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Abstract: Background: Asthma (a chronic inflammatory disease of the airways) is char-
acterized by a variable course, response to treatment, and prognosis. Its incidence has
increased significantly in recent decades. Unfortunately, modern lifestyle and environmen-
tal factors contribute to the further increase in the incidence of this disease. Progressive
industrialization and urbanization, widespread use of antibiotic therapy, excessive sterility
and inappropriate, highly processed diets are some of the many risk factors that are rele-
vant today. Over the years, a lot of evidence has been gathered showing the influence of
microorganisms of the gut or airways on human health. Studies published in recent years
indicate that dysbiosis (microbial imbalance) and oxidative stress (pro-oxidant–antioxidant
imbalance) are important elements of the pathogenesis of this inflammatory disease. Scien-
tists have attempted to counteract the effects of this process by using probiotics, prebiotics,
and antioxidants. The use of probiotic microorganisms positively modulates the immune
system by maintaining homeostasis between individual fractions of immune system cells.
Moreover, recently conducted experiments have shown that probiotics have antioxidant,
anti-inflammatory, and protective properties in oxidative stress (OS). The aim of this study
is to present the current state of knowledge on the role of dysbiosis and OS in the patho-
genesis of asthma. Conclusions: This review highlights the importance of using probiotics,
prebiotics, and antioxidants as potential strategies to support the treatment and prevention
of this disease.
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1. Introduction
Asthma is one of the most common chronic respiratory diseases [1] that affects all

age groups. One in five child and adolescent asthma patients and one in eight adult
asthma patients are estimated to experience uncontrolled symptoms that reduce their
quality of life [2]. The disease cannot be completely cured, so treatment focuses primarily
on alleviating symptoms using inhaled glucocorticosteroids, long-acting or short-acting
beta-2-agonists [3–5]. Biological treatment [6–8], including monoclonal antibodies, has only
been used to a limited extent.

In recent years, the number of studies focusing on the role of microorganisms in
health and in the pathogenesis of diseases, including asthma, has increased rapidly. In
2016, scientists reported that increased amounts of Lachnospira and Clostridium neonatale
are associated with childhood asthma. Moreover, in children about one year of age with
recurrent wheezing, higher levels of C. difficile-specific IgG were found [9]. Recent reports
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showed a higher number of these bacteria in infants with recurrent wheezing during the
first two years of life [10]. Fujimura et al. [11] have reported that newborns with lower
relative abundance of Bifidobacteria, Akkermansia, and Faecalibacterium and lower relative
abundance of Candida and Rhodotorula fungi had a higher risk of developing this disease.
Another work describes that only Faecalibacterium, Lachnospira, Veillonella, and Rothia are
crucial for the subsequent development of asthma [12].

Recently, researchers have also pointed out the involvement of reactive oxygen species
in the pathogenesis of asthma. Their high concentrations activate the expression of proin-
flammatory genes, which leads to the increase in adhesion molecules and the secretion of
proinflammatory cytokines and chemokines [13,14].

Based on the published studies, it can be concluded that there is a potential link
between inflammation, dysbiosis, and oxidative stress in asthma (Figure 1).
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The aim of this study is to present the state of knowledge on the participation of
dysbiosis and reactive oxygen species in the development of asthma. Moreover, this paper
reviews the latest data on the role of probiotics, prebiotics, and antioxidants in this area.

1.1. Asthma as a Health Problem Affecting All Age Groups

Clinically, asthma is characterized by paroxysmal shortness of breath, coughing, chest
tightness, and wheezing [3]. Variable and reversible airflow limitation occurs spontaneously
and under the influence of physical, chemical, and biological aspects. A characteristic fea-
ture of symptomatic asthma is bronchial hyperresponsiveness (BHR) [15]. Importantly,
according to the Global Initiative for Asthma (GINA) guidelines, airway hyperresponsive-
ness (AHR) and inflammation of the airways are not necessary and sufficient to make the
diagnosis [3]. Factors contributing to the development of the disease include the following:
environmental factors, e.g., allergens (house dust mites, animal allergens, mold and yeast-
like fungi, cockroach allergens, pollen of plants, grasses, and trees), tobacco smoke (active
and passive smoking), past viral respiratory infections, air pollution (exposure to NO2),
occupational factors (work environment, exposure to harmful factors), diet, and genetic
factors such as atopy or bronchial hyperresponsiveness [3,16].

The classic division of the disease into allergic and non-allergic phenotypes [17] is
noteworthy, although it has now been replaced by a classification based on the degree of
symptom control. Eosinophils are the main component of the inflammatory infiltrate in the
airways. They are responsible for, among others, epithelial damage, bronchial remodeling,
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and BHR. Importantly, eosinophils are also a source of inflammatory mediators. Cytokines
produced by eosinophils include, e.g., interleukins (IL-) 1α, 3, 5, 6, 8; and TNF-α, or TGF-
β, which enhance inflammatory processes. Moreover, increased expression of cytokines
such IL-4 and IL-13 was found in the bronchial mucosa, sputum, bronchoalveolar lavage
fluid (BALF), and peripheral blood of asthmatic patients [18]. Other mediators of the
inflammatory reaction, chemokines, growth factors, proteases, and other elements of the
innate immune system, tissue regeneration, and repair system are also highly expressed in
the bronchial mucosa of asthmatic patients.

The classical theory of the pathophysiology of allergic asthma assumes that it is a
disease with Th2-dependent inflammation, i.e., the basis of which is a disturbed balance
between the activity of Th1 and Th2 lymphocytes, in favor of the latter. Thus, Th2 lym-
phocytes initiate and promote the development of bronchial asthma, among others, by
secreting proinflammatory interleukins, such as IL-4, -5, -9, and -13. The results of studies
conducted in recent years indicate an important role in the etiopathogenesis of allergic
asthma of regulatory cells (Tregs), IL-10, IL-17, and TGF-β.

In recent years, authors [19] have reported that the fermentation of dietary fiber by
Lactobacillaceae and Bifidobacteriaceae in the intestine increases the level of SCFAs, leading
to a reduction in inflammation associated with the Th2 response [20]. Moreover, butyrate,
propionate, and acetate alleviate allergic airway inflammation via Tregs. Lactobacillus
and Bifidobacterium increase the secretion of interleukin IL-10 [21] and inhibit the IgE-
dependent immune response [22]. Probiotic microorganisms affect, among others, Th17
cells. Scientists [23] described that DCs cultured with L. reuteri and L. casei stimulate Th1
cells and Treg. Importantly, Bifidobacterium bacteria are more associated with the induction
of anti-inflammatory and regulatory responses mediated by Treg [24], while Lactobacillus
acts mainly by stimulating DCs to secrete IL-12 [25]. Probiotics have also been shown to
increase the concentration of interferon gamma (INF-γ) [26] and support host immunity
(Figure 2).
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1.2. Asthma Affects the Bronchi

During asthma, the bronchial epithelium becomes more fragile [27]. The accumulating
thickened mucus [27,28] is additionally penetrated by eosinophils, which have the ability
to produce ROS. Importantly, the BALF of asthmatic mice contains an increased total
number of exfoliated cells [29]. The exfoliation process is probably intensified by the
activation of metalloproteinase by activated epithelial cells, resulting in disrupted cell–
matrix connections. Loss of epithelial integrity may cause increased airways reactivity to
stimuli through the release of cytokines and other proinflammatory mediators [30,31]. The
extracellular matrix in the respiratory tract is altered, and the basement membrane begins
to thicken early in the course of the disease. The above-mentioned factors result in the
narrowing of the bronchial lumen and impeded airflow.

1.3. There Is No Effective Cure for Asthma

Treatment of the disease focuses on reducing the frequency of characteristic symptoms
and alleviating their intensity. Generally, drugs used can be categorized as controlling,
bronchodilating, or supportive. The first ones include medications taken chronically to
permanently control the disease. These drugs reduce inflammation, control symptoms, and
prevent exacerbations and worsening ventilation rates. Inhaled glucocorticosteroids [32],
long-acting beta-2-agonists [33], and antileukotriene drugs [34] are used in this case. The
second type are medications taken by the patient “on-demand” to provide relief. These
drugs are intended to stop an attack of shortness of breath or prevent its occurrence, e.g.,
during physical exercise. Inhaled short-acting beta-2-agonists [33], anticholinergic drugs,
and oral corticosteroids are used in this case. The last type of drugs describes monoclonal
antibodies directed against human IgE immunoglobulin, IL-5, or the IL-4 and IL-5 receptors.
These medications [6,35] are additionally administered in the case of severe asthma, or
when symptoms persist despite the use of other drugs.

1.4. The Role of Microflora

Research points to the first three years of life as a key period for shaping the gut
microbiome. During this time, dynamic changes in its composition and diversity occur,
which are influenced by many factors. After this period, the microbiota stabilizes and its
composition becomes similar to that present in adults. After birth, the intestine is rapidly
colonized by a number of microorganisms, which is related to factors such as diet, or
antibiotic therapy (Figure 3) [36].
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ing, such as short chain fatty acids (SCFAs) [37–39], which are produced in the process of
carbohydrate fermentation. The presence of appropriate bacteria and the type of diet are
the factors affecting this process. An important factor that affects the composition of the
intestinal microflora in the first months of a child’s life is a diet consisting almost exclusively
of milk, favoring fermenters such as Bifidobacterium [40–42]. Formula-fed babies have a
significantly higher proportion of Bacteroides and the C. coccoides group [43]. A diet rich in
plant-based carbohydrates increases the abundance of Bacteroidetes, which are specialized
in their breakdown [44]. Interestingly, a lower abundance of these bacteria is correlated
with obesity.

It is worth noting that the formation of a microflora is a gradual phenomenon. It
is therefore possible to influence this development through an appropriate diet or/and
probiotics [45–48]. A complete understanding of the gut–lung axis [49–51] may be crucial
in the future management of asthma, although the mechanism by which these two systems
may influence each other is not yet well understood. It seems likely that inflammation
initiated in the intestines may result in inflammation in the lungs due to the destructive
effects of an overstimulated immune system.

In recent years, scientists have been investigating how the microbiome itself can
be modulated.

1.5. The Use of Probiotics and Prebiotics

According to the International Scientific Association for Probiotics and Prebiotics, the
term “probiotics” cannot include non-living microorganisms or products derived from
microorganisms [52]. The World Health Organization and the United Nations Food and
Agriculture Organization define probiotics as live microorganisms that can pass through
the digestive system alive and provide a benefit to the host [53] and “prebiotics” as non-
digestible food ingredients that exert a beneficial effect on the host due to their ability
to selectively stimulate the growth/activity of a specific number of bacteria in the in-
testines [54,55]. These compounds cannot be hydrolyzed or absorbed in the digestive
tract. Their fermentation should induce a beneficial effect on the host’s system. The group
of prebiotics includes dietary fibers, e.g., oligosaccharides. The most commonly used in
asthma are inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) [56–59].
They are fermented by lactic acid bacteria, which generates the formation of SCFAs, e.g.,
butyrate which may have the potential to alleviate obesity and related comorbidities [60].
Another representative of SCFAs is propionate, which inhibits the initiation of the Th2
immune response by dendritic cells (DCs). Studies on animal models also confirm that
this compound suppresses the M2 polarization pathway, thereby reducing allergic airway
inflammation [61].

Probiotic microorganisms positively modulate the immune system by maintaining
homeostasis between individual fractions of immune system cells. They can produce
specific enzymes or metabolites that directly affect the microorganisms or influence the
body by inducing its health-promoting effects. By producing antibacterial substances
(bacteriocins, acids), competing for binding sites and nutrients, and modulating the immune
system, probiotics directly block intestinal pathogenesis [62]. The most common strains
used as probiotics in asthma are lactic acid bacteria—Bifidobacterium and Lactobacillus.

As the influence of microflora and bacteria on the incidence and development of
asthma has become clearer, probiotics have become more popular as a “form of treat-
ment/prevention”. However, their correct use requires more detailed knowledge of the
patient’s microbiome.
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1.6. Reactive Oxygen Species in Asthma

Reactive oxygen species (ROS) are produced as a result of natural cellular metabolic
processes [63,64]. They usually have a positive effect on the body in moderate or low
concentrations (they act in response to tissue damage, protect the body against pathogens
via immune system cells, or participate in signal transmission in cells). However, their
excessive production may lead to changes in cell components, modifying or inhibiting their
functions, which leads to the development of many diseases, including atherosclerosis,
diabetes, and asthma [65–67].

ROS are produced in oxidation processes that involve chemical reactions of electron
transfer from one molecule, called the oxidant, to another, the compound, being oxidized.
The result of such reactions may be both free radicals (FRs) and non-radical forms—neutral
particles or ions [68]. FRs are formed as a result of free radical reactions: initiation, prop-
agation (prolongation), and termination. FRs representatives include, among others, the
most reactive hydroxyl radical, superoxide anion, or hydroperoxyl radical. The non-radical
form is hydrogen peroxide [69]. It is a neutral, slightly reactive molecule that has the ability
to penetrate cell membranes so it can be located in locations distant from its place of origin.
The result of the reaction of this molecule with transition metals (mainly Fe2+ and Cu+)
is the formation of a hydroxyl radical [70]. Exogenous sources of ROS are chemical com-
pounds, such as drugs, pesticides, processed foods, alcohol, and physical factors, including
industrial fumes, car exhaust fumes, cigarette smoke, ionizing radiation, ultrasound, ul-
traviolet radiation, and others. On the other hand, superoxide is produced mainly in the
mitochondria [71].

The overproduction of ROS, a deficiency of non-enzymatic antioxidants, or/and a
reduction in the activity of the enzymatic antioxidant defense system causes a disturbance
of the pro-oxidant–antioxidant balance—a phenomenon called oxidative stress (OS) [72–74].
OS participates in the pathogenesis of many diseases, including asthma (Figure 4) [75–77].
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Figure 4. Oxidative stress in asthma—sources and pathophysiological effects (↑—increase; →
↓—cause-and-effect chain, chemical reactions).

Chronic inflammation in asthma, with the participation of biological, chemical, or
physical factors, leads to the development of OS. This leads to over-reactivity in the immune
system and the activation of the production of inflammatory mediators. In patients with
asthma, inflammation first dominates, and then oxidants interfere with the structure of
goblet cells, which results in increased mucus production. Structural changes in the airways
occur which are associated with bronchial remodeling. This in turn activates the secretion
of inflammatory mediators and strengthens the disease state.
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Moreover, based on the published studies, it can be concluded that there is a potential
link between inflammation, oxidative stress, and dysbiosis in asthma.

1.7. Antioxidants Against ROS/OS

A proper cell activity requires maintaining a balance between the production of
ROS and their elimination [78]. Antioxidants are substances that inhibit the oxidation of
biomolecules and neutralize oxidants, transforming them into their non-reactive derivatives.
Antioxidants form an extensive antioxidant defense system, which includes enzymes that
decompose ROS and low-molecular-weight non-enzymatic compounds that transfer their
electrons to FRs, thus undergoing oxidation [79].

Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glu-
tathione reductase (GR) are representatives of enzymatic antioxidants. Non-enzymatic
antioxidants include compounds that occur naturally in the body (endogenous) and an-
tioxidants that require dietary supplementation (exogenous). The second group includes
compounds such as ascorbic acid (vitamin C), α-tocopherol (the form of vitamin E), vitamin
A, flavonoids including anthocyanins, and sex hormones (estradiol, estrone) [80,81].

1.8. Antioxidants and Asthma

The factors contributing to the development of asthma, apart from tobacco smoke or
air pollution (ROS generators), include an unhealthy diet. The modern diet is based on
ready-made food products containing saturated fats, highly processed meats, refined carbo-
hydrates, and various dyes, flavors, and preservatives. Lately, Luo et al. [82] demonstrated
a causal association between the daily intake of sugars and fats, as well as the levels of
magnesium and vitamin D in the serum, and the occurrence of childhood asthma.

Already, 30 years ago, scientists linked the increase in the prevalence and severity of
asthma with deficiencies of antioxidants in food [83]. Scientists showed that a low vitamin
E intake is associated with an increased incidence of asthma over a 10-year period [84].
Also, a study conducted in Saudi Arabia confirmed that low vitamin E levels are related to
the occurrence of asthma [85]. Observational studies have found an association between
a decrease in blood vitamin C concentration and an increased likelihood of asthma in
children [86,87] and adults [88]. However, a study published in 2024 [89] does not confirm
this association in adults. A 2023 meta-analysis [90] showed that serum vit. A levels are
lower in asthmatics than in healthy controls. The effect of this vitamin may depend on age,
stage of development, diet, and genetic conditions.

Some studies [91–93] suggest that an increased intake of antioxidants may lead to a
reduced burden of severe asthma. In Larkin et al.’s [94] prospective study, α-tocopherol
within normal reference ranges was associated with decreased asthma development.
Tan et al. [95] demonstrated that vit. A-regulated ciliated cells repair the damaged air-
way epithelium caused by asthma and maintain the integrity of the airway epithelium.
However, Checkley et al. [96] reported that early life vit. A administration in regions
with chronic vitamin deficiency was not associated with a lower risk of asthma. A study
published in the same year [97] on the use of flavonoids in the course of asthma confirmed a
reduction in airway inflammation. Suna et al. [98] reported that asthmatic women exhibited
lower total antioxidant status compared to the control group, but no significant differences
were noted in the dietary intake of antioxidant micronutrients. The group of healthy partic-
ipants had a significantly higher intake of anthocyanidins compared to asthmatics. The
study suggests that a diet rich in flavonoids may help reduce inflammation and oxidative
stress. Cho et al. [99] showed that treatment with soy isoflavones reduce the number of
severe asthma exacerbations.
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Interestingly, Murr et al. [100] observed that some foods rich in antioxidants and
extracts of traditional Vietnamese and Chinese herbal medicines inhibit the secretion of the
interferon-γ. This hypothesis, based on in vitro studies, argued that increased antioxidant
intake by suppressing Th1 differentiation promotes Th2 differentiation due to inherent
mechanisms of mutual regulation.

Thomas [101] suggested a significant association between deficiencies in micronutri-
ents and the development of diseases. An article published in 2024 [102] showed a positive
correlation between selenium intake and the lung function of asthmatics.

The results of an observational, controlled study [103] suggested that dietary sup-
plements beneficially modulate plasma antioxidants and may therefore have a positive
effect on systemic redox balance and, consequently, on pulmonary inflammation in asth-
matic children.

Antioxidants associated with asthma are shown in Figure 5.
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Figure 5. Antioxidants associated with asthma. The administration of some antioxidants, especially
flavonoids, has a beneficial effect on the changes occurring in the course of the disease.

1.9. Probiotics Against ROS/OS

Recent studies of probiotic strains have indicated their extensive involvement in
defense mechanisms against ROS [104–107]. Some probiotics contain genes encoding
antioxidant enzymes; thanks to this, selected strains have the ability to neutralize ROS
directly in the gastrointestinal tract [108]. Probiotics have the ability to reduce inflamma-
tory processes, which in turn protects the body against OS induced by proinflammatory
cytokines [109–112]. The administration of probiotics into the digestive tract improves the
bioavailability and absorption processes of micro- and macronutrients, including antiox-
idants. Moreover, they protect against the accumulation of ROS in the intestines during
food intake, may reduce the production of ROS, and even reduce the phagocytic capacity
of neutrophils (L. rhamnosus), one of the natural sources of ROS [109,111,112].

Scientific works have demonstrated the antioxidant properties of probiotics both
in vitro and in vivo studies [113,114]. Lactic acid bacteria have a high intracellular concentra-
tion of total (GSHt) and reduced glutathione (GSH), and also show higher TAA compared
to the control (usually E. coli bacteria) [115,116]. The use of Enterococcus faecim with FOS re-
sulted in a reduction in the level of GSHt in the blood of birds [117]. Most of the experiments
conducted so far have shown that the activity of probiotics is associated with an increase
in the concentration of GSHt in the tissues [106,118–120]. Erginel et al. [121] observed a
beneficial effect of probiotics on GSHt concentration. In another study [118], scientists
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showed that the administration of L. rhamonus significantly increases GSHt concentration.
Similarly, in another mouse model [122], administration of L. rhamonus bacteria resulted
in an increase in the concentration of GSHt. Verma and Shukla observed that probiotics
and synbiotics cause an increase in tissue GSH concentration in rats [111]. Similarly, in
animals treated with doxorubicin, a protective effect of a mixture of probiotic bacteria was
observed on the plasma concentration of GSH. Lutgendorff et al. [114] observed an increase
in GSH concentration in the rat plasma, probably caused by the intensification of its de novo
synthesis. Sengül et al. [123] described the beneficial effect of probiotic supplementation on
reducing the concentration of GSSG. In 2022, the authors presented data confirming that
probiotic preparation enhances antioxidant activity and leads to an increase in serum SCFA
concentration in mice [124].

Human trials were conducted by Asemi et al. [119,125], Bahmani et al. [126] and
Taghizadeh et al. [127]. Importantly, the use of a preparation composed of many probi-
otic genera resulted in a significant increase in the concentration of GSHt in the blood
plasma [119]. The combination of L. sporenges with inulin had a similar effect [123]. A
combination of probiotics and prebiotics was used in another study [126,127]. Another
experiment [128] confirmed the ability of probiotics to increase the concentration of GSHt in
plasma. Cannarella et al. [129] reported that a bacterial preparation reduces inflammatory
biomarkers and improves the oxidative–nitrosative profile. The results of the randomized
controlled trial [130] indicated that Saccharomyces boulardii significantly improves TAC and
slightly reduces malondialdehyde (MDA) levels, thereby reducing OS. Similar results were
obtained by Farajipour et al. [131]. The authors of the next study [132] showed that the
administration of the probiotic significantly reduced the levels of MDA, LDL cholesterol,
and tumor necrosis factor-α. Juan et al. [133] described that probiotic supplementation
significantly improved cognitive impairment. The authors of the next study [134] reported
that probiotic preparation caused a significant increase in TAC levels.

1.10. Probiotics and Asthma

The number of scientific reports regarding the use of probiotics in asthma has increased
significantly in recent years. The functions of probiotics in the airway are presented in
Figure 6.

Nutrients 2025, 17, x FOR PEER REVIEW 10 of 25 
 

 

[118], scientists showed that the administration of L. rhamonus significantly increases 

GSHt concentration. Similarly, in another mouse model [122], administration of L. 

rhamonus bacteria resulted in an increase in the concentration of GSHt. Verma and Shukla 

observed that probiotics and synbiotics cause an increase in tissue GSH concentration in 

rats [111]. Similarly, in animals treated with doxorubicin, a protective effect of a mixture 

of probiotic bacteria was observed on the plasma concentration of GSH. Lutgendorff et 

al. [114] observed an increase in GSH concentration in the rat plasma, probably caused by 

the intensification of its de novo synthesis. Sengül et al. [123] described the beneficial effect 

of probiotic supplementation on reducing the concentration of GSSG. In 2022, the authors 

presented data confirming that probiotic preparation enhances antioxidant activity and 

leads to an increase in serum SCFA concentration in mice [124]. 

Human trials were conducted by Asemi et al. [119,125], Bahmani et al. [126] and 

Taghizadeh et al. [127]. Importantly, the use of a preparation composed of many probi-

otic genera resulted in a significant increase in the concentration of GSHt in the blood 

plasma [119]. The combination of L. sporenges with inulin had a similar effect [123]. A 

combination of probiotics and prebiotics was used in another study [126,127]. Another 

experiment [128] confirmed the ability of probiotics to increase the concentration of GSHt 

in plasma. Cannarella et al. [129] reported that a bacterial preparation reduces inflam-

matory biomarkers and improves the oxidative–nitrosative profile. The results of the 

randomized controlled trial [130] indicated that Saccharomyces boulardii significantly im-

proves TAC and slightly reduces malondialdehyde (MDA) levels, thereby reducing OS. 

Similar results were obtained by Farajipour et al. [131]. The authors of the next study 

[132] showed that the administration of the probiotic significantly reduced the levels of 

MDA, LDL cholesterol, and tumor necrosis factor-α. Juan et al. [133] described that pro-

biotic supplementation significantly improved cognitive impairment. The authors of the 

next study [134] reported that probiotic preparation caused a significant increase in TAC 

levels. 

1.10. Probiotics and Asthma 

The number of scientific reports regarding the use of probiotics in asthma has in-

creased significantly in recent years. The functions of probiotics in the airway are pre-

sented in Figure 6. 

 

Probiotics
in

asthma

reduce 
inflammatory 

responses 

reduce 
oxidative 
damage

alleviating 
symptoms 
associated 

with 
inflammation

prevent 
dysbiosis

modulate 
microbiota

Figure 6. Probiotics functions in the airway. The administration of probiotics has a beneficial effect
on the changes occurring in the course of the disease.



Nutrients 2025, 17, 16 10 of 24

Table 1. The use of probiotics in scientific research in the last 5 years in relation to asthma.

Type of Study
Data

Objective/Model/Probiotics Results References

In vitro

construction of the pBESIL10 vector by cloning the
human IL-10 gene under a gap promoter and signal

peptide from Bifidobacterium spp. into the E.
coli-Bifidobacterium shuttle vector pBES2;

functional evaluation of the cell-free culture
supernatant of B. bifidum BGN4 [pBESIL10]

efficient production and secretion of significant
amounts of biologically active human IL-10;

reduction in IL-6 production in LPS-induced Raw 264.7
cells and IL-8 production in LPS-induced HT-29 cells

or TNFα-induced HT-29 cells

Hong et al. 2021 [135]

metabolic footprint of cell cultures of 25 commercially
available probiotic strains (metabolic pathway

activities with their corresponding
immunomodulatory activity)

an overrepresentation of the tryptophan metabolic
pathway for the bioactive supernatant

class—molecules involved in this pathway may be
involved in immunomodulatory activity

Fonseca et al. 2022 [136]

In vivo (animals)

HDM-induced allergic inflammation; mice;
i.r. inoculation of the active component-overexpressing

Clear coli + i.p. injection of recombinant
component protein

a novel mechanism of moonlighting LGp40 in the
reversal of M2-prompted Th2 cell activation through

glycolytic activity (immunoregulatory role in the
prevention of allergic asthma)

Chen et al. 2022 [137]

OVA-induced allergic inflammation; mice
CCFM1228, FBJSY202, FHNXY26M4,

FNMGHHHT2M2, CCFM1274, SHXXA4M1T78,
ZJHZD20M6, and CJ653

B. animalis subsp. lactis CCFM1274,
SHXXA4M1T78—reduction in serum OVA-sIgE levels

and peribronchial, perivascular cellular infiltration,
and IL-17, IL-10 production in BALF

Wang et al. 2024 [138]

HDM-induced allergic inflammation; mice
heat-killed A. muciniphila EB-AMDK19 (AMDK19-HK)

suppression of Th2-dependent immune responses;
protective effect against the development of asthma Yoon et al. 2024 [139]

OVA-induced allergic inflammation; mice
L. plantarum APsulloc331261 (GTB1TM)

alleviation of allergic airway inflammation and
reduction in excessive mucin secretion via

butyrate production
Kim et al. 2024 [140]

OVA-induced allergic inflammation; rats
L. paracasei 33 (LP33)

reduction in the total number of inflammatory cells,
lymphocytes, and eosinophils (BALF) decreased in the

level of IgE and cytokines in Th2
Yang et al. 2022 [141]

BP aeroallergen-induced allergic inflammation; mice
L. rhamnosus GG, GR-1

reduction in eosinophils count (BALF), IL-13 and IL-5
(lungs) and AHR—LGG only Spacowa et al. 2019 [142]
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Table 1. Cont.

Type of Study
Data

Objective/Model/Probiotics Results References

OVA-induced allergic inflammation; mice
L. rhamnosus 76 (LR76)

reduction in IL-4, IL-5, IL-13, and IL-25 levels;
inhibition of mucus secretion in respiratory epithelial

cells by reducing the expression of the
STAT6/SPDEF pathway

Hou et al. 2023 [143]

Der p 2-induced allergic inflammation; mice
L. rhamnosus GG+/or

prednisolone

reduction in airway resistance and serum IgE, IgG1,
and IL-4, IL-5, IL-6, IL-8, IL-13, and IL-17, and increase

in serum IgG2a
Voo et al. 2022 [144]

Bet v 1-induced allergic inflammation; mice
L. rhamnosus GR-1

preventing the deterioration of respiratory function
and promoting the immunity of the

intestinal microbiome
Spacova et al. 2020 [145]

HDM-induced allergic inflammation; mice
L. rhamnosus GG+/or turmeric

amelioration of AHR; reduction in eosinophilia, IL-5,
IL-13, and CCL17 (only with prebiotic) Ghiamati et al. 2020 [146]

OVA-induced allergic inflammation; mice
L. paracasei K47

amelioration of AHR and inflammation; reduction in
total serum IgE, OVA-specific IgE and OVA-specific

IgG1; regulation of Th1/Th2 balance
Chen et al. 2022 [147]

OVA-induced allergic inflammation; mice
L. plantarum CQPC11

reduction in TNF-α, IL-4, IL-5, IL-6, and 13 (BALF);
reduction in histological edema, IgE, OVA-specific IgE,

and IgG1
Lan et al. 2022 [148]

OVA-induced allergic inflammation; mice
L. delbrueckii UFV-H2b20

reduction in IgE, eosinophils, monocytes, and alveolar
macrophages; increased cytokine ratio IFN-γ/IL-4,

increased pulmonary IL-10, CD39 + CD73+ regulatory
T cells

Montuori-Andrade et al. 2022
[149]

HDM-induced allergic inflammation; mice
L. casei

increase in acetate and propionate content depending
on strain; increase in sIgA and IL-10 Li et al. 2020 [150]

OVA-induced allergic inflammation; mice
L. plantarum RGU (Lp-1)

increase in expression of IL-10, decrease in expression
of IL-1β, IL-13, and IL-17 in lymphoid tissue Kishida et al. 2022 [151]

OVA-induced allergic inflammation; mice
L. bulgaricus N45.10

increase in T-bet, Foxp3; attenuation of inflammation
and airway remodeling Anatriello et al. 2019 [152]
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Table 1. Cont.

Type of Study
Data

Objective/Model/Probiotics Results References

OVA, DEPM-induced allergic inflammation; mice
L. plantarum GCWB 1001, L. rhamnosus GCWB1156,

Pediococcus acidilactici GCWB1085

reduction in induced inflammatory infiltrate, goblet
cell hyperplasia, airway remodeling, proinflammatory

cytokine, and chemokine levels in BALF
Jin et al. 2020 [153]

OVA-induced allergic inflammation; mice
B. infantis

AHR reduction, Th2-related cytokine reduction
BALF/lung IL-4, IL-5, IL-13; increase in Th1-related
cytokines-increase BALF/lung IFN-γ; reduction in

eosinophil, neutrophil, and macrophage content
in BALF

Wang et al. 2020 [154]

HDM-induced allergic inflammation; mice
L. reuteri, L. rhamnosus, L. fermentum, L. salivarius, L.

gasseri, L. casei

increased butyrate production, alleviating airway
inflammation, and Th2 response in lung tissue Li et al. 2020 [155]

OVA-induced allergic inflammation; mice
S. cerevisiae

UFMG A-905

reduction in AHR and lung inflammation in a
dose-dependent manner Milani et al. 2024 [156]

OVA-LPS-induced allergic inflammation; mice
L. acidophilus LA-5+
L. rhamnosus GG+

B. animalis subspecies lactis BB-12

reduction in AHR, BALF eosinophils, IL-17,
EPO activity Wu et al. 2022 [157]

OVA-induced allergic inflammation; mice
L. gasseri LK001 + L. salivarius LK002 + L. johnsonii
LK003 + L. paracasei LK004 + L. reuteri LK005 + B.

animals LK011

immunomodulatory effects (accumulation of
gut-primed Foxp3 + Treg induced by MLN CD103 +

DC, which can migrate to the lung through the lymph
and/or bloodstream)

Zhang et al. 2021 [158]

OVA-induced allergic inflammation; mice
B. breve Bif11+

L. plantarum LAB3

acetic acid and butyric acid levels returned to normal
to a moderate but significant degree Monga et al. 2023 [159]

HDM-induced allergic inflammation; mice
B. tetravaccine+a mixture of bacterial lysates

increase in proportion of Tregs in peripheral blood;
reduced risk of asthma only in offspring of mothers

with a high microbiological load
Li et al. 2020 [160]
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Table 1. Cont.

Type of Study
Data

Objective/Model/Probiotics Results References

In vivo (human trails)

children and adolescents
L. reuteri DS 17938

improved values of C-ACT, increased PEF, and
reduced the number of symptoms Moura et al. 2019 [161]

children
L. salivarius LS01 (DSM 22775) + B. breve B632 (DSM

24706)
reduced the frequency of asthma exacerbations Drago et al. 2022 [162]

children
L. casei, L. acidophilus, L. rhamnosus, L. bulgaricus, B.

infantis, B. breve, S. thermophiles + FOS

reduction in the number of outpatient hospital visits
due to asthma-related problems (no

probiotic-only group)
Hassanzad et al. 2019 [163]

L. casei, L. acidophilus, L. rhamnosus, L. bulgaricus, B.
breve, B. longum, S. thermophilus + FOS

improvement of FEV and FVC values
(no probiotic-only group) Abbasi-Dokht et al. 2023 [164]

adults
L. acidophilus LA-5, L. rhamnosus GG, B. animalis

subspecies lactis BB-12+/or inulin

improvement of airway inflammation, asthma control,
and gut microbiome composition McLoughlin et al. 2019 [165]

adults
Probio-M8 powder + Symbicort Turbuhaler

reduction in asthma symptoms, reduction in exhaled
nitric oxide fraction, and improvement of asthma

control test results
Liu et al. 2021 [45]

adults
L. reuteri DSM-17938

no evidence that DSM-17938 exerts any systemic
effects on airway nerves, smooth muscle, sputum

inflammatory cells, skin reactions, or T cell responses
Satia et al. 2021 [166]

adults
L. casei, L. acidophilus, L. rhamnosus, L. bulgaricus, B.

breve, B. longum, S. thermophilus +FOS

effects on IL-6, IL-17, and TGF-β associated with Th17
cells; and on FEV1 and FVC values

(neutrophilic asthma)
Sadrifar et al. 2023 [167]

children
L. rhamnosus GG

a bifidobacteria-dominant gut microbiome is more often
associated with LGG supplementation and better

clinical outcomes
Ray et al. 2022 [168]
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1.11. Lactobacillus and Bifidobacterium Are Still the Best-Studied Bacteria

In animal studies, apart from the above-mentioned bacteria, the influence of Entero-
coccus faecalis and Saccharomyces cerevisiae UFMG A-905 on the course of this disease was
also analyzed.

Lactobacillus rhamnosus bacteria have been studied quite intensively in animal model
studies. The LR76 strain reduced inflammation and mucus secretion in airway epithelial
cells by reducing the expression of the STAT6/SPDEF pathway [143]. The authors [144]
reported that the combination of LGG with prednisolone reduces concentrations of IL-
4, IL-5, IL-6, IL-8, IL-13, IL-17, increases serum IgG2a concentration, and also decreases
airway resistance and IgE and IgG 1 concentrations. Administration of the LGG strain
in other studies [142,146] led to a reduction in airway hyperresponsiveness (AHR) and
eosinophilia, as well as a decrease in the concentrations of IL-5 and IL-13. The wild-
type and recombinant L. rhamnosus GR-1 prevented respiratory function deterioration
and supported gut microbiome immunity [145]. L. plantarum RGU (Lp-1) increased IL-10
expression and decreased the concentration of IL-1β, IL-13, and IL-17 in the lymphoid
tissue, while the CQPC11 strain reduced the concentration of TNF-α, IL-4, IL-5, IL-6, and
IL-13 in the bronchoalveolar lavage fluid (BALF), histological edema, and ovalbumin
(OVA)-specific IgE, IgE, and IgG1 [148,151]. An experiment [141] conducted on SD rats
proved that L. paracasei 33 reduces the total number of inflammatory cells, lymphocytes,
and eosinophils in the BALF and the level of IgE and cytokines in Th2 cells. However, L.
delbrueckii UFV-H2b20 reduced lung IgE, eosinophils, monocytes, alveolar macrophages,
and increased the IFN-γ/IL-4 cytokine ratio, lung IL-10, and CD39 + CD73+ regulatory
T cells in a mouse study [149]. Scientists reported that L. bulgaricus N45.10 increases anti-
inflammatory cytokines and inhibits inflammation and airway remodeling by interfering
with the Th1/Th2 cytokines and STAT6/T-bet transcription factors [152]. L. casei bacteria
increased acetate and propionate content depending on the strain [150]. Saccharomyces
cerevisiae UFMG A-905 has been shown to reduce AHR and lung inflammation in a dose-
dependent manner [156]. In contrast, Enterococcus faecalis showed no protection against
allergic asthma in mice but increased the concentration of SCFAs in offspring [169]. The
authors described that B. infantis promotes Th1 immune response and inhibits Th2, and the
CGMCC313-2 strain reduces allergic inflammation in mice [154,170]. Probiotic preparations
composed of mixed strains or in combination with prebiotics significantly reduced AHR
in mice [157,159]. The use of B. tetravaccine and a mixture of bacterial lysates led to an
increase in Tregs in peripheral blood, but only in the offspring of mothers with a high
microbiological burden was the risk of disease decreased [160].

The scientists examined various genus, species, and strains of probiotic bacteria in
human trials such as the following: Lactobacillus (rhamnosus GG HN001, acidophilus LA-5,
salivarius LS01 DSM 22775, reuteri DSM-17938, bulgaricus N45.10, casei DN001, paracasei or
fermentum), Bifidobacterium (lactis 420 DSM 22089, BB12, breve M-16 V, B632 DSM 24706,
ifantis M-63, 35624, longum BB536), and Streptococcus thermophilus—only in the mixture.

Studies on the use of probiotics in preventing this disease in humans are inconclusive.
Recent reports do not confirm this thesis [171–173], although in accordance with World
Allergy Organization (WHO) recommendations, probiotics should be taken by pregnant
women who are at high risk of having an allergic infant [174].

The administration of L. reuteri DS 17938 as an adjunctive therapy in the treatment
of children and adolescents with asthma led to improved values of Childhood Asthma
Control Test (C-ACT), increased peak expiratory flow rate (PEF), and a reduced number
of symptoms [161]. Similarly, the combination of L. salivarius LS01 (DSM 22775) and B.
breve B632 (DSM 24706) significantly reduced the frequency of asthma exacerbations in
children [162]. Also, the combination of L. paracasei with L. fermentum resulted in the
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improvement of PEF, the reduction in IgE concentration in blood, and the improvement of
the C-ACT values [175].

The use of multi-strain probiotics with prebiotics has proven to be very effective. The
combination of L. casei, L. acidophilus, L. rhamnosus, L. bulgaricus, B. infantis, B. breve, S.
thermophiles, and fructooligosaccharide (FOS) in the treatment of children with asthma
significantly reduces the number of outpatient visits to the hospital due to asthma-related
problems [163]. The administration of a mixture consisting of L. casei, L. acidophilus, L.
rhamnosus, L. bulgaricus, B. breve, B. longum, S. thermophilus and FOS improves forced
expiratory volume (FEV) and forced vital capacity (FVC) [164]. The researchers also found
improvements in airway inflammation, asthma control, and gut microbiome composition
after inulin administration. In the experiment, asthmatics took L. acidophilus LA-5, L.
rhamnosus GG, B. animalis subspecies lactis BB-12, and/or inulin [165]. A recent study [45]
has proven that the combination of probiotic microorganisms with budesonide alleviates
asthma symptoms, reduces the fractional exhaled nitric oxide level, and improves the
asthma control test score. Table 1 shows scientific studies on the use of probiotics in asthma
from the last 5 years, while Figure 7 presents conclusions regarding the role of probiotics in
asthma therapy.
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Figure 7. Conclusions from the use of probiotics/prebiotics in asthma therapy.

1.12. Prebiotics and Asthma

In recent years, prebiotics have been added as a complementary agent to stimulate
probiotic activity (especially in human trials). Prebiotic fermentation can modulate the
composition and function of probiotic microorganisms. Prebiotics with regulatory abilities
modify the microbiota to a favorable state. It should be emphasized that the combination
of one or more prebiotics with a probiotic is more effective than when they are used
separately [165,176,177]. Prebiotics have less influence on the control of eosinophilic airway
inflammation, EPO activity, immune-allergic response, and asthma. The authors confirm
that short- and long-chain prebiotics (GOS and FOS), together with probiotics, prevent
allergic sensitization by regulating immune responses. Probiotic microorganisms can
modulate immune cells such as T1, T2, T17, Treg, and B cells [178,179]. Some studies
have shown that prebiotic supplementation improves airway hyperresponsiveness and
reduces the number of inflammatory cells in the sputum of asthmatics [165,180,181]. Inulin
(12 g/day) has also been shown to improve airway inflammation, asthma control, and gut
microbiome composition [163]. Additionally, Wu et al. 2022 [157] showed that prebiotic
treatment (GOS and FOS; 10 mg/kg, b.w.) significantly inhibited PI3K expression.

Prebiotic fiber, by the production of acetate, prepares Treg cells to protect against
asthma. Prebiotics, such as soluble fiber and inulin, must be fermented by beneficial



Nutrients 2025, 17, 16 16 of 24

bacteria, which is a time-consuming process. Therefore, these products cannot act quickly
and have anti-inflammatory properties [165,182].

2. Conclusions
The administration of probiotic microorganisms positively modulates the immune

system by, inter alia, maintaining homeostasis between individual fractions of immune
system cells. Although these organisms have a clear influence on the processes occur-
ring in asthma, the complex mechanisms of action and bacteria–host interactions remain
poorly understood. In vitro studies have allowed for a more precise understanding of the
mechanisms of probiotic action and their impact on asthma, and these data have been
supplemented and expanded by animal experiments and clinical studies, the number of
which is still insufficient.

The administration of probiotics, prebiotics, and/or antioxidants has a beneficial
effect on the course of the disease. Studies suggest that a diet rich in flavonoids may help
reduce inflammation and oxidative stress. In recent years, scientists have described that
probiotics reduce AHR or mucus secretion in the airway, and multi-strain preparations show
promising results in the treatment of clinical symptoms of asthma, improve parameters of
forced expiratory volume, peak expiratory flow, and reduced inflammation. However, our
current understanding of the individual response to probiotic therapy, and the effects of its
combination or doses, remains insufficient.
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Abbreviations

AHR airway hyperresponsiveness
BALF bronchoalveolar lavage fluid
CAT catalase
FOS fructo-oligosaccharide
FRs free radicals
GOS galacto-oligosaccharide
GPx glutathione peroxidase
IL interleukin
OS oxidative stress
OVA ovalbumin
PEF peak expiratory flow rate
ROS reactive oxygen species
SCFAs short-chain fatty acids
SOD superoxide dismutase
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