque, V.; Dymarkowski, S.; Van Hecke, P.; Richter, E.A. Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J. Physiol. 2001, 536, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.; Lee-Barthel, A.; Ross, M.; Wang, B.; Baar, K. Vitamin C–enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am. J. Clin. Nutr. 2017, 105, 136–143. [Google Scholar] [CrossRef]
- Chambial, S.; Dwivedi, S.; Shukla, K.K.; John, P.J.; Sharma, P. Vitamin C in disease prevention and cure: An overview. Indian. J. Clin. Biochem. 2013, 28, 314–328. [Google Scholar] [CrossRef]
Quantity | Food Examples | Meals’ Timing | Suggestions—During Competition | Suggestions—Post-Exercise | Additional Suggestions |
---|---|---|---|---|---|
Carbohydrates | |||||
7–11 g/kg of BW daily; privilege min 11 g/kg/BW daily during loading phase. | Whole grains, fruits, and vegetables; privilege rye bread for sustained energy and maintain appropriate body weight. | 3–4 meals a day (carbs together with protein/fat); to be consumed within short time (max 60 min) after exercise. | Consume multiple small meals containing easily digestible carbohydrates, proteins, and fats to fuel the body and to prevent gastrointestinal discomfort (dry meat/smoked salmon/parmesan cheese/eggs plus whole grain bread plus bananas, apples/nuts/dried fruits) between bouts, as required and feasible; do not try unfamiliar foods during competitions. | Recommended carbs intake 5–7 g/kg/day for moderate-volume training; 7–10 g/kg/day for high-volume training. Consume carbs together with proteins (ratio 4:1) after exercise to restore glycogen stores and facilitate recovery from injuries, within 60 min after exercise. | Be aware of the amount and type of carbs if you need to control your weight. |
Proteins | |||||
Normally 1.5–2 g/kg of BW daily; 1.8–2.7 g/kg of BW daily if following a weight-loss diet. | Lean protein sources (poultry, fish, eggs, dairy products, tofu, and legumes); red meat 3 times a week. | 3–4 meals a day (proteins together with carbs/fat); to be consumed within short time (max 60 min) after exercise. | See above | Consume proteins together with carbs (see above). | |
Fats | |||||
25% to 30% of the total energy intake—main focus on unsaturated fat (Omega 3). | Nuts, seeds, vegetable oils (flaxseed oil, walnut oil, olive oil, etc.), sea fish/oil, avocado. | 3–4 meals a day (fats together with protein/carbs); to be consumed within short time (max 60 min) after exercise. | See above | Be aware of the amount of fats if you need to control your weight. | |
Fluids | |||||
Around 0.5–2 L per hour during exercise; min 35 mL/kg of BW daily at rest. | Water or glucose–electrolyte solutions. | Drink throughout the day; adapt the quantity to the context (temperature, exercise intensity, etc.); do not wait to be thirsty to drink. | Drink throughout the day; privilege glucose–electrolyte solutions; make sure to consume small quantities each time to prevent gastrointestinal discomfort. | Drink as much as needed to replace fluid losses; be aware of your sweat rate. | Prioritize water consumption; consider glucose solutions, if necessary, but be mindful of their content—to be checked with a sport nutritionist. |
Supplements | |||||
To be agreed with the sport nutritionist based on individual needs and cost–benefit analyses—potential supplements: caffeine, vitamin C, iron, etc. |
Possible Strategies |
---|
|
Type of Injury | Possible Strategies |
---|---|
Injuries leading to muscle loss and pre–post-surgery |
|
Joint, tendon, and ligament injuries | |
Bone injuries |
|
Reduce micro-injuries between exercises |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lomazzi, M. Nutrition for European Elite Fencers: A Practical Tool for Coaches and Athletes. Nutrients 2024, 16, 1104. https://doi.org/10.3390/nu16081104
Lomazzi M. Nutrition for European Elite Fencers: A Practical Tool for Coaches and Athletes. Nutrients. 2024; 16(8):1104. https://doi.org/10.3390/nu16081104
Chicago/Turabian StyleLomazzi, Marta. 2024. "Nutrition for European Elite Fencers: A Practical Tool for Coaches and Athletes" Nutrients 16, no. 8: 1104. https://doi.org/10.3390/nu16081104
APA StyleLomazzi, M. (2024). Nutrition for European Elite Fencers: A Practical Tool for Coaches and Athletes. Nutrients, 16(8), 1104. https://doi.org/10.3390/nu16081104