Dietary Quality and Associated Factors among Women of Reproductive Age in Six Sub-Saharan African Countries
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Participant Characteristics
3.2. Food Group Consumption
3.3. Food Group Consumption and Socioeconomic Factors
3.4. Noncommunicable Disease-Associated Food Consumption
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, G.A.; Beal, T.; Mbuya, M.N.N.; Luo, H.; Neufeld, L.M.; Global Micronutrient Deficiencies Research Group. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: A pooled analysis of individual-level data from population-representative surveys. Lancet Glob. Health 2022, 10, e1590–e1599. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.H.; Nayan, M.M.; Jubayer, A.; Amin, M.R. A review of the dietary diversity and micronutrient adequacy among the women of reproductive age in low- and middle-income countries. Food Sci. Nutr. 2023, 12, 1367–1379. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. Undernourished and Overlooked: A Global Nutrition Crisis in Adolescent Girls and Women; UNICEF Child Nutrition Report Series, 2022; UNICEF: New York, NY, USA, 2023; Available online: https://www.unicef.org/reports/undernourished-overlooked-nutrition-crisis (accessed on 5 January 2024).
- Miller, V.; Webb, P.; Cudhea, F.; Shi, P.; Zhang, J.; Reedy, J.; Erndt-Marino, J.; Coates, J.; Mozaffarian, D.; Global Dietary Database. Global dietary quality in 185 countries from 1990 to 2018 show wide differences by nation, age, education, and urbanicity. Nat. Food 2022, 3, 694–702. [Google Scholar] [CrossRef]
- Han, X.; Ding, S.; Lu, J.; Li, Y. Global, regional, and national burdens of common micronutrient deficiencies from 1990 to 2019: A secondary trend analysis based on the Global Burden of Disease 2019 study. EClinicalMedicine 2022, 44, 101299. [Google Scholar] [CrossRef] [PubMed]
- Stevens, G.A.; Paciorek, C.J.; Flores-Urrutia, M.C.; Borghi, E.; Namaste, S.; Wirth, J.P.; Suchdev, P.S.; Ezzati, M.; Rohner, F.; Flaxman, S.R.; et al. National, regional, and global estimates of anaemia by severity in women and children for 2000–19: A pooled analysis of population-representative data. Lancet Glob. Health 2022, 10, e627–e639. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, C.M.; Suchdev, P.S. Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2019, 1450, 15–31. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Micronutrient Deficiency. 2017. Available online: https://ourworldindata.org/micronutrient-deficiency (accessed on 8 January 2024).
- WHO. Global Nutrition Targets 2025: Anaemia Policy Brief; World Health Organization: Geneva, Switzerland, 2014; Available online: https://www.who.int/publications/i/item/WHO-NMH-NHD-14.4 (accessed on 8 January 2024).
- Mwangi, M.N.; Mzembe, G.; Moya, E.; Verhoef, H. Iron deficiency anaemia in sub-Saharan Africa: A review of current evidence and primary care recommendations for high-risk groups. Lancet Haematol. 2021, 8, e732–e743. [Google Scholar] [CrossRef]
- Women’s Dietary Diversity Project Study Group. Development of a dichotomous indicator for population-level assessment of dietary diversity in women of reproductive age. Curr. Dev. Nutr. 2017, 1, cdn.117.001701. [Google Scholar] [CrossRef] [PubMed]
- Diop, L.; Becquey, E.; Turowska, Z.; Huybregts, L.; Ruel, M.T.; Gelli, A. Standard minimum dietary diversity indicators for women or infants and young children are good predictors of adequate micronutrient intakes in 24–59-month-old children and their nonpregnant nonbreastfeeding mothers in rural Burkina Faso. J. Nutr. 2020, 151, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Uyar, B.T.; Talsma, E.F.; Herforth, A.W.; Trijsburg, L.E.; Vogliano, C.; Pastori, G.; Bekele, T.H.; Huong, L.T.; Brouwer, I.D. The DQQ is a valid tool to collect population-level food group consumption data: A study among women in Ethiopia, Vietnam, and Solomon Islands. J. Nutr. 2023, 153, 340–351. [Google Scholar] [CrossRef]
- Global Diet Quality Project. DQQ Data 2021–2022. Available online: https://www.dietquality.org (accessed on 8 January 2024).
- Ritchie, H.; Rosado, P.; Roser, M. Diet Compositions. 2023. Available online: https://ourworldindata.org/diet-compositions (accessed on 8 January 2024).
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2020: Transforming Food Systems for Affordable Healthy Diets; FAO: Rome, Italy, 2020; Available online: https://www.unicef.org/reports/state-of-food-security-and-nutrition-2020 (accessed on 8 January 2024).
- World Bank. Our World in Data. Available online: https://ourworldindata.org/diet-affordability (accessed on 8 January 2024).
- Amugsi, D.A.; Lartey, A.; Kimani-Murage, E.; Mberu, B.U. Women’s participation in household decision-making and higher dietary diversity: Findings from nationally representative data from Ghana. J. Health Popul. Nutr. 2016, 35, 16. [Google Scholar] [CrossRef]
- Makate, M.; Nyamuranga, C. The long-term impact of education on dietary diversity among women in Zimbabwe. Rev. Dev. Econ. 2023, 27, 897–923. [Google Scholar] [CrossRef]
- Geda, N.R. Inequalities in maternal malnutrition in Ethiopia: Evidence from a nationally representative data. BMC Women’s Health 2021, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Gitagia, M.W.; Ramkat, R.C.; Mituki, D.M.; Termote, C.; Covic, N.; Cheserek, M.J. Determinants of dietary diversity among women of reproductive age in two different agro-ecological zones of Rongai Sub-County, Nakuru, Kenya. Food Nutr. Res. 2019, 63. [Google Scholar] [CrossRef] [PubMed]
- Reardon, T.; Tschirley, D.; Liverpool-Tasie, L.S.O.; Awokuse, T.; Fanzo, J.; Minten, B.; Vos, R.; Dolislager, M.; Sauer, C.; Dhar, R.; et al. The processed food revolution in African food systems and the double burden of malnutrition. Glob. Food Secur. 2020, 28, 100466. [Google Scholar] [CrossRef] [PubMed]
- Mbogori, T.; Kimmel, K.; Zhang, M.; Kandiah, J.; Wang, Y. Nutrition transition and double burden of malnutrition in Africa: A case study of four selected countries with different social economic development. AIMS Public Health 2020, 7, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Herforth, A.W.; Wiesmann, D.; Martínez-Steele, E.; Andrade, G.; Monteiro, C.A. Introducing a suite of low-burden diet quality indicators that reflect healthy diet patterns at population level. Curr. Dev. Nutr. 2020, 4, nzaa168. [Google Scholar] [CrossRef] [PubMed]
- The Global Diet Quality Project. DQQ Food Group Classification Guide. 2024. Available online: https://www.dietquality.org/tools (accessed on 7 January 2024).
- Coates, J.C.; Colaiezzi, B.A.; Bell, W.; Charrondiere, U.R.; Leclercq, C. Overcoming dietary assessment challenges in low-income countries: Technological solutions proposed by the International Dietary Data Expansion (INDDEX) project. Nutrients 2017, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Tanweer, A.; Khan, S.; Mustafa, F.N.; Imran, S.; Humayun, A.; Hussain, Z.-U. Improving dietary data collection tools for better nutritional assessment—A systematic review. Comput. Methods Programs Biomed. Updat. 2022, 2, 100067. [Google Scholar] [CrossRef]
- Janmohamed, A.; Sohani, N.; Lassi, Z.S.; Bhutta, Z.A. The effects of community home visit and peer group nutrition intervention delivery platforms on nutrition outcomes in low and middle-income countries: A systematic review and meta-analysis. Nutrients 2020, 12, 440. [Google Scholar] [CrossRef] [PubMed]
Cameroon N = 2073 | Côte d’Ivoire N = 242 | Kenya N = 864 | Adamawa N = 1283 | Benue N = 1047 | Nasarawa N = 1151 | Senegal N = 7232 | Tanzania N = 2692 | |
---|---|---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Area | ||||||||
Rural | 823 (39.7) | 242 (100.0) | 547 (63.3) | 1173 (91.4) | 899 (86.6) | 714 (62.4) | 5838 (80.7) | 1471 (54.6) |
Urban | 1248 (60.3) | 0 (0.0) | 317 (36.7) | 110 (8.6) | 139 (13.4) | 431 (37.6) | 1394 (19.3) | 1221 (45.4) |
Women’s age | ||||||||
15–19 years | 78 (3.8) | 7 (2.9) | 17 (2.0) | 43 (3.4) | 21 (2.0) | 17 (1.5) | 397 (5.5) | 64 (2.4) |
20–29 years | 962 (46.4) | 58 (24.0) | 377 (43.6) | 715 (55.7) | 575 (54.9) | 663 (57.6) | 3873 (53.6) | 1365 (50.7) |
30–39 years | 872 (42.0) | 79 (32.6) | 382 (44.2) | 447 (34.8) | 404 (38.6) | 416 (36.1) | 2530 (35.0) | 981 (36.4) |
≥40 years | 161 (7.8) | 98 (40.5) | 88 (10.2) | 78 (6.1) | 47 (4.5) | 55 (4.8) | 432 (6.0) | 282 (10.5) |
Women’s education | ||||||||
None | 161 (7.8) | 230 (95.0) | 25 (2.9) | 434 (33.8) | 162 (15.5) | 158 (13.7) | 5243 (72.5) | 345 (12.8) |
Primary | 475 (22.9) | 12 (5.0) | 429 (49.7) | 349 (27.2) | 424 (40.5) | 395 (34.3) | 1166 (16.1) | 1811 (67.3) |
Secondary/higher | 1437 (69.3) | 0 (0.0) | 410 (47.4) | 500 (39.0) | 461 (44.0) | 598 (52.0) | 823 (11.4) | 536 (19.9) |
Household wealth | ||||||||
Very poor | 431 (20.8) | 39 (16.2) | 151 (17.6) | 44 (3.4) | 111 (10.6) | 94 (8.2) | 1417 (19.6) | 588 (21.8) |
Poor | 415 (20.0) | 48 (19.9) | 161 (18.8) | 0 (0.0) | 264 (25.2) | 331 (28.8) | 1478 (20.4) | 600 (22.3) |
Medium | 409 (19.7) | 54 (22.4) | 180 (21.0) | 667 (52.0) | 208 (19.9) | 244 (21.2) | 1429 (19.8) | 517 (19.2) |
Rich | 417 (20.1) | 51 (21.2) | 148 (17.3) | 282 (22.0) | 239 (22.8) | 220 (19.1) | 1456 (20.1) | 511 (19.0) |
Very rich | 401 (19.3) | 49 (20.3) | 217 (25.3) | 290 (22.6) | 225 (21.5) | 262 (22.8) | 1452 (20.1) | 476 (17.7) |
Cameroon N = 2073 | Côte d’Ivoire N = 242 | Kenya N = 864 | Adamawa N = 1283 | Benue N = 1047 | Nasarawa N = 1151 | Senegal N = 7232 | Tanzania N = 2692 | |
---|---|---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Starchy staples | 1966 (94.8) | 241 (99.6) | 853 (98.7) | 1194 (93.1) | 999 (95.4) | 1078 (93.7) | 7201 (99.6) | 2648 (98.4) |
Pulses | 437 (21.1) | 63 (26.0) | 355 (41.1) | 802 (62.5) | 548 (52.3) | 729 (63.3) | 2075 (28.7) | 1347 (50.0) |
Nuts and seeds | 826 (39.8) | 215 (88.8) | 74 (8.6) | 725 (56.5) | 666 (63.6) | 784 (68.1) | 3302 (45.7) | 343 (12.7) |
Dairy products | 525 (25.3) | 102 (42.1) | 620 (71.8) | 568 (44.3) | 204 (19.5) | 564 (49.0) | 77 (1.1) | 381 (14.2) |
Meat, poultry, fish | 1493 (72.0) | 189 (78.1) | 350 (40.5) | 793 (61.8) | 761 (72.7) | 867 (75.3) | 5711 (79.0) | 1832 (68.1) |
Eggs | 468 (22.6) | 66 (27.3) | 58 (6.7) | 237 (18.5) | 197 (18.8) | 283 (24.6) | 769 (10.6) | 199 (7.4) |
Dark green leafy veg | 770 (37.1) | 191 (78.9) | 615 (71.2) | 699 (54.5) | 505 (48.2) | 656 (57.0) | 3996 (55.3) | 1511 (56.1) |
Other vit A fruit/veg | 653 (31.5) | 92 (38.0) | 203 (23.5) | 470 (36.6) | 360 (34.4) | 547 (47.5) | 4491 (62.1) | 812 (30.2) |
Other vegetables | 1320 (63.7) | 210 (86.8) | 696 (80.6) | 661 (51.5) | 578 (55.2) | 691 (60.0) | 4075 (56.3) | 1770 (65.8) |
Other fruits | 905 (43.7) | 130 (53.7) | 478 (55.3) | 632 (49.3) | 624 (59.6) | 623 (54.1) | 996 (13.8) | 1004 (37.3) |
MDD-W † | ||||||||
Yes | 954 (46.0) | 197 (81.4) | 515 (59.6) | 773 (60.2) | 628 (60.0) | 808 (70.2) | 3663 (50.6) | 1158 (43.0) |
No | 1119 (54.0) | 45 (18.6) | 349 (40.4) | 510 (39.8) | 419 (40.0) | 343 (29.8) | 3569 (49.4) | 1534 (57.0) |
All-5 ‡ | ||||||||
Yes | 465 (22.4) | 112 (46.3) | 248 (28.7) | 459 (35.8) | 423 (40.4) | 519 (45.1) | 1261 (17.4) | 526 (19.5) |
No | 1608 (77.6) | 130 (53.7) | 616 (71.3) | 824 (64.2) | 624 (59.6) | 632 (54.9) | 5971 (82.6) | 2166 (80.5) |
Starchy Staples | Dark Green Leafy Veg | Vitamin A Fruit/Veg | Flesh Foods | Eggs | Dairy | Pulses, Nuts, Seeds | MDD-W † | All-5 ‡ | |
---|---|---|---|---|---|---|---|---|---|
% | % | % | % | % | % | % | % | % | |
Cameroon 1 | |||||||||
Rural | 95.9 | 40.1 | 33.2 | 66.2 | 15.7 | 17.0 | 53.6 | 40.1 | 21.0 |
Urban | 94.2 | 35.2 | 30.4 | 75.8 | 27.2 | 30.8 | 52.9 | 50.0 | 23.4 |
Very poor/poor | 94.7 | 40.5 | 32.0 | 64.5 | 17.4 | 16.9 | 53.8 | 40.3 | 21.0 |
Medium | 95.8 | 33.0 | 33.0 | 74.1 | 22.0 | 27.4 | 54.0 | 47.7 | 24.0 |
Rich/very rich | 94.5 | 35.7 | 30.2 | 78.7 | 28.2 | 33.0 | 52.0 | 51.1 | 23.1 |
Côte d’Ivoire 2 | |||||||||
Very poor/poor | 100.0 | 77.0 | 36.8 | 74.7 | 20.7 | 34.5 | 90.8 | 81.6 | 43.7 |
Medium | 100.0 | 74.1 | 33.3 | 77.8 | 25.9 | 37.0 | 92.6 | 75.9 | 42.6 |
Rich/very rich | 99.0 | 83.0 | 41.0 | 81.0 | 33.0 | 52.0 | 91.0 | 84.0 | 50.0 |
Kenya 3 | |||||||||
Rural | 98.5 | 69.1 | 17.2 | 36.0 | 5.1 | 72.2 | 42.8 | 52.5 | 23.9 |
Urban | 99.1 | 74.8 | 34.4 | 48.3 | 9.5 | 71.0 | 47.9 | 71.9 | 36.9 |
Very poor/poor | 98.4 | 68.3 | 16.7 | 29.5 | 5.1 | 71.2 | 43.9 | 46.2 | 23.7 |
Medium | 100.0 | 73.9 | 21.1 | 41.7 | 9.4 | 67.2 | 46.1 | 60.6 | 25.6 |
Rich/very rich | 98.6 | 72.6 | 30.7 | 49.9 | 6.8 | 75.1 | 44.9 | 70.7 | 34.5 |
Adamawa 4 | |||||||||
Rural | 92.4 | 53.8 | 36.4 | 61.3 | 17.6 | 43.7 | 80.6 | 60.0 | 35.5 |
Urban | 100.0 | 61.8 | 39.1 | 67.3 | 28.2 | 50.0 | 69.1 | 62.7 | 38.2 |
Very poor/poor | 88.6 | 65.9 | 22.7 | 43.2 | 13.6 | 45.5 | 86.4 | 65.9 | 18.2 |
Medium | 90.0 | 57.3 | 34.8 | 55.2 | 14.8 | 39.6 | 79.8 | 54.1 | 31.2 |
Rich/very rich | 97.0 | 50.3 | 39.9 | 71.0 | 23.1 | 49.7 | 79.0 | 67.0 | 42.5 |
Benue 5 | |||||||||
Rural | 95.8 | 50.7 | 34.8 | 71.1 | 19.2 | 19.2 | 77.5 | 61.0 | 41.6 |
Urban | 92.8 | 33.1 | 30.2 | 84.9 | 16.5 | 20.1 | 69.1 | 53.2 | 33.8 |
Very poor/poor | 92.8 | 50.4 | 33.1 | 63.2 | 15.2 | 10.4 | 77.6 | 57.1 | 41.1 |
Medium | 95.2 | 55.8 | 31.7 | 70.2 | 15.4 | 15.4 | 74.5 | 57.2 | 35.6 |
Rich/very rich | 97.6 | 43.1 | 36.6 | 81.5 | 23.3 | 28.7 | 76.1 | 63.6 | 42.0 |
Nasarawa 6 | |||||||||
Rural | 92.3 | 52.7 | 43.8 | 68.9 | 15.1 | 40.6 | 84.0 | 63.6 | 37.8 |
Urban | 95.8 | 63.8 | 53.6 | 86.3 | 39.9 | 63.3 | 84.7 | 81.4 | 57.8 |
Very poor/poor | 90.6 | 53.2 | 38.1 | 63.1 | 7.8 | 36.0 | 79.8 | 56.5 | 33.2 |
Medium | 92.6 | 49.6 | 42.2 | 70.1 | 21.7 | 34.4 | 86.1 | 67.6 | 39.8 |
Rich/very rich | 96.9 | 64.1 | 58.5 | 88.8 | 40.9 | 67.8 | 87.3 | 83.6 | 58.3 |
Senegal 7 | |||||||||
Rural | 99.6 | 57.7 | 57.5 | 75.7 | 7.9 | 0.8 | 61.2 | 46.7 | 14.9 |
Urban | 99.6 | 44.8 | 81.3 | 92.5 | 22.1 | 2.4 | 60.0 | 67.4 | 28.2 |
Very poor/poor | 99.3 | 63.5 | 34.9 | 61.1 | 4.9 | 0.2 | 63.5 | 31.0 | 7.8 |
Medium | 99.7 | 56.0 | 71.4 | 86.4 | 9.6 | 1.3 | 60.3 | 57.9 | 18.8 |
Rich/very rich | 99.7 | 46.7 | 84.7 | 93.1 | 16.8 | 1.8 | 58.7 | 66.7 | 26.4 |
Tanzania 8 | |||||||||
Rural | 98.2 | 50.8 | 11.0 | 66.1 | 3.7 | 11.1 | 47.8 | 27.9 | 11.1 |
Urban | 98.5 | 62.5 | 53.2 | 70.4 | 11.8 | 17.8 | 62.9 | 61.3 | 29.7 |
Very poor/poor | 98.0 | 49.0 | 9.0 | 59.3 | 3.5 | 8.8 | 50.1 | 23.2 | 9.6 |
Medium | 99.0 | 52.2 | 22.2 | 76.4 | 3.9 | 12.6 | 53.4 | 39.7 | 15.1 |
Rich/very rich | 98.5 | 66.8 | 59.8 | 74.3 | 14.0 | 21.5 | 60.8 | 68.6 | 33.8 |
Cameroon | Kenya | Adamawa | Benue | Nasarawa | Senegal | Tanzania | |
---|---|---|---|---|---|---|---|
Area | |||||||
Urban | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Rural | 0.85 (0.67, 1.08) | 0.65 (0.44, 0.95) † | 1.25 (0.81, 1.92) | 1.50 (1.02, 2.20) † | 0.83 (0.56, 1.23) | 0.89 (0.77, 1.04) | 0.62 (0.48, 0.80) † |
Women’s age | |||||||
15–24 years | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
25–39 years | 1.09 (0.84, 1.41) | 0.97 (0.67, 1.40) | 1.06 (0.81, 1.39) | 0.81 (0.59, 1.11) | 0.94 (0.68, 1.32) | 1.03 (0.91, 1.15) | 1.08 (0.83, 1.41) |
≥40 years | 1.24 (0.78, 1.98) | 0.84 (0.49, 1.44) | 1.18 (0.70, 1.99) | 0.94 (0.49, 1.83) | 0.67 (0.36, 1.26) | 0.88 (0.70, 1.12) | 1.48 (1.00, 2.20) |
Women’s education | |||||||
None | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Primary | 1.12 (0.72, 1.76) | 5.34 (1.76, 16.21) † | 0.74 (0.56, 0.99) † | 1.86 (1.28, 2.71) † | 0.91 (0.60, 1.38) | 1.08 (0.92, 1.25) | 1.41 (0.98, 2.01) |
Secondary/higher | 1.29 (0.86, 1.95) | 10.40 (3.41, 31.75) † | 1.03 (0.78, 1.36) | 1.49 (1.02, 2.17) † | 0.89 (0.58, 1.36) | 1.44 (1.20, 1.74) † | 3.06 (1.98, 4.71) † |
Household wealth | |||||||
Poor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Medium | 1.04 (0.76, 1.41) | 1.55 (1.04, 2.31) † | 0.59 (0.31, 1.13) | 1.00 (0.70, 1.42) | 1.66 (1.17, 2.35) † | 2.81 (2.42, 3.25) † | 1.75 (1.34, 2.30) † |
Rich | 1.04 (0.79, 1.36) | 1.83 (1.21, 2.75) † | 1.01 (0.52, 1.95) | 1.40 (1.03, 1.90) † | 3.58 (2.33, 5.52) † | 3.80 (3.34, 4.32) † | 4.59 (3.38, 6.22) † |
Cameroon N = 2073 | Côte d’Ivoire N = 242 | Kenya N = 864 | Adamawa N = 1283 | Benue N = 1047 | Nasarawa N = 1151 | Tanzania N = 2692 | |
---|---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Soft drinks | 437 (21.1) | 43 (17.8) | 28 (3.2) | 184 (14.3) | 243 (23.2) | 367 (31.9) | 245 (9.1) |
Baked/grain-based sweets | 693 (33.4) | 85 (35.1) | 127 (14.7) | 168 (13.1) | 141 (13.5) | 247 (21.5) | 195 (7.2) |
Other sweets | 727 (35.1) | 170 (70.2) | 668 (77.3) | 622 (48.5) | 311 (29.7) | 674 (58.6) | 1234 (45.8) |
Processed meat | 42 (2.0) | 6 (2.5) | 4 (0.5) | 47 (3.7) | 18 (1.7) | 49 (4.3) | 8 (0.3) |
Unprocessed red meat | 325 (15.7) | 43 (17.8) | 155 (17.9) | 534 (41.6) | 390 (37.2) | 603 (52.4) | 416 (15.5) |
Deep-fried food | 248 (12.0) | 69 (28.5) | 200 (23.1) | 166 (12.9) | 155 (14.8) | 287 (24.9) | 860 (31.9) |
Fast food/instant noodles | 121 (5.8) | 5 (2.1) | 7 (0.8) | 223 (17.4) | 139 (13.3) | 246 (21.5) | 28 (1.0) |
Packaged ultra-processed salty snacks | 44 (2.1) | 4 (1.7) | 4 (0.5) | 52 (4.1) | 37 (3.5) | 93 (8.1) | 39 (1.4) |
Cameroon | CIV | Kenya | Adamawa | Benue | Nasarawa | Tanzania | |
---|---|---|---|---|---|---|---|
NCD-Protect † | 2.76 (2.69, 2.83) | 4.23 (4.01, 4.44) | 3.18 (3.08, 3.29) | 3.81 (3.68, 3.93) | 3.60 (3.47, 3.73) | 4.34 (4.20, 4.47) | 3.14 (3.07, 3.20) |
NCD-Risk ‡ | 1.29 (1.23, 1.35) | 1.78 (1.59, 1.97) | 1.38 (1.32, 1.45) | 1.60 (1.50, 1.69) | 1.39 (1.28, 1.49) | 2.28 (2.16, 2.40) | 1.13 (1.08, 1.17) |
GDR ¥ | 10.47 (10.40, 10.54) | 11.45 (11.25, 11.64) | 10.80 (10.70, 10.91) | 11.21 (11.10, 11.31) | 11.21 (11.09, 11.32) | 11.07 (10.95, 11.18) | 11.01 (10.95, 11.07) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janmohamed, A.; Baker, M.M.; Doledec, D.; Ndiaye, F.; Konan, A.C.L.; Leonce, A.; Kouadio, K.L.; Beye, M.; Danboyi, D.; Jumbe, T.J.; et al. Dietary Quality and Associated Factors among Women of Reproductive Age in Six Sub-Saharan African Countries. Nutrients 2024, 16, 1115. https://doi.org/10.3390/nu16081115
Janmohamed A, Baker MM, Doledec D, Ndiaye F, Konan ACL, Leonce A, Kouadio KL, Beye M, Danboyi D, Jumbe TJ, et al. Dietary Quality and Associated Factors among Women of Reproductive Age in Six Sub-Saharan African Countries. Nutrients. 2024; 16(8):1115. https://doi.org/10.3390/nu16081115
Chicago/Turabian StyleJanmohamed, Amynah, Melissa M. Baker, David Doledec, Fatou Ndiaye, Ahmenan Claude Liliane Konan, Amoakon Leonce, Koffi Landry Kouadio, Maguette Beye, Delphine Danboyi, Theresia J. Jumbe, and et al. 2024. "Dietary Quality and Associated Factors among Women of Reproductive Age in Six Sub-Saharan African Countries" Nutrients 16, no. 8: 1115. https://doi.org/10.3390/nu16081115
APA StyleJanmohamed, A., Baker, M. M., Doledec, D., Ndiaye, F., Konan, A. C. L., Leonce, A., Kouadio, K. L., Beye, M., Danboyi, D., Jumbe, T. J., Ndjebayi, A., Ombati, C., Njenga, B. K., & Dissieka, R. (2024). Dietary Quality and Associated Factors among Women of Reproductive Age in Six Sub-Saharan African Countries. Nutrients, 16(8), 1115. https://doi.org/10.3390/nu16081115