Effect of Heat-Treated Lactiplantibacillus plantarum nF1 on the Immune System Including Natural Killer Cell Activity: A Randomized, Placebo-Controlled, Double-Blind Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Study Design
2.3. Anthropometric Measurements and Blood Collection
2.4. Isolation of Plasma and Peripheral Blood Mononuclear Cells (PBMCs)
2.5. Cytotoxicity of NK Cells
2.6. Safety Parameter
2.7. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. Effects of HT-nF1 on Immune Markers
3.3. Effects of HT-nF1 on Responders and Non-Responders
3.4. Safety Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cannon, J.G. Inflammatory cytokines in nonpathological States. News Physiol. Sci. 2000, 15, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R.; Janeway, C., Jr. Innate immunity. N. Engl. J. Med. 2000, 343, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, L.B. The immune system. Essays Biochem. 2016, 60, 275–301. [Google Scholar] [CrossRef] [PubMed]
- Mace, E.M. Human natural killer cells: Form, function, and development. J. Allergy Clin. Immunol. 2023, 151, 371–385. [Google Scholar] [CrossRef]
- Waldmann, T.A. The biology of interleukin-2 and interleukin-15: Implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 2006, 6, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol. 2008, 9, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Scharton, T.M.; Scott, P. Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med. 1993, 178, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Konjevic, G.M.; Vuletic, A.M.; Martinovic, K.M.M.; Larsen, A.K.; Jurisic, V.B. The role of cytokines in the regulation of NK cells in the tumor environment. Cytokine 2019, 117, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Sievers, B.L.; Cheng, M.T.K.; Csiba, K.; Meng, B.; Gupta, R.K. SARS-CoV-2 and innate immunity: The good, the bad, and the “goldilocks”. Cell. Mol. Immunol. 2024, 21, 171–183. [Google Scholar] [CrossRef]
- Singh, K.; Rao, A. Probiotics: A potential immunomodulator in COVID-19 infection management. Nutr. Res. 2021, 87, 1–12. [Google Scholar] [CrossRef]
- Wang, Y.H.; Limaye, A.; Liu, J.R.; Wu, T.N. Potential probiotics for regulation of the gut-lung axis to prevent or alleviate influenza in vulnerable populations. J. Tradit. Complement. Med. 2022, 13, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.J.; Lee, Y.T.; Ngo, V.L.; Cho, Y.H.; Ko, E.J.; Hong, S.M.; Kim, K.H.; Jang, J.H.; Oh, J.S.; Park, M.K.; et al. Heat-killed Lactobacillus casei confers broad protection against influenza a virus primary infection and develops heterosubtypic immunity against future secondary infection. Sci. Rep. 2017, 7, 17360. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.; Saito, T.; Uematsu, T.; Kishi, K.; Toba, M.; Kohda, N.; Suzuki, T. Oral administration of heat-killed Lactobacillus pentosus strain b240 augments protection against influenza virus infection in mice. Int. Immunopharmacol. 2011, 11, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Murosaki, S.; Yamamoto, Y.; Ito, K.; Inokuchi, T.; Kusaka, H.; Ikeda, H.; Yoshikai, Y. Heat-killed Lactobacillus plantarum L-137 suppresses naturally fed antigen-specific IgE production by stimulation of IL-12 production in mice. J. Allergy Clin. Immunol. 1998, 102, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, T.; Chin, J. Modulating immune responses with probiotic bacteria. Immunol. Cell Biol. 2000, 78, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.W.; Jung, S.Y.; Kang, J.; Nam, Y.D.; Lim, S.I.; Kim, K.T.; Shin, H.S. Immune-enhancing effect of nanometric Lactobacillus plantarum nF1 (nLp-nF1) in a mouse model of cyclophosphamide-induced immunosuppression. J. Microbiol. Biotechnol. 2018, 28, 218–226. [Google Scholar] [CrossRef]
- Moon, P.D.; Lee, J.S.; Kim, H.Y.; Han, N.R.; Kang, I.; Kim, H.M.; Jeong, H.J. Heat-treated Lactobacillus plantarum increases the immune responses through activation of natural killer cells and macrophages on in vivo and in vitro models. J. Med. Microbiol. 2019, 68, 467–474. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.I.; Bae, J.Y.; Yoo, K.; Kim, H.; Kim, I.H.; Park, M.S.; Lee, I. Effects of heat-killed Lactobacillus plantarum against influenza viruses in mice. J. Microbiol. 2018, 56, 145–149. [Google Scholar] [CrossRef]
- Kim, D.H.; Chung, W.C.; Chun, S.H.; Han, J.H.; Song, M.J.; Lee, K.W. Enhancing the natural killer cell activity and anti-influenza effect of heat-treated Lactobacillus plantarum nF1-fortified yogurt in mice. J. Dairy Sci. 2018, 101, 10675–10684. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, K.J.; Jo, S.M.; Jeon, J.Y.; Kim, B.R.; Hwang, J.E.; Kim, J.Y. Euglena gracilis (Euglena) powder supplementation enhanced immune function through natural killer cell activity in apparently healthy participants: A randomized, double-blind, placebo-controlled trial. Nutr. Res. 2023, 119, 90–97. [Google Scholar] [CrossRef]
- Albers, R.; Bourdet-Sicard, R.; Braun, D.; Calder, P.C.; Herz, U.; Lambert, C.; Lenoir-Wijnkoop, I.; Méheust, A.; Ouwehand, A.; Phothirath, P.; et al. Monitoring immune modulation by nutrition in the general population: Identifying and substantiating effects on human health. Br. J. Nutr. 2013, 110, S1–S30. [Google Scholar] [CrossRef] [PubMed]
- Kaminogawa, S.; Nanno, M. Modulation of immune functions by foods. Evid. Based. Complement. Alternat. Med. 2004, 1, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.J.; Son, H.J.; Kim, K.S. 14-week randomized, placebo-controlled, double-blind clinical trial to evaluate the efficacy and safety of ginseng polysaccharide (Y-75). J. Transl. Med. 2014, 12, 283. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.H.; Baek, S.H.; Woo, Y.; Han, J.K.; Kim, B.G.; Kim, O.Y.; Lee, J.H. Beneficial immunostimulatory effect of short-term Chlorella supplementation: Enhancement of natural killer cell activity and early inflammatory response (randomized, double-blinded, placebo-controlled trial). Nutr. J. 2012, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Chong, H.X.; Yusoff, N.A.A.; Hor, Y.Y.; Lew, L.C.; Jaafar, M.H.; Choi, S.B.; Yusoff, M.S.B.; Wahid, N.; Abdullah, M.F.; Zakaria, N.; et al. Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: A randomized, double-blind, placebo-controlled study. J. Dairy Sci. 2019, 102, 4783–4797. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, T.; Hayashi, K.; Kosaka, A.; Kawashima, M.; Igarashi, T.; Tsutsui, H.; Tsuji, N.M.; Nishimura, I.; Hayashi, T.; Obata, A. Lactobacillus plantarum strain YU from fermented foods activates Th1 and protective immune responses. Int. Immunopharmacol. 2011, 11, 2017–2024. [Google Scholar] [CrossRef] [PubMed]
- Takagi, A.; Matsuzaki, T.; Sato, M.; Nomoto, K.; Morotomi, M.; Yokokura, T. Enhancement of natural killer cytotoxicity delayed murine carcinogenesis by a probiotic microorganism. Carcinogenesis 2001, 22, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, R.A.; Reale, A.; Mazzeo, M.F.; Morandi, S.; Silvetti, T.; Brasca, M. Paraprobiotics: A new perspective for functional foods and nutraceuticals. Nutrients 2021, 13, 1225. [Google Scholar] [CrossRef]
- Deshpande, G.; Athalye-Jape, G.; Patole, S. Para-probiotics for preterm neonates—The next frontier. Nutrients 2018, 10, 871. [Google Scholar] [CrossRef]
- Kim, B.Y.; Park, S.S. The concepts and applications of postbiotics for the development of health functional food product. Curr. Top. Lact. Acid Bact. Probiotics 2021, 7, 14–22. [Google Scholar] [CrossRef]
- De Marco, S.; Sichetti, M.; Muradyan, D.; Piccioni, M.; Traina, G.; Pagiotti, R.; Pietrella, D. Probiotic cell-free supernatants exhibited anti-inflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with LPS. Evid. Based Complement. Alternat. Med. 2018, 2018, 1756308. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.J.; Kim, H.S.; Jaygal, G.; Cho, H.R.; Lee, K.B.; Song, I.B.; Kim, J.H.; Kwak, M.S.; Han, K.H.; Bae, M.J.; et al. Postbiotics enhance NK cell activation in stress-induced mice through gut microbiome regulation. J. Microbiol. Biotechnol. 2022, 32, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Hyun, J.H.; Woo, I.K.; Kim, K.T.; Park, Y.S.; Kang, D.K.; Lee, N.K.; Paik, H.D. Heat-Treated Paraprobiotic Latilactobacillus sakei KU15041 and Latilactobacillus curvatus KU15003 show an antioxidant and immunostimulatory effect. J. Microbiol. Biotechnol. 2024, 34, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Ramírez, L.M.; Hernández-Ochoa, B.; Gómez-Manzo, S.; Marcial-Quino, J.; Cárdenas-Rodríguez, N.; Centeno-Leija, S.; García-Garibay, M. Impact of heat-killed Lactobacillus casei strain IMAU60214 on the immune function of macrophages in malnourished children. Nutrients 2020, 12, 2303. [Google Scholar] [CrossRef] [PubMed]
- Bae, W.Y.; Min, H.; Shin, S.L.; Kim, T.R.; Lee, H.; Sohn, M.; Park, K.S. Effect of orally administered heat-treated Lactobacillus plantarum LM1004 on the innate immune system: A randomized, placebo-controlled, double-blind study. J. Funct. Foods 2022, 98, 105293. [Google Scholar] [CrossRef]
- Hirose, Y.; Murosaki, S.; Yamamoto, Y.; Yoshikai, Y.; Tsuru, T. Daily intake of heat-killed Lactobacillus plantarum L-137 augments acquired immunity in healthy adults. J. Nutr. 2006, 136, 3069–3073. [Google Scholar] [CrossRef]
- Nakai, H.; Murosaki, S.; Yamamoto, Y.; Furutani, M.; Matsuoka, R.; Hirose, Y. Safety and efficacy of using heat-killed Lactobacillus plantarum L-137: High-dose and long-term use effects on immune-related safety and intestinal bacterial flora. J. Immunotoxicol. 2021, 18, 127–135. [Google Scholar] [CrossRef]
- Kato, I.; Tanaka, K.; Yokokura, T. Lactic acid bacterium potently induces the production of interleukin-12 and interferon-γ by mouse splenocytes. Int. J. Immunopharmacol. 1999, 21, 121–131. [Google Scholar] [CrossRef]
- Gill, H.S.; Rutherfurd, K.J.; Prasad, J.; Gopal, P.K. Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br. J. Nutr. 2000, 83, 167–176. [Google Scholar] [CrossRef]
- Lee, H.A.; Kim, H.; Lee, K.W.; Park, K.Y. Dead Lactobacillus plantarum stimulates and skews immune responses toward T helper 1 and 17 polarizations in RAW 264.7 cells and mouse splenocytes. J. Microbiol. Biotechnol. 2016, 26, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Gui, Q.; Wang, A.; Zhao, X.; Huang, S.; Tan, Z.; Xiao, C.; Yang, Y. Effects of probiotic supplementation on natural killer cell function in healthy elderly individuals: A meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2020, 74, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- Camous, X.; Pera, A.; Solana, R.; Larbi, A. NK cells in healthy aging and age-associated diseases. BioMed Res. Int. 2012, 2012, 195956. [Google Scholar] [CrossRef] [PubMed]
- Gayoso, I.; Sanchez-Correa, B.; Campos, C.; Alonso, C.; Pera, A.; Casado, J.G.; Morgado, S.; Tarazona, R.; Solana, R. Immunosenescence of human natural killer cells. J. Innate Immun. 2011, 3, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T.R.; Cherwinski, H.; Bond, M.W.; Giedlin, M.A.; Coffman, R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 1986, 136, 2348–2357. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Lee, Y.J.; Yoo, H.J.; Kim, M.; Chang, Y.; Lee, D.S.; Lee, J.H. Consumption of dairy yogurt containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and heat-treated Lactobacillus plantarum improves immune function including natural killer cell activity. Nutrients 2017, 9, 558. [Google Scholar] [PubMed]
- Ertel, W.; Keel, M.; Neidhardt, R.; Steckholzer, U.; Kremer, J.P.; Ungethuem, U.; Trentz, O. Inhibition of the defense system stimulating interleukin-12 interferon-γ pathway during critical illness. Blood 1997, 89, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Trinchieri, G. Proinflammatory and immunoregulatory functions of interleukin-12. Int. Rev. Immunol. 1998, 16, 365–396. [Google Scholar] [CrossRef]
- Klein-Franke, A.; Anderer, F.A. IL-12-mediated activation of MHC-unrestricted cytotoxicity of human PBMC subpopulations: Synergic action of a plant rhamnogalacturonan. Anticancer Res. 1995, 15, 2511–2516. [Google Scholar]
- Steinberg, C.; Eisenächer, K.; Gross, O.; Reindl, W.; Schmitz, F.; Ruland, J.; Krug, A. The IFN regulatory factor 7-dependent type I IFN response is not essential for early resistance against murine cytomegalovirus infection. Eur. J. Immunol. 2009, 39, 1007–1018. [Google Scholar] [CrossRef]
- Haseda, A.; Nishimura, M.; Sugawara, M.; Kudo, M.; Nakagawa, R.; Nishihira, J. Effect of daily intake of heat-killed Lactobacillus plantarum HOKKAIDO on immunocompetence: A randomized, double-blind, placebo-controlled, parallel-group study. Bioact. Compd. Health Dis. 2020, 3, 32–54. [Google Scholar]
- Hu, G.Z.; Yang, S.J.; Hu, W.X.; Wen, Z.; He, D.; Zeng, L.F.; Xiang, Q.; Wu, X.M.; Zhou, W.Y.; Zhu, Q.X. Effect of cold stress on immunity in rats. Exp. Ther. Med. 2016, 11, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.H.; Guo, S.Y.; Xu, S. Cold stress induces the suppression of splenic NK cell activity and the c-fos expression in rat brain. Chin. J. Appl. Physiol. 2002, 18, 313–316. [Google Scholar]
- Makino, T.; Kato, K.; Mizukami, H. Processed aconite root prevents cold-stress-induced hypothermia and immuno-suppression in mice. Biol. Pharm. Bull. 2009, 32, 1741–1748. [Google Scholar] [CrossRef]
- Brenner, I.K.M.; Castellani, J.W.; Gabaree, C.; Young, A.J.; Zamecnik, J.; Shephard, R.J.; Shek, P.N. Immune changes in humans during cold exposure: Effects of prior heating and exercise. J. Appl. Physiol. 1999, 87, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Souza, S.S.D.; Castro, F.A.D.; Mendonca, H.C.D.; Palma, P.V.B.; Morais, F.R.; Ferriani, R.A.; Voltarelli, J.C. Influence of menstrual cycle on NK activity. J. Reprod. Immunol. 2001, 50, 151–159. [Google Scholar] [CrossRef]
- Cho, J.M.; Chae, J.; Jeong, S.R.; Moon, M.J.; Shin, D.Y.; Lee, J.H. Immune activation of Bio-Germanium in a randomized, double-blind, placebo-controlled clinical trial with 130 human subjects: Therapeutic opportunities from new insights. PLoS ONE 2020, 15, e0240358. [Google Scholar] [CrossRef]
- Castro-Quintas, Á.; Palma-Gudiel, H.; San Martín-González, N.; Caso, J.R.; Leza, J.C.; Fañanás, L. Salivary secretory immunoglobulin A as a potential biomarker of psychosocial stress response during the first stages of life: A systematic review. Front. Neuroendocrinol. 2023, 71, 101083. [Google Scholar] [CrossRef]
- Carpenter, G.H. Salivary factors that maintain the normal oral commensal microflora. J. Dent. Res. 2020, 99, 644–649. [Google Scholar] [CrossRef]
- Woof, J.M.; Kerr, M.A. The function of immunoglobulin A in immunity. J. Pathol. 2006, 208, 270–282. [Google Scholar] [CrossRef]
- Welch, T.R. 50 years ago in the journal of pediatrics: Comment on IgA deficiency and susceptibility to infection. J. Pediatr. 2018, 192, 104. [Google Scholar] [CrossRef] [PubMed]
- da Silva Campos, M.J.; Alves, C.C.S.; Raposo, N.R.B.; Ferreira, A.P.; Vitral, R.W.F. Influence of salivary secretory immunoglobulin A level on the pain experienced by orthodontic patients. Med. Sci. Monit. 2010, 16, CR405–CR409. [Google Scholar] [PubMed]
- Perdigón, G.; Valdez, J.C.; Rachid, M. Antitumour activity of yogurt: Study of possible immune mechanisms. J. Dairy Res. 1998, 65, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Um, J.I.; Lee, B.J.; Goh, J.S.; Park, S.Y.; Kim, W.S.; Kim, P.H. Encapsulated Bifidobacterium bifidum potentiates intestinal IgA production. Cell. Immunol. 2002, 219, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Hosono, A.; Ozawa, A.; Kato, R.; Ohnishi, Y.; Nakanishi, Y.; Kimura, T.; Nakamura, R. Dietary fructooligosaccharides induce immunoregulation of intestinal IgA secretion by murine Peyer’s patch cells. Biosci. Biotechnol. Biochem. 2003, 67, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.Y.; Kuo, Y.W.; Chen, C.W.; Huang, Y.F.; Hsu, C.H.; Lin, J.H.; Liu, C.R.; Chen, J.F.; Hsia, K.C.; Ho, H.H. Viable and heat-killed probiotic strains improve oral immunity by elevating the IgA concentration in the oral mucosa. Curr. Microbiol. 2021, 78, 3541–3549. [Google Scholar] [CrossRef]
- Lin, C.W.; Chen, Y.T.; Ho, H.H.; Kuo, Y.W.; Lin, W.Y.; Chen, J.F.; Lin, J.H.; Liu, C.R.; Lin, C.H.; Yeh, Y.T.; et al. Impact of the food grade heat-killed probiotic and postbiotic oral lozenges in oral hygiene. Aging 2022, 14, 2221–2238. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.S.; Rutherfurd, K.J.; Cross, M.L. Dietary probiotic supplementation enhances natural killer cell activity in the elderly: An investigation of age-related immunological changes. J. Clin. Immunol. 2001, 21, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Bruins, M.J.; Van Dael, P.; Eggersdorfer, M. The role of nutrients in reducing the risk for noncommunicable diseases during aging. Nutrients 2019, 11, 85. [Google Scholar] [CrossRef]
- Miller, L.E.; Lehtoranta, L.; Lehtinen, M.J. Short-term probiotic supplementation enhances cellular immune function in healthy elderly: Systematic review and meta-analysis of controlled studies. Nutr. Res. 2019, 64, 1–8. [Google Scholar] [CrossRef]
- Miller, L.E.; Lehtoranta, L.; Lehtinen, M.J. The effect of Bifidobacterium animalis ssp. lactis HN019 on cellular immune function in healthy elderly subjects: Systematic review and meta-analysis. Nutrients 2017, 9, 191. [Google Scholar] [PubMed]
- Miyazawa, K.; Kawase, M.; Kubota, A.; Yoda, K.; Harata, G.; Hosoda, M.; He, F. Heat-killed Lactobacillus gasseri can enhance immunity in the elderly in a double-blind, placebo-controlled clinical study. Benefic. Microbes 2015, 6, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.A.; Kim, H.; Lee, K.W.; Park, K.Y. Dead nano-sized Lactobacillus plantarum inhibits azoxymethane/dextran sulfate sodium-induced colon cancer in Balb/c mice. J. Med. Food 2015, 18, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Park, E.S.; Choi, Y.S.; Park, S.J.; Kim, J.H.; Chang, H.K.; Park, K.Y. Kimchi improves irritable bowel syndrome: Results of a randomized, double-blind placebo-controlled study. Food Nutr. Res. 2022, 23, 66. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.A.; Kim, H.; Lee, K.W.; Park, K.Y. Dietary Nanosized Lactobacillus plantarum enhances the anticancer effect of kimchi on azoxymethane and dextran sulfate sodium− induced colon cancer in C57BL/6J mice. J. Environ. Pathol. Toxicol Oncol. 2016, 35, 147–159. [Google Scholar] [CrossRef]
- Lee, Y.M.; Cho, Y.S.; Jeong, S.J. Effect of probiotics on stool characteristic of bottle fed infants. Funct. Foods Health Dis. 2019, 9, 157–165. [Google Scholar] [CrossRef]
Variables | Placebo (n = 50) | HT-nF1 (n = 50) | p-Value (2) |
---|---|---|---|
Age (year) | 38.5 ± 1.7 | 40.2 ± 1.7 | 0.492 |
Gender (male/female) | 16/34 | 16/34 | 1.000 |
Menstruation (Y/N/NA) | 29/5/16 | 26/8/16 | 0.652 |
Alcohol drinker (Y/N) | 29/21 | 22/28 | 0.161 |
Alcohol amount (SD/week) | 0.04 ± 0.03 | 0.29 ± 0.19 | 0.191 |
Smoker (Y/N) | 2/48 | 4/46 | 0.678 |
Smoking amount (cigarettes/d) | 0.1 ± 0.1 | 0.3 ± 0.2 | 0.383 |
BMI (kg/m3) | 23.4 ± 0.4 | 23.2 ± 0.4 | 0.698 |
Natural killer cell activity (%) | |||
E:T = 5:1 | 11.7 ± 1.1 | 13.3 ± 1.7 | 0.430 |
E:T = 10:1 | 17.3 ± 2.0 | 18.2 ± 2.6 | 0.761 |
E:T = 25:1 | 20.9 ± 2.3 | 26.4 ± 3.1 | 0.155 |
WBC (103/μL) | 5.1 ± 0.1 | 5.7 ± 0.2 | 0.010 |
Variables | Placebo (n = 50) | HT-nF1 (n = 50) | Estimate (2) | p-Value (2) | ||
---|---|---|---|---|---|---|
Baseline | Week 8 | Baseline | Week 8 | |||
NK cell activity (%) | ||||||
E:T = 5:1 | 11.7 ± 1.1 | 6.7 ± 0.8 ** | 13.3 ± 1.7 | 7.1 ± 0.9 *** | −1.0 | 0.652 |
E:T = 10:1 | 17.3 ± 2.0 | 9.0 ± 1.3 ** | 18.2 ± 2.6 | 10.3 ± 1.6 ** | 1.2 | 0.732 |
E:T = 25:1 | 20.9 ± 2.3 | 15.2 ± 2.5 * | 26.4 ± 3.1 | 18.2 ± 2.8 ** | −2.0 | 0.649 |
IL-10 (pg/mL) | 2.4 ± 0.2 | 2.4 ± 0.2 | 2.9 ± 0.4 | 3.1 ± 0.4 | 0.0 | 0.979 |
IL-12 (pg/mL) | 1.6 ± 0.3 | 1.0 ± 0.1 ** | 1.0 ± 0.1 | 1.0 ± 0.1 | 0.6 | 0.045 |
TNF-α (pg/mL) | 3.4 ± 0.4 | 3.9 ± 0.5 | 4.3 ± 0.6 | 4.2 ± 0.6 | −0.5 | 0.523 |
slgA (μg/mL) | 74.7 ± 4.5 | 71.4 ± 4.5 | 81.3 ± 5.3 | 78.4 ± 5.3 | −0.9 | 0.888 |
Variables | Placebo (n = 50) | HT-nF1 (n = 50) | p-Value (2) | ||||
---|---|---|---|---|---|---|---|
Baseline | Week 8 | Baseline | Week 8 | Group | Week | Group × Week | |
Hematological test | |||||||
RBC (106/μL) | 4.6 ± 0.1 | 4.6 ± 0.1 | 4.6 ± 0.1 | 4.5 ± 0.1 ** | 0.391 | 0.061 | 0.043 |
Hemoglobin (g/dL) | 13.8 ± 0.2 | 13.7 ± 0.2 | 13.8 ± 0.2 | 13.5 ± 0.2 ** | 0.814 | 0.020 | 0.064 |
Hematocrit (%) | 41.6 ± 0.6 | 41.4 ± 0.6 | 41.8 ± 0.5 | 40.6 ± 0.5 ** | 0.680 | 0.006 | 0.045 |
Platelet (103/μL) | 287.8 ± 9.9 | 287.7 ± 9.8 | 275.3 ± 8.8 | 279.9 ± 7.7 | 0.379 | 0.727 | 0.661 |
Neutrophils (%) | 55.8 ± 1.2 | 54.6 ± 1.3 | 55.9 ± 1.3 | 52.5 ± 1.2 ** | 0.525 | 0.006 | 0.187 |
Lymphocytes (%) | 33.3 ± 1.0 | 34.7 ± 1.2 | 34.5 ± 1.3 | 37.2 ± 1.2 * | 0.219 | 0.005 | 0.402 |
Monocytes (%) | 6.7 ± 0.3 | 6.8 ± 0.2 | 6.7 ± 0.2 | 7.1 ± 0.2 | 0.735 | 0.052 | 0.435 |
Eosinophils (%) | 3.5 ± 0.5 | 3.1 ± 0.3 * | 2.3 ± 0.3 | 2.5 ± 0.2 | 0.055 | 0.473 | 0.038 |
Basophils (%) | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.7 ± 0.1 | 0.7 ± 0.0 | 0.318 | 0.531 | 0.409 |
Blood chemistry test | |||||||
AST (U/L) | 20.9 ± 0.8 | 21.3 ± 1.0 | 22.6 ± 0.9 | 23.2 ± 1.3 | 0.129 | 0.493 | 0.883 |
ALT (U/L) | 18.5 ± 1.6 | 19.4 ± 1.8 | 20.1 ± 1.8 | 22.1 ± 2.3 | 0.339 | 0.242 | 0.609 |
BUN (mg/dL) | 12.1 ± 0.6 | 12.2 ± 0.5 | 12.5 ± 0.5 | 12.6 ± 0.5 | 0.624 | 0.871 | 0.837 |
Albumin (g/dL) | 4.5 ± 0.0 | 4.4 ± 0.0 | 4.5 ± 0.0 | 4.5 ± 0.0 * | 0.483 | 0.007 | 0.829 |
Creatinine (mg/dL) | 0.71 ± 0.02 | 0.72 ± 0.02 | 0.71 ± 0.02 | 0.71 ± 0.02 | 0.908 | 0.292 | 0.257 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, G.-H.; Lee, S.-Y.; Kim, I.A.; Suk, J.; Baeg, C.; Kim, J.Y.; Lee, S.; Kim, K.J.; Kim, K.T.; Kim, M.G.; et al. Effect of Heat-Treated Lactiplantibacillus plantarum nF1 on the Immune System Including Natural Killer Cell Activity: A Randomized, Placebo-Controlled, Double-Blind Study. Nutrients 2024, 16, 1339. https://doi.org/10.3390/nu16091339
Hong G-H, Lee S-Y, Kim IA, Suk J, Baeg C, Kim JY, Lee S, Kim KJ, Kim KT, Kim MG, et al. Effect of Heat-Treated Lactiplantibacillus plantarum nF1 on the Immune System Including Natural Killer Cell Activity: A Randomized, Placebo-Controlled, Double-Blind Study. Nutrients. 2024; 16(9):1339. https://doi.org/10.3390/nu16091339
Chicago/Turabian StyleHong, Geun-Hye, So-Young Lee, In Ah Kim, Jangmi Suk, Chaemin Baeg, Ji Yeon Kim, Sehee Lee, Kyeong Jin Kim, Ki Tae Kim, Min Gee Kim, and et al. 2024. "Effect of Heat-Treated Lactiplantibacillus plantarum nF1 on the Immune System Including Natural Killer Cell Activity: A Randomized, Placebo-Controlled, Double-Blind Study" Nutrients 16, no. 9: 1339. https://doi.org/10.3390/nu16091339
APA StyleHong, G. -H., Lee, S. -Y., Kim, I. A., Suk, J., Baeg, C., Kim, J. Y., Lee, S., Kim, K. J., Kim, K. T., Kim, M. G., & Park, K. -Y. (2024). Effect of Heat-Treated Lactiplantibacillus plantarum nF1 on the Immune System Including Natural Killer Cell Activity: A Randomized, Placebo-Controlled, Double-Blind Study. Nutrients, 16(9), 1339. https://doi.org/10.3390/nu16091339