Spatial Barriers to Transforming toward a Healthy Food System in the Noreste of Mexico
Abstract
:1. Introduction
2. Materials and Methods
- Food deserts—municipalities with low availability of any type of food and low accessibility;
- Food swamps—municipalities with medium or low availability of fresh food, high availability of processed food, and medium or good accessibility;
- Food oasis—municipalities with high availability of fresh food and high accessibility.
- Very high, where the unbuilt land is equal or larger than the built area, the soil type is excellent or good for cultivation, and water supply is sufficient or manageable for cultivation of some plant foods;
- Medium, where the unbuilt land is equal or larger than the built area, and either there is good soil type for cultivation or sufficient water supply—the index 2A signifies good soil type but insufficient water supply, while index 2B signifies soil type not optimal for cultivation but sufficient or manageable water supply;
- Low, where both water and soil demands are not met for cultivation.
3. Results
3.1. Diets
3.1.1. The Traditional Mexican Diet
3.1.2. Eat-Lancet in Mexico
3.1.3. The Traditional Recipes Diet
3.2. Spatial Barriers
3.3. Non-Spatial Barriers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ambikapathi, R.; Schneider, K.R.; Davis, B.; Herrero, M.; Winters, P.; Fanzo, J.C. Global food systems transitions have enabled affordable diets but had less favourable outcomes for nutrition, environmental health, inclusion, and equity. Nat. Food 2022, 3, 764–779. [Google Scholar] [CrossRef] [PubMed]
- Jayedi, A.; Soltani, S.; Abdolshahi, A.; Shab-Bidar, S. Healthy and unhealthy dietary patterns, and the risk of chronic disease: An umbrella review of meta-analyses of prospective cohort studies. Br. J. Nutr. 2020, 124, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- Scrinis, G.; Monteiro, C. From ultra-processed foods to ultra-processed dietary patterns. Nat. Food 2022, 3, 671–673. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Angel, M.; Mendoza-Salazar, D.M.; Martínez-Girón, J. Food Fears and Risk of Loss of Food Heritage: A Little-explored Effect of Food Modernity and Times of Pandemic. Int. J. Gastron. Food Sci. 2022, 28, 100499. [Google Scholar] [CrossRef]
- Branca, F.; Lartey, A.; Oenema, S.; Aguayo, V.; Stordalen, G.A.; Richardson, R.; Arvelo, M.; Afshin, A. Transforming the food system to fight non-communicable diseases. BMJ 2019, 364, l296. [Google Scholar] [CrossRef] [PubMed]
- Roggema, R.; Mallet, A.E.; Krstikj, A. Creating a Virtuous Food Cycle in Monterrey, Mexico. Sustainability 2023, 15, 7858. [Google Scholar] [CrossRef]
- Lindgren, E.; Harris, F.; Dangour, A.D.; Gasparatos, A.; Hiramatsu, M.; Javadi, F.; Loken, B.; Murakami, T.; Scheelbeek, P.; Haines, A. Sustainable food systems-a health perspective. Sustain. Sci. 2018, 13, 1505–1517. [Google Scholar] [CrossRef] [PubMed]
- Pourmotabbed, A.; Moradi, S.; Babaei, A.; Ghavami, A.; Mohammadi, H.; Jalili, C.; Symonds, M.E.; Miraghajani, M. Food Insecurity and Mental Health: A Systematic Review and Meta-Analysis. Public Health Nutr. 2020, 23, 1778–1790. [Google Scholar] [CrossRef] [PubMed]
- Fanzo, J.; Bellows, A.L.; Spiker, M.L.; Thorne-Lyman, A.L.; Bloem, M.W. The importance of food systems and the environment for nutrition. Am. J. Clin. Nutr. 2021, 113, 7–16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Campbell, B.M.; Beare, D.J.; Bennett, E.M.; Hall-Spencer, J.M.; Ingram, J.S.I.; Jaramillo, F.; Ortiz, R.; Ramankutty, N.; Sayer, J.A.; Shindell, D. Agriculture Production as a Major Driver of the Earth System Exceeding Planetary Boundaries. Ecol. Soc. 2017, 22, 8. [Google Scholar] [CrossRef]
- Baur, I.; Stylianou, K.S.; Ernstoff, A.; Hansmann, R.; Jolliet, O.; Binder, C.R. Drivers and Barriers Toward Healthy and Environmentally Sustainable Eating in Switzerland: Linking Impacts to Intentions and Practices. Front. Sustain. Food Syst. 2022, 6, 808521. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Baird, D.; Hendrie, G.A. Diets within Planetary Boundaries: What Is the Potential of Dietary Change Alone? Sustain. Prod. Consum. 2021, 28, 802–810. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.; Macdiarmid, J.; Jones, A.D.; Ranganathan, J.; Herrero, M.; Fanzo, J. The Role of Healthy Diets in Environmentally Sustainable Food Systems. J. Sustain. Agric. 2020, 41, 31S–58S. [Google Scholar] [CrossRef] [PubMed]
- Minetto, J.; Parisa, G.; Falkenberg, T.; Nöthlings, U.; Heinzle, C.; Borgemeister, C.; Escobar, N. Changing dietary patterns is necessary to improve the sustainability of Western diets from a One Health perspective. Sci. Total Environ. 2022, 811, 151437. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.P.; Gibney, E.R.; O’Sullivan, A.M. Moving towards more sustainable diets: Is there potential for a personalised approach in practice? J. Hum. Nutr. Diet. 2023, 36, 2256–2267. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Spajic, L.; Clark, M.A.; Poore, J.; Herforth, A. The healthiness and sustainability of national and global food based dietary guidelines: Modelling study. BMJ 2020, 370, m2322. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, S.; Delattre, C.; Karcheva-Bahchevanska, D.; Benbasat, N.; Nalbantova, V.; Ivanov, K. Plant-based diet as a strategy for weight control. Foods 2021, 10, 3052. [Google Scholar] [CrossRef] [PubMed]
- Prescott, S.L.; D’Adamo, C.R.; Holton, K.F.; Ortiz, S.; Overby, N.; Logan, A.C. Beyond Plants: The Ultra-Processing of Global Diets Is Harming the Health of People, Places, and Planet. Int. J. Environ. Res. Public Health 2023, 20, 6461. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, G.; Wang, Z.; Maundu, P.; Hunter, D. The role of traditional knowledge and food biodiversity to transform modern food systems. Trends Food Sci. Technol. 2022, 130, 32–41. [Google Scholar] [CrossRef]
- Sogari, G.; Pucci, T.; Caputo, V.; Van Loo, E.J. The theory of planned behaviour and healthy diet: Examining the mediating effect of traditional food. Food Qual. Prefer. 2023, 104, 104709. [Google Scholar] [CrossRef]
- FAO. Sustainable diets and biodiversity: Directions and solutions for policy, research and action. In Proceedings of the International Scientific Symposium “Sustainable Diets and Biodiversity”, Rome, Italy, 3–5 November 2010; FAO: Rome, Italy, 2012; p. 307, ISBN 9789251073117. [Google Scholar]
- Ruano-Rodríguez, C.; Serra-Majem, L.; Dubois, D. Assessing the impact of dietary habits on health-related quality of life requires contextual measurement tools. Front. Pharmacol. 2015, 6, 101. [Google Scholar] [CrossRef] [PubMed]
- Viroli, G.; Kalmpourtzidou, A.; Cena, H. Exploring Benefits and Barriers of Plant-Based Diets: Health, Environmental Impact, Food Accessibility, and Acceptability. Nutrients 2023, 15, 4723. [Google Scholar] [CrossRef] [PubMed]
- Caspi, C.E.; Sorensen, G.; Subramanian, S.V.; Kawachi, I. The local food environment and diet: A systematic review. Health Place 2012, 18, 1172–1187. [Google Scholar] [CrossRef] [PubMed]
- Monterrosa, E.C.; Frongillo, E.A.; Drewnowski, A.; de Pee, S.; Vandevijvere, S. Sociocultural Influences on Food Choices and Implications for Sustainable Healthy Diets. Food Nutr. Bull. 2020, 41 (Suppl. S2), 59S–73S. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Ramírez, S.; Martinez-Tapia, B.; González-Castell, D.; Cuevas-Nasu, L.; Shamah-Levy, T. Westernized and diverse dietary patterns are associated with overweight-obesity and abdominal obesity in Mexican adult men. Front. Nutr. 2022, 9, 891609. [Google Scholar] [CrossRef] [PubMed]
- Jansen, E.C.; Marcovitch, H.; Wolfson, J.A.; Leighton, M.; Peterson, K.E.; Téllez-Rojo, M.M.; Cantoral, A.; Roberts, E.F.S. Exploring dietary patterns in a Mexican adolescent population: A mixed methods approach. Appetite 2020, 147, 104542. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Gutiérrez, A.; Sánchez-Pimienta, T.G.; Batis, C.; Willett, W.; Rivera, J.A. Toward a healthy and sustainable diet in Mexico: Where are we and how can we move forward? Am. J. Clin. Nutr. 2021, 113, 1177–1184. [Google Scholar] [CrossRef]
- Guibrunet, L.; Ortega-Avila, A.G.; Arnés, E.; Mora Ardila, F. Socioeconomic, demographic and geographic determinants of food consumption in Mexico. PLoS ONE 2023, 18, 02882. [Google Scholar] [CrossRef]
- DiBonaventura, M.D.; Meincke, H.; Le Lay, A.; Fournier, J.; Bakker, E.; Ehrenreich, A. Obesity in Mexico: Prevalence, comorbidities, associations with patient outcomes, and treatment experiences. Diabetes Metab. Syndr. Obes. 2017, 11, 1–10. [Google Scholar] [CrossRef]
- Denham, D.; Gladstone, F. Making sense of food system transformation in Mexico. Geoforum 2020, 115, 67–80. [Google Scholar] [CrossRef]
- Pineda, E.; Cunha, D.B.; Sharabiani, M.T.A.; Millett, C. Association of the retail food environment, BMI, dietary patterns, and socioeconomic position in urban areas of Mexico. PLoS Glob. Public Health 2023, 3, e0001069. [Google Scholar] [CrossRef]
- Clapp, J.; Moseley, W.G.; Burlingame, B.; Termine, P. The Case for a Six-Dimensional Food Security Framework. Food Policy 2021, 106, 102164. [Google Scholar] [CrossRef]
- HLPE. Food security and nutrition: Building a global narrative towards 2030. In Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security; HLPE: Rome, Italy, 2020. [Google Scholar]
- National Institute of Statistics and Geography (INEGI) Online Database. Available online: https://www.inegi.org.mx/app/descarga/default.html (accessed on 1 March 2024).
- Krstikj, A.; Egurrola Hernández, E.A.; Giorgi, E.; Garnica Monroy, R. Evaluating the availability, accessibility, and affordability of fresh food in informal food environments in five Mexican cities. J. Urban Aff. 2023, 1–16. [Google Scholar] [CrossRef]
- Ciudades de 15 Minutos—Monterrey, Observatorio de Ciudades. Available online: https://observatorio-ciudades.github.io/visor-15minutos/cities/monterrey.html (accessed on 1 March 2024).
- van den Hoek, J.W. The MXI (Mixed-use Index) as Tool for Urban Planning and Analysis. In Corporations and Cities: Envisioning Corporate Real Estate in the Urban Future; Elsevier: Amsterdam, The Netherlands, 2008; pp. 1–15. [Google Scholar]
- Simulador e Flujos de Agua de Cuencas Hidrográficas de INEGI. Available online: https://antares.inegi.org.mx/analisis/red_hidro/siatl/ (accessed on 1 March 2024).
- Valerino-Perea, S.; Lara-Castor, L.; Armstrong, M.E.G.; Papadaki, A. Definition of the Traditional Mexican Diet and Its Role in Health: A Systematic Review. Nutrients 2019, 11, 2803. [Google Scholar] [CrossRef] [PubMed]
- Campirano, F.; López-Olmedo, N.; Ramírez-Palacios, P.; Salmerón, J. Sustainable Dietary Score: Methodology for Its Assessment in Mexico Based on EAT-Lancet Recommendations. Nutrients 2023, 15, 1017. [Google Scholar] [CrossRef] [PubMed]
- Peña Sánchez, E.Y. Cocina Tradicional Neoleonesa: Donde Comienza el olor a Carne asada. Cocina Indígena y Popular; Producción: Secretaría de Cultura. Dirección General de Culturas Populares, Indígenas y Urbanas: Ciudad de Mexico, Mexico, 2017; Available online: https://www.culturaspopulareseindigenas.gob.mx/pdf/2020/recetarios/Cocina%20tradicional%20neoleonesa.pdf (accessed on 23 February 2024).
- Alvarado Lagunas, E.; Luyando Cuevas, J.R.; Téllez Delgado, R. Caracterización del consumidor de la carne de pollo en el área metropolitana de Monterrey. Región Soc. 2012, 24, 175–199. [Google Scholar] [CrossRef]
- Cárdenas-Castro, A.P.; Perales-Vázquez, G.C.; De la Rosa, L.A.; Zamora-Gasga, V.M.; Ruiz-Valdiviezo, V.M.; Alvarez-Parrilla, E.; Sáyago-Ayerdi, S.G. Sauces: An undiscovered healthy complement in Mexican cuisine. Int. J. Gastron. Food Sci. 2019, 17, 100154. [Google Scholar] [CrossRef]
- Libro Técnico Núm. 3, Centro de Investigación Regional Pacífico Centro, Campo Experimental Centro Al, ISBN: 978-607-37-0188-4 tos de Jalisco, Tepatitlán de Morelos, Jalisco, November, 2013. Available online: https://www.researchgate.net/profile/Jose-Ruiz-Corral/publication/343047223_REQUERIMIENTOS_AGROECOLOGICOS_DE_CULTIVOS_2da_Edicion/links/5f1310e04585151299a4c447/REQUERIMIENTOS-AGROECOLOGICOS-DE-CULTIVOS-2da-Edicion.pdf (accessed on 25 February 2024).
- Estévez-Moreno, L.X.; Miranda-de la Lama, G.C. Meat consumption and consumer attitudes in México: Can persistence lead to change? Meat Sci. 2022, 193, 108943. [Google Scholar] [CrossRef] [PubMed]
- SIAP. Nuevo León: Infografía Agroalimentaria 2023. In Servicio de Información Agroalimentaria y Pesquera; SIAP: Mexico City, Mexico, 2023. [Google Scholar]
- Valerino-Perea, S.; Armstrong, M.E.G.; Papadaki, A. Adherence to a traditional Mexican diet and non-communicable disease-related outcomes: Secondary data analysis of the cross-sectional Mexican National Health and Nutrition Survey. Br. J. Nutr. 2023, 129, 1266–1279. [Google Scholar] [CrossRef] [PubMed]
- Escalante-Araiza, F.; Gutiérrez-Salmeán, G. Traditional Mexican foods as functional agents in the treatment of cardiometabolic risk factors. Crit. Rev. Food Sci. Nutr. 2021, 61, 1353–1364. [Google Scholar] [CrossRef]
- Lopez-Pentecost, M.; Tamez, M.; Mattei, J.; Jacobs, E.T.; Thomson, C.A.; García, D.O. Adherence to a Traditional Mexican Diet Is Associated with Lower Hepatic Steatosis in US-Born Hispanics of Mexican Descent with Overweight or Obesity. Nutrients 2023, 15, 4997. [Google Scholar] [CrossRef] [PubMed]
- Alatorre-Cruz, J.M.; Carreño-López, R.; Alatorre-Cruz, G.C.; Paredes-Esquivel, L.J.; Santiago-Saenz, Y.O.; Nieva-Vázquez, A. Traditional Mexican Food: Phenolic Content and Public Health Relationship. Foods 2023, 12, 1233. [Google Scholar] [CrossRef] [PubMed]
- Mingay, E.; Hart, M.; Yoong, S.; Hure, A. Why We Eat the Way We Do: A Call to Consider Food Culture in Public Health Initiatives. Int. J. Environ. Res. Public Health 2021, 18, 11967. [Google Scholar] [CrossRef] [PubMed]
Category | Foodstuffs | Consumption Level |
---|---|---|
Whole Grains | Maize, wheat (such as bread and pasta), amaranth | High |
Tubers and Starchy Vegetables | Potatoes, sweet potatoes, yucca | High |
Vegetables | Squash, tomatoes, onions, chayote, nopales, maguey, jicama | High |
Fruits | Capulin, tejocote, pineapple, citrus fruits (e.g., oranges, lemons, limes), papaya | Moderate (Central Mexico) to High (Southern Mexico) |
Protein Sources | Turkey, chicken, ducks, venison, beef, insects (e.g., grasshoppers and locusts) | Low |
Fats | Avocado, peanuts | Low |
Sugars | Honey, sugar, sugarcane | Low |
Dairy Food | Not typically included | None |
Category | Subcategory | Suggested Portion Size of Foods Most Consumed in Mexico |
---|---|---|
Grains | Whole Grains | 1 corn tortilla or its equivalent in corn dough or flour |
Other high-fiber grains | 4 tablespoons of raw oats or amaranth, 10 tablespoons of wheat bran, 1/2 slice of whole bread, 1/2 cup of whole pasta or brown rice | |
Refined grains | 1/2 cup of cooked pasta or rice, 1/2 slice of white bread, 1/2 bolillo | |
Grains with excess added sugar or saturated fat | 1/3 of sweet bread, 2–3 sweet cookies, 1/3 of a small chips bag, 1 flour tortilla | |
Tubers and Starchy Vegetables | Potatoes | 1/2 potato |
Fruits | All fruits | 1/2–1 cup of banana, papaya, orange, apple, pear, pineapple, guava |
Vegetables | All vegetables | 1/2–1 cup of tomato, onion, carrot, green, tomato, zucchini, nopales, chilies, squash |
Dairy Food | Whole milk or derivative equivalents (e.g., cheese) | 2/3 cup of chocolate milk, milk with coffee and sugar, or fruit smoothie with milk; ½ cup of sweetened yogurt |
Protein Sources | Red meat | 60 g red meat (beef and pork) |
Processed meat | 1 sausage or 1 slice of ham, 16 g (1 tablespoon) of chorizo | |
Chicken and other poultry | 120 g or 1 chicken leg, thigh, or breast | |
Eggs | 1 Egg | |
Fish | 120 g of fish, 20 shrimps, 1 can of tuna | |
Legumes | 1/2 cup of cooked beans, lentils, chickpeas, or broad beans | |
Nuts | 20 g or 4 tablespoons of peanuts, walnuts, almonds, or seeds (chia, sesame, pumpkin, or sunflower) | |
Added fats | Plant oils | 1 tablespoon of vegetable oil (corn, sunflower, soy, or canola) or mayonnaise |
Lard or tallow | 1 tablespoon of lard | |
Added sugars | All sweeteners | 1 cup of sugar-sweetened beverage, 2 tablespoons of sugar, honey, condensed milk, or catsup, 1/2 cup of jello, 15 g of chocolate, 1/3 cup of ice cream |
Municipality | Population * | No. Food Stores | No. Fresh Food Stores | No. Processed Food Stores | Pop/Store | Walkability to Store ** | Type of Food Environment | |
---|---|---|---|---|---|---|---|---|
urban | Apodaca | 656,464 | 5285 | 2654 | 2631 | 98 | 30–40 min | swamp |
urban | Cadereyta Jiménez | 122,337 | 1252 | 670 | 582 | 98 | 20–30 min | swamp |
urban | El Carmen | 104,478 | 236 | 148 | 88 | 443 | 30–40 min | desert |
urban | Ciénega de Flores | 68,747 | 526 | 312 | 214 | 131 | 30–40 min | swamp |
urban | García | 397,205 | 2425 | 1538 | 887 | 164 | 20–30 min | desert |
urban | San Pedro Garza García | 132,169 | 1437 | 790 | 647 | 92 | 10–20 min | oasis |
urban | General Escobedo | 481,213 | 4533 | 2531 | 2002 | 106 | 10–20 min | oasis |
urban | General Zuazua | 102,149 | 620 | 405 | 215 | 165 | 50–60 min | desert |
urban | Guadalupe | 643,143 | 7421 | 3576 | 3845 | 87 | 15–25 min | swamp |
urban | Juárez | 471,523 | 3666 | 2167 | 1499 | 129 | 20–30 min | swampish |
urban | Monterrey | 1,069,238 | 15,275 | 7986 | 7289 | 70 | 7–17 min | oasis |
urban | Pesquería | 147,624 | 512 | 356 | 156 | 288 | 35–45 min | desert |
urban | Salinas Victoria | 86,766 | 403 | 269 | 134 | 215 | 40–50 min | desert |
urban | San Nicolás de los Garza | 412,199 | 5180 | 2657 | 2523 | 80 | 10–20 min | oasis |
urban | Santa Catarina | 306,322 | 2810 | 1540 | 1270 | 109 | 35–45 min | swamp |
urban | Santiago | 46,784 | 598 | 327 | 271 | 78 | 25–35 min | swamp |
Total | 5,322,117 | 52179 | 27,926 | 24,253 | ||||
periurban | Hidalgo | 16,086 | 239 | 123 | 116 | 67 | 35–45 min | swamp |
periurban | Abasolo | 2974 | 23 | 17 | 6 | 129 | 50–60 min | desert |
periurban | Marin | 4719 | 54 | 29 | 25 | 87 | no data | swamp |
periurban | Mina | 6048 | 78 | 50 | 28 | 78 | no data | ND |
Total | 29,827 | 394 | 219 | 175 |
Municipality | Total Area km2 * | No. Houses * | Unbuilt Area km2 ** | Natural Areas/Slopes | Possible Cultivation Area km2 ** | Dominant Soil Type *** | Volume Range Dry/Wet Season in mm *** | Runn-Off Index *** | Suitability for Urban Agriculture **** | |
---|---|---|---|---|---|---|---|---|---|---|
urban | Apodaca | 224.0 | 208,426 | 115.1 | 20% | 92.1 | lixisol | 100–475 | 5% | 3 |
urban | Cadereyta Jiménez | 1140.9 | 44,111 | 789.8 | 5% | 750.3 | andosol | 150–550 | 10% | 1 |
urban | El Carmen | 104.3 | 38,067 | 65.4 | 10% | 58.9 | phaozem/leptisol | 75–325 | 5% | 2A |
urban | Ciénega de Flores | 138.7 | 30,004 | 91.1 | 0% | 91.1 | calcisol | 100–475 | 10% | 3 |
urban | García | 1032.0 | 132,710 | 695.9 | 50% | 347.9 | chernozem | 75–250 | 5% | 2A |
urban | San Pedro Garza García | 70.8 | 41,193 | 41.3 | 20% | 40.1 | gipsisol | 100–475 | 10% | 3 |
urban | General Escobedo | 149.4 | 152,111 | 74.2 | 20% | 59.3 | gipsisol | 100–400 | 20% | 3 |
urban | General Zuazua | 184.5 | 39,825 | 121.2 | 3% | 117.5 | kastanozem | 100–475 | 5% | 2B |
urban | Guadalupe | 118.4 | 207,099 | 41.5 | 20% | 33.2 | durisol | 125–550 | 10% | 3 |
urban | Juárez | 247.3 | 175,293 | 138.1 | 30% | 96.6 | leptisol | 150–625 | 20% | 2B |
urban | Monterrey | 324.4 | 368,780 | 153.3 | 40% | 92.0 | ND-urban | 100–475 | 10% | 3 |
urban | Pesquería | 322.8 | 51,612 | 215.6 | 10% | 194.1 | andosol | 125–475 | 10% | 1 |
urban | Salinas Victoria | 1667.4 | 3,2149 | 1160.8 | 40% | 696.5 | calcisol | 75–400 | 5% | 3 |
urban | San Nicolás de los Garza | 60.2 | 133,725 | 15.4 | 5% | 14.6 | acrisol | 100–475 | 10% | 2B |
urban | Santa Catarina | 915.8 | 89,586 | 623.1 | 90% | 62.3 | phaozem/cambisol | 100–325 | 5% | 2A |
urban | Santiago | 739.2 | 17,602 | 513.9 | 90% | 51.4 | cambisol | 125–800 | 10% | 1 |
Total | 7440.4 | 176,2293 | 4855.6 | 2797.9 | total km2 of prime area 1 | 995.8 | ||||
periurban | Hidalgo | 208.0 | 5879 | 144.4 | 90% | 14.4 | phaozem/leptisol | 75–250 | 5% | 2A |
periurban | Abasolo | 47.5 | 795 | 33.1 | 20% | 26.4 | phaozem/leptisol | 75–325 | 5% | 2A |
periurban | Marin | 129.0 | 1339 | 90.0 | 20% | 72.0 | cambisol/andosol | 125–550 | 10% | 1 |
periurban | Mina | 3915.8 | 1818 | 2740.7 | 10% | 2466.6 | cambisol/andosol | 75–250 | 5% | 2A |
Total | 4300.3 | 9831 | 3008.2 | 2579.5 | total km2 of prime area 1 | 72.0 |
Municipality | Population * | Indigenous Pop. % * | % Pop with Social Security * | Moderate and Extreme Poverty % * | Type of Food Environment | Social and Health Impacts ** | |
---|---|---|---|---|---|---|---|
urban | Apodaca | 656,464 | 0.93 | 55.30 | 14.20 | swamp | Low |
urban | Cadereyta Jiménez | 122,337 | 1.98 | 47.70 | 21.12 | swamp | Very high |
urban | El Carmen | 104,478 | 3.57 | 65.30 | 28.49 | desert | High |
urban | Ciénega de Flores | 68,747 | 2.87 | 62.00 | 23.68 | swamp | Low |
urban | García | 397,205 | 3.47 | 59.20 | 22.62 | desert | High |
urban | San Pedro Garza García | 132,169 | 1.65 | 24.80 | 5.45 | oasis | Low |
urban | General Escobedo | 481,213 | 1.79 | 49.90 | 24.96 | oasis | Low |
urban | General Zuazua | 102,149 | 3.45 | 66.00 | 23.85 | desert | High |
urban | Guadalupe | 643,143 | 0.66 | 54.00 | 15.78 | swamp | Low |
urban | Juárez | 471,523 | 2.14 | 60.10 | 24.45 | swampish | Medium |
urban | Monterrey | 1,069,238 | 1.29 | 49.40 | 19.27 | oasis | Low |
urban | Pesquería | 147,624 | 6.54 | 64.30 | 23.47 | desert | Veryhigh |
urban | Salinas Victoria | 86,766 | 3.66 | 60.20 | 27.34 | desert | Low |
urban | San Nicolás de los Garza | 412,199 | 0.36 | 57.00 | 10.87 | oasis | Low |
urban | Santa Catarina | 306,322 | 1.51 | 60.80 | 16.43 | swamp | High |
urban | Santiago | 46,784 | 1.59 | 55.20 | 12.43 | swamp | Very high |
Total | 5,322,117 | 37.46 | |||||
periurban | Hidalgo | 16,086 | 0.32 | 66.70 | 23.25 | swamp | Medium |
periurban | Abasolo | 2974 | 0.40 | 59.70 | 10.37 | desert | Medium |
periurban | Marin | 4719 | ND | ND | ND | swamp | High |
periurban | Mina | 6048 | ND | ND | ND | ND | Medium |
Total | 29,827 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roggema, R.; Krstikj, A.; Flores, B. Spatial Barriers to Transforming toward a Healthy Food System in the Noreste of Mexico. Nutrients 2024, 16, 1259. https://doi.org/10.3390/nu16091259
Roggema R, Krstikj A, Flores B. Spatial Barriers to Transforming toward a Healthy Food System in the Noreste of Mexico. Nutrients. 2024; 16(9):1259. https://doi.org/10.3390/nu16091259
Chicago/Turabian StyleRoggema, Rob, Aleksandra Krstikj, and Brianda Flores. 2024. "Spatial Barriers to Transforming toward a Healthy Food System in the Noreste of Mexico" Nutrients 16, no. 9: 1259. https://doi.org/10.3390/nu16091259
APA StyleRoggema, R., Krstikj, A., & Flores, B. (2024). Spatial Barriers to Transforming toward a Healthy Food System in the Noreste of Mexico. Nutrients, 16(9), 1259. https://doi.org/10.3390/nu16091259