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Abstract: Nutritional support in critically ill patients has been acknowledged as a pillar of
ICU care, playing a pivotal role in preserving muscle mass, supporting immune function,
and promoting recovery during and after critical illness. Providing effective nutritional
support requires adapting it to the patient’s diagnosis, unique characteristics, and metabolic
state to minimize the risks of overfeeding or underfeeding while mitigating muscle loss.
This level of care requires a comprehensive nutritional assessment and the establishment
of a nutrition-focused protocol. Regular, consistent and detailed nutritional evaluation
can influence both therapeutic decisions and clinical interventions, thus ensuring that the
specific needs of critically ill patients are met from the acute phase through their entire
recovery process. Bioelectrical impedance analysis (BIA) is increasingly recognized as a
valuable tool for enhancing nutritional care in critically ill patients. By delivering precise,
real-time insights into key aspects of body composition, BIA is thought to provide clinicians
with a more comprehensive understanding of the complex physiological changes that occur
during critical illness. This narrative review highlights the potential of BIA in offering
these precise assessments, facilitating the development of more accurate and personalized
nutritional strategies for critically ill patients. If BIA can reliably assess dynamic shifts in
hydration and tissue integrity, it holds the promise of further advancing individualized
care and optimizing clinical outcomes in this vulnerable population.

Keywords: body composition assessment; critically ill patients; personalized nutrition;
therapeutic decisions; ICU care

1. Introduction
Critically ill patients face a markedly higher risk of malnutrition compared to those

hospitalized for less severe conditions, highlighting the urgent need for specialized nutri-
tional interventions [1]. The presence of malnutrition upon admission to the hospital not
only contributes to the development of complications but also significantly elevates the
risk of mortality [2,3]. This population is particularly vulnerable, with rapid nutritional
deterioration occurring early in their course of illness. Studies indicate a striking loss of
muscle mass—up to 1 kg per day—in patients suffering from Multiple Organ Dysfunction
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Syndrome (MODS) [4,5]. Patients with multiple organ failure are particularly at risk, as they
tend to lose more muscle mass compared to those with single organ failure, pointing out the
severity of the catabolic response in systemic dysfunction [6]. This progressive and often
irreversible muscle mass loss contributes to long-term complications, including impaired
physical performance and significantly reduced quality of life, further emphasizing the
need for early and effective nutritional management in the ICU setting [7].

Addressing malnutrition early and adequate feeding have been linked to better out-
comes in critical illness [8]. Improved nutritional status in critically ill patients is as-
sociated with reduced ICU length of stay, fewer complications, and enhanced recovery
outcomes. Considering this evidence, comprehensive nutritional assessment must be
initiated promptly to address the requirements of critically ill patients effectively.

The Global Leadership Initiative on Malnutrition (GLIM) provides consensus-driven
recommendations for assessing skeletal muscle mass [9]. According to these guidelines,
while technology-based measurements are preferred when devices, expertise, and con-
firmed thresholds are available, clinical approaches utilizing validated cutoffs by trained
personnel may represent an alternative.

Since no technical method for assessing body composition is ideal, the choice should
depend on availability, limitations, and the level of information provided. In ICU patients,
bedside methods like Bioelectrical Impedance Analysis (BIA) should be considered, as they
are quick, non-invasive, and avoid the logistical challenges associated with methods such
as Dual-Energy X-ray Absorptiometry (DXA) or Computed Tomography (CT) [10–12].

CT scans are highly accurate for analyzing body compartments, with measurements at
the L3 vertebra serving as reliable surrogate markers for whole-body skeletal muscle mass.
The skeletal muscle index (SMI), calculated from the cross-sectional area at L3, is widely
used to assess sarcopenia and has significant prognostic value [13]. However, routine use
of CT scans in critically ill patients is limited by practical challenges, including high costs,
radiation exposure, and the need for follow-up imaging. Moreover, CT scans cannot be
performed daily, making it difficult to detect smaller or rapid changes in body composition
over short periods. These factors make CT scans less feasible for regular monitoring in ICU
patients, where minimizing additional risks is a priority [14].

DXA, another reference technique, provides accurate estimates of whole-body skeletal
muscle mass based on appendicular lean tissue measurements [15]. While reliable, its use
may be affected by reduced accuracy in overweight, obese, or older individuals, difficulties
in repeated measurements, and the need for proper exam acquisition and analysis [16].
Additionally, like CT, DXA cannot be performed daily, limiting its capacity to detect small
or rapid changes in body composition, which is crucial in ICU settings for monitoring
patients’ nutritional status and muscle mass dynamics. The radiation exposure, although
lower than CT scans, still limits its feasibility for frequent assessments in the ICU setting.

Ultrasound (US) offers a validated, non-invasive approach for longitudinal measure-
ments of muscle thickness and cross-sectional area, with proposed standardization methods
enhancing reliability [17]. However, US faces limitations such as inter operator variability,
the impact of skin compressibility, and the lack of standardized cut-off points. In critically
ill patients with edema or severe muscle wasting, changes in muscle quality and quan-
tity may not always be accurately reflected in quadricep muscle layer thickness (QMLT)
measurements [6].

The precision of BIA in estimating body composition parameters has been evaluated
in various studies comparing BIA to reference methods like DXA. These studies have
reported coefficients of variation (CV) in the range of 1–3%, indicating that BIA can reliably
detect changes in body composition within this margin of error. For instance, one study
comparing multifrequency BIA with DXA found that BIA provided comparable estimates
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of body composition, with minimal bias and acceptable limits of agreement [18]. Another
study assessed the performance of BIA against DXA and demonstrated that BIA accurately
measured total body fat percentage, fat mass, and fat-free mass, supporting its validity as a
body composition assessment tool [19].

Despite the missing pieces in our clinical approach, particularly in managing critically
ill patients, the existing body of literature underscores BIA’s potential to yield valuable
insights into prognosis, nutrition, and fluid management, ultimately supporting improved
clinical decision-making and patient outcomes [20,21]. The primary strengths of BIA
include its ease of use, portability, and the ability to perform frequent assessments without
requiring extensive training or complex equipment [22]. These features make BIA especially
valuable for bedside monitoring in critically ill ICU patients, where timely data on body
composition and hydration status are crucial. Furthermore, BIA can be performed without
the logistical burdens of other techniques, such as CT or DXA, which require patient
transport, additional resources, or specialized facilities [23].

To provide a clear and concise overview of the strengths, limitations, and practical
considerations of commonly used methods for body composition assessment in critically
ill patients, we have included a comparative table below (Table 1)

Table 1. Comparison of body composition assessment techniques (References [6,11,12,16,24,25]).

Method Accuracy Sensitivity to
Fluid Shifts

Practicality/Feasibility
in ICU Key Limitations

CT

Highly accurate for muscle
and fat compartment analysis
Reliable surrogate marker
(e.g., L3 level for sarcopenia)

Minimally
sensitive

High cost
Not feasible for
longitudinal monitoring
Not feasible for daily
monitoring

Radiation exposure
Expensive
Logistically challenging
Not bedside

DXA

Reference standard for lean
mass and fat mass
assessment-
High accuracy and reliability

Moderately
sensitive

Requires transport
Not feasible for daily
monitoring

Reduced accuracy in
obese/edematous patients
Radiation exposure
Limited use in critically
ill patients

US

Non-invasive
Portable and bedside-friendly
Real-time monitoring of
specific muscles: captures
muscle quality (e.g.,
echo intensity)

Highly
sensitive

Ideal for frequent
monitoring
Useful for assessing muscle
wasting patterns and
targeted interventions

Operator-dependent
Interobserver variability
Lack of universal cut-offs

BIA

Portable and simple
Bedside measurements
Low cost
Provides phase angle as a
marker of cellular health

Highly
sensitive

Useful for risk stratification
Best performed early in
ICU/ stable volume status

Assumes stable hydration
Limited accuracy in
fluid-shift conditions

2. The Principles Behind BIA
BIA assesses body composition and fluid status by measuring the body’s ability to

conduct an electrical current. This method is based on several assumptions [21]: first, the
body is modeled as a cylindrical structure composed of five segments (torso, arms, and
legs); second, tissue composition is assumed to be uniform; third, individual variability
is considered negligible; and fourth, external factors such as temperature and stress are
presumed to have no effect. The theoretical assumptions often deviate from practical
outcomes, particularly in critically ill patients, where factors like altered hydration and
tissue changes challenge these premises.
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BIA measures the resistance (opposition to current flow) and reactance (opposition to
changes in current flow due to cell membranes acting as capacitors) [26]. Both resistance
and reactance together determine the impedance, which represents the total opposition
to an electrical current flowing through the body. Impedance values vary based on body
composition, reflecting differences in fat, muscle, and water content. Electrolyte-rich tissues,
such as muscle and blood, are highly conductive, while anhydrous tissues, such as fat, bone
and air-filled structures, present more resistance to current flow [27].

Single-frequency BIA (SF-BIA) measures impedance at a single frequency (commonly
50 kHz). This frequency allows the current to travel through extracellular water (ECW)
while largely bypassing cell membranes, making it effective for estimating ECW. However,
due to its inability to penetrate cells, it lacks precision in measuring intra-cellular water
(ICW), thus providing less comprehensive information about total body water (TBW)
and body composition metrics such as Fat-Free Mass (FFM), which depend on accurate
differentiation between ECW and ICW [28,29].

Multifrequency BIA (MF-BIA) improves accuracy by employing multiple frequencies
(ranging from 0, 1, 5, 50, 100, 200 to 500 kHz) to differentiate between ECW and ICW.
This method evaluates FFM, TBW, and water compartments more reliably than SF-BIA,
particularly in fluctuating hydration states [14]. This makes MF-BIA particularly useful in
fluctuating hydration states commonly encountered in critically ill patients, where rapid
changes in fluid balance can affect body composition.

Bioimpedance Spectroscopy (BIS) extends the frequency range beyond MF-BIA to
analyze impedance over a spectrum of frequencies (typically ranging from 1 kHz to 1 MHz
or higher). By analyzing variations in tissue properties across frequencies, BIS enhances
its predictive capabilities, particularly for hydration and tissue analysis. However, its
reliance on population-specific reference values can limit its applicability across diverse
clinical settings. These reference values may not be universally applicable across diverse
clinical settings, particularly in heterogeneous patient populations such as ICU patients
with varying age, gender, and medical conditions [12,30].

Bioelectrical impedance vector analysis (BIVA) evaluates hydration and nutritional
status by plotting resistance and reactance as components of a vector plotted on a Cartesian
graph. The x-axis represents resistance, and the y-axis represents reactance. These vectors
provide a visual representation of the electrical properties of body tissues, allowing for a
direct assessment of hydration and cell integrity without relying on predefined, population-
specific equations or assumptions. The length of the vector reflects overall impedance,
with shorter vectors indicating fluid overload and longer vectors signaling reduced body
water. The angle of the vector, known as the phase angle, signifies cell membrane integrity
and health, and will be treated in detail in the following section. Shifts in the vector
provide further insights, with upward shifts (increased reactance) indicating improved cell
mass and function, and downward shifts reflecting diminished cellular health, common in
critically ill or malnourished patients. This makes BIVA especially valuable for critically
ill patients, where changes in hydration and tissue characteristics challenge conventional
assessment methods [28,31,32].

3. Defining Measurement Techniques and Body Compartments
Using BIA

BIA offers insights into tissue hydration and cell integrity by direct and indirect
measurements. It enables a detailed four-compartment model of body composition, di-
viding the body into fat, water, minerals, and protein (Figure 1).
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and tissue integrity, making them essential for assessing nutritional status and hydration. 
Low-frequency currents cannot penetrate cell membranes and measure only extracellular 
water (ECW). In contrast, high-frequency currents bypass cell membrane capacitance, 
measuring total body water (TBW) (Figure 2). Intracellular water (ICW) is derived by sub-
tracting ECW from TBW [27]. Using ICW and the assumption that cells are 70% water, 
body cell mass (BCM) can also be estimated [14]. Body cell mass (BCM) primarily consists 
of ICW and proteins, representing the metabolically active portion of the body [33]. It 
plays a critical role in energy metabolism, immune function, and overall health, thus serv-
ing as an indicator of nutritional status and cellular integrity [34]. 
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Figure 1. Multicompartment body composition model. FFM: fat-free mass, SLM: soft lean mass,
BCM: body cell mass, ICW: intracellular water, ECW: extracellular water, TBW: total body water.

Direct measurements of impedance, reactance, resistance, and capacitance are strongly
linked to physiological changes and serve as reliable indicators for predicting clinical
outcomes [21]. These electrical properties reflect variations in body composition and
tissue integrity, making them essential for assessing nutritional status and hydration. Low-
frequency currents cannot penetrate cell membranes and measure only extracellular water
(ECW). In contrast, high-frequency currents bypass cell membrane capacitance, measuring
total body water (TBW) (Figure 2). Intracellular water (ICW) is derived by subtracting
ECW from TBW [27]. Using ICW and the assumption that cells are 70% water, body cell
mass (BCM) can also be estimated [14]. Body cell mass (BCM) primarily consists of ICW
and proteins, representing the metabolically active portion of the body [33]. It plays a
critical role in energy metabolism, immune function, and overall health, thus serving as an
indicator of nutritional status and cellular integrity [34].
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impedance. High-frequency currents also penetrate wall cells and measured impedance reflects total
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In addition, when an electric current moves across a cell membrane, latency occurs
due to the membrane’s capacitive properties, causing a phase shift between resistance and
reactance (Figure 3). This phase angle (PhA) represents the health of cell membranes and
BCM. A PhA value above 6 degrees indicates robust, intact cells, with a larger ratio of
ICW relative to ECW. Conversely, lower PhA values are associated with compromised cell
membranes, indicating potential cellular dysfunction or loss of BCM [35–37]. Typically
measured at 50 kHz for optimal signal accuracy, PhA is influenced by factors like age, sex,
and fat-free mass, reflecting variations in health and body composition [38]. For instance,
older adults and individuals with higher levels of body fat tend to exhibit lower PhA values
due to the reduced proportion of metabolically active tissues like muscle mass.
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Figure 3. Impedance components in bioelectrical impedance analysis (BIA): resistance, reactance,
and phase angle.

Fat-free mass (FFM) encompasses all components of the body excluding fat. BIA equa-
tions predict FFM by incorporating variables like height, resistance, weight, age, gender,
and reactance. Earlier equations relied on height²/resistance, while modern ones include ad-
ditional factors for improved accuracy. Single-frequency BIA (SF-BIA) can reliably estimate
FFM if hydration levels are normal and when the equations are appropriately calibrated to
the specific characteristics of the population in question. This includes adjusting for factors
such as age, gender, and ethnicity, which influence body composition and hydration status.
By accounting for these variables, SF-BIA provides a more accurate representation of FFM,
ensuring better assessments of nutritional status and metabolic function [28].

It is important to mention that in the specialized literature, the term FFM is often used
interchangeably with “lean body mass” (LBM). However, recent discussions among experts
have led to a preference for using FFM over LBM, even though both terms refer to the same
chemical composition. The shift from LBM to FFM aims to eliminate confusion, particularly
in clinical settings. This adjustment reflects a more precise and consistent approach to
terminology, improving clarity in both understanding and measuring body composition in
both research and clinical practice [39].

Regarding another derived parameter, soft lean mass (SLM), there is limited research
directly comparing SLM with FFM. While both parameters focus on non-fat components of
body composition, they differ in terms of their specific composition. SLM is typically
considered to consist of protein, total body water (TBW), and, in some studies, non-
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osseous minerals such as potassium and phosphates. These non-fat components contribute
to the metabolic activity and functional capacity of the body. While FFM provides a
comprehensive assessment of non-fat tissue, SLM offers a more nuanced evaluation by
including specific components, which are particularly relevant in conditions such as fluid
imbalance and muscle wasting [21,33].

4. Clinical Applications in ICU
4.1. Hydration Status and Fluid Guidance

SF-BIA has shown limited accuracy in critically ill patients with fluid overload or
compartment flux, often overestimating TBW changes [28]. While MF-BIA and BIS utilize
multiple frequencies to better assess TBW and compartment shifts (ECW/ICW), results
remain mixed due to varying algorithms and populations. BIS underestimated ECW in
ICU trauma/sepsis patients but tracked ECW changes over 10 days more effectively than
SF-BIA [40]. However, this suggests that the timing of measurements must be carefully
determined, as ICU patient dynamics are often unpredictable, and fluctuations in their
condition may affect results.

Hydration disturbances in ICU patients are marked by shifts of fluid into the second or
third spaces, where it no longer contributes to circulation. This can result in a positive cumu-
lative fluid balance, leading to edema, altered ICW and ECW distributions, and increased
extracellular water-to-total body water (ECW/ICW) ratio, which reflect fluid overload
and cellular dehydration. An ECW/TBW ratio exceeding 0.40 is typically associated with
overhydration of the extracellular compartment. Clinicians should note that the ECW/ICW
ratio should remain below 1. Elevated ICW levels are observed in conditions such as heart
failure, liver cirrhosis, and early-stage chronic renal failure. In contrast, ICW reductions are
often linked to osmotic imbalances, while ECW rises are commonly driven by fluid shifts
to extracellular spaces, particularly during advanced stages of the previously mentioned
diseases or septic conditions. Such shifts may result in interstitial and ascites or pleural
effusion [21,41,42]. Although this type of third-space fluid accumulation can influence
body composition measurements, segmental BIA can isolate trunk-related overhydration
and allows accurate evaluation of the extremities [43,44].

In the presence of intravascular hypovolemia, BIVA interpret the condition as a state
of overhydration if extracellular fluid levels are elevated. Therefore, while BIVA can pro-
vide key observations into hydration status, interpreting its results in cases of interstitial
edema and hypovolemia should be carried out cautiously and in conjunction with clinical
judgment [45]. Overhydration can be assessed by comparing expected ECW with the
measured ECW. When measured ECW is greater than expected by 1L, it suggests a worse
clinical prognosis. Expected ECW is calculated based on the euvolemic ECW/TBW ratio,
which represents a state of normal fluid balance. This evaluation helps determine the extent
of fluid overload and predict patient outcomes [46,47].

Furthermore, despite evidence supporting BIVA as a reliable and practical method
for assessing hydration in critically ill patients, its ability to detect fluid balance changes
below 2 L remains limited [48]. Based on the available findings, BIVA proves effective for
monitoring significant changes in hydration and fluid balance but shows limited sensitivity
for identifying minor fluid shifts. This limitation arises from the method’s reliance on
impedance measurements, which may not accurately capture smaller variations in fluid
distribution due to capillary permeability and other dynamic factors. Therefore, it is
advisable to monitor body composition through BIA when the patient’s volemic status
is stable or incorporate complementary tools that reflect capillary permeability and fluid
distribution changes [49,50]. Additionally, in the ICU setting, methods like ultrasound
and central venous pressure (CVP) monitoring provide real-time insights into a patient’s
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volume status and can complement BIA data. Ultrasound, particularly for evaluating the
inferior vena cava (IVC) or assessing lung congestion, is increasingly utilized in critical
care due to its non-invasive nature and real-time feedback. CVP monitoring, while a
standard method for evaluating volume status, can sometimes be influenced by other
factors such as heart function and intrathoracic pressure. BIA complements ultrasound
and CVP monitoring by detecting fluid imbalances that may not be apparent through these
methods alone. For instance, a patient with severe edema might show normal IVC collapse
on ultrasound, yet BIA could reveal an increase in extracellular water, indicating fluid
overload. Similarly, while CVP may remain stable, BIA can identify shifts in intracellular
fluid or reveal dehydration at the cellular level, providing additional context to the CVP
measurement and offering a more comprehensive assessment of hydration status [51].

To provide a clearer understanding of the relationship between BIA-derived volume
status assessments and clinical outcomes in ICU patients, we have summarized key studies
in the table below (Table 2).

Table 2. BIA-derived volume status assessments and clinical outcomes in ICU patients.

First Author, Year
[Reference] Key Variables Patient Population Key Findings

Chung, Y.J. et al.,
2024 [20]

ECW ratio
Dehydrated status
ECW ratio < 0.390
Overhydrated status
ECW ratio > 0.406

200 surgical ICU
patients

The group with an ECW ratio adjusted to the target range
experienced a notable reduction in hospital stay duration and
28-day mortality.

Ali Ait Hssain et al.,
2023 [52] ECW ratio 572 ICU patients

An ECW/TBW ratio exceeding 0.434
correlates with a greater likelihood of 1-year mortality in
ICU patients.

Cleymaet R. et al.,
2023 [53]

Raw data, ECW ratio, ECW%,
ICW%, TBW% 111 ICU patients

Non-survivors had significantly lower levels of reactance
(50.2 ± 19.4 Ohm), ECW% (50.7 ± 5.1) and ECW/ICW ratio
(1.05 ± 0.22).

Cihoric M. et al.,
2023 [54]

Relative fluid overload as assessed
through bioimpedance spectroscopy

73 surgical critically
ill patients

Overhydration was associated with an increased incidence of
major postoperative complications at 30 days, as well as
prolonged ICU and hospital stays.

Chung, Y.J. et al.,
2021 [55] ECW ratio 190 surgical ICU

patients
ECW ratio > 0.390 on Day 3 after operation was related to
postoperative morbidity and in-hospital mortality.

Denneman N. et al.,
2020 [56]

TBW calculated as
(height(cm)2/Reactance) × 0.713
Cumulative fluid balance
(daily fluid intake and output)

156
critically ill patients

These variables have demonstrated a better outcome
assessment.

Park I. et al.,
2020 [57] ECW, ICW, TBW 42 ICU patients

with sepsis

Non-survivors with higher 28-day mortality showed a
significant increase in the ECW/TBW ratio (>0.43) and a
corresponding decrease in ICW/TBW during fluid
resuscitation

Razzera E.L. et al.,
2019 [58] TBW, ECW ratio 89 mixed ICU

patients
TBW of 79.8 ± 6 and ECW/TBW of 0.3 ± 0.1 in
non-survivors

Stapel S.N., et al.,
2018 [49] BIVA hydration status 196 mixed ICU

patients

According to the study, non-surviving patients at 90 days
were more frequently classified as ‘overhydrated’ or ‘severely
overhydrated’ based on BIVA. While the observed difference
was not statistically significant, it is suggested that a larger
sample size might yield significant results.

Basso F. et al.,
2013 [45] BIVA hydration status 64 mixed ICU

patients

Non-survivors exhibited more pronounced hyperhydration
compared to survivors, with higher ICU and 60-day
mortality rates (p < 0.05). This association remained
significant even after adjusting for prognosis severity using
ICU scoring systems.

4.2. Nutrition Management

Muscle mass plays a critical role in the management of nutrition for ICU patients, as
it serves as a key determinant of their nutritional status, physical function, and overall
ability to recover from critical illness. BIA has been validated as a reliable method for
assessing skeletal muscle mass, offering a practical alternative for monitoring muscle mass.
While BIA and CT-derived muscle mass assessments may show differences—particularly in
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patients with higher muscle mass—studies have consistently demonstrated that BIA reliably
identifies individuals with reduced skeletal muscle mass, comparable to CT results [59].
This consistency is especially valuable in ICU settings, where CT imaging may be limited
due to concerns about radiation exposure, patient mobility, and the availability of im-aging
facilities. Moreover, BIA offers the advantage of real-time, repeated assessments, which are
essential for monitoring muscle mass changes over the course of critical illness [9,11].

In critically ill patients, daily bioimpedance analysis without accounting for volemic
repletion may lead to misinterpretation. Increased muscle mass observed in ICU patients
should not automatically indicate high-quality muscle mass, as intramuscular edema can be
misclassified as true muscle mass. However, in a recent pilot study, a novel BIS-derived FFM
variable using an equation that adjusts for fluid overload showed a strong correlation with
CT muscle area measurements, suggesting improved accuracy in distinguishing between
true muscle mass and fluid accumulation. This finding highlights the potential utility of
BIA in critically ill patients, provided that adjustments for fluid status are made [60].

FFM has been proposed as a more accurate and reliable alternative to actual or cor-
rected body weight for protein dosing, primarily due to variations in body composition and
gender differences, particularly in older patients or obese individuals [61]. These groups
often experience altered body composition due to factors like increased fat mass or reduced
muscle mass, making FFM a potentially superior marker for assessing nutritional status and
guiding protein requirements. Nevertheless, this strategy may fail to address changes in
body composition caused by marked fluid shifts, potentially hiding muscle wasting during
ICU stay. For instance, fluid overload or depletion may lead to misclassification of muscle
mass as either exaggerated or diminished, complicating the assessment of muscle wasting
and nutritional status. Therefore, relying solely on FFM as a marker may fail to account for
these dynamic changes in critically ill patients body composition, potentially leading to
underestimation or overestimation of muscle mass. To date, protein administration remains
based on ESPEN (European Society for Clinical Nutrition and Metabolism) guidelines [62],
which recommend protein dosing based primarily on conventional criteria like body weight
and limited consideration of body composition. Recent studies have failed to demonstrate
significant benefits from adjusting protein intake beyond these recommendations [63,64].

BIA offers valuable insights into the metabolic state of critically ill patients [65], but
one of the greatest challenges is determining the specific time point at which these patients
achieve anabolic responsiveness. BIA may aid in determining the presence of an anabolic
response to artificial nutrition.

Both BCM and FFM are indicators for assessing metabolism and energy expenditure,
reflecting individual differences in resting energy expenditure (REE) [66,67]. However, they
are less accurate compared to indirect calorimetry for precise measurements [68,69]. The
choice between BCM and FFM can influence how these metabolic variations are analyzed
and interpreted. At the cellular level, FFM divides into BCM, ECF and mineral mass. BCM
is recognized as the metabolically active component involved in essential cellular processes
such as oxygen transport, potassium adjustment, and glucose metabolism. The ratio of
BCM to FFM is variable, with research indicating that shifts in water distribution are the
main factor influencing these variations [70].

BCM is considered relatively stable and less influenced by significant body fluid
shifts. This stability suggests that BCM may be a more robust indicator for monitoring
muscle mass and a reliable nutritional variable, less influenced by factors unrelated to
nutrition [71].

The hypothesis that BCM could serve as a key predictor for anabolic responsiveness
could be conceptually supported because BCM reflects metabolically active body protein
levels. Determining anabolic responsiveness is crucial for critically ill patients as it reflects
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the ability of the body to synthesize new proteins, repair tissues, and maintain muscle
mass. However, direct evidence demonstrating this relationship remains limited. Studies
have shown that BCM correlates with nutritional and functional status [72,73], which
may influence the ability to mount an anabolic response. Nevertheless, further research
is required to establish a causal relationship between BCM and the degree or presence of
anabolic responsiveness in critically ill populations.

4.3. Prognosis and Clinical Outcomes

Fluid overload in critically ill patients is linked to worse clinical outcomes, including
increased mortality, impaired organ function, and delayed recovery [50]. Conventional
methods like fluid balance calculations often fall short in accurately capturing overhydra-
tion [51]. Techniques like BIVA and other advanced fluid status monitoring tools are being
explored for better risk prediction and timely intervention [74]. Elevated bioimpedance
vector analysis (BIVA) measurements and overhydration are independently associated
with increased mortality risk [44,46]. Resistance is linked to fluid retention, while reactance
correlates with the severity of critical illness [75]. Elevated ECW/TBW ratios indicate fluid
retention, often resulting from increased capillary permeability and systemic inflammation
commonly observed in critically ill patients. Higher ECW/TBW ratios are associated with
prolonged mechanical ventilation and higher mortality in critically ill patients [38,42]. Sim-
ilar, the TBW/FFM ratio has recently emerged as a valuable as an effective predictor of
in-hospital mortality in ICU patients, with a cutoff value of 0.74 [76].

Several studies have shown that BIA measurements in the supine position offer better
fluid equalization, resulting in more reliable body composition assessments, particularly
in critically ill patients with fluid shifts [77,78]. In the ICU, BIA can be performed on
patients lying down, with the method yielding valid results for hydration status and
body composition analysis. BIA devices used in critically ill patients typically employ a
multi-frequency, segmental approach with electrodes placed on the hand and foot (4-lead
method), enabling accurate assessments without requiring the patient to stand. Conversely,
for bedridden patients, hand-to-hand or foot-to-foot single-frequency devices are less
optimal as they fail to capture segmental fluid shifts accurately. While there may be
some methodological challenges, particularly regarding patient movement, these can be
mitigated by ensuring minimal motion during measurement [77].

Phase angle may represent a prognostic indicator for survival in critically ill patients,
offering potential insights that may complement or even enhance current severity scoring
systems. A recent meta-analysis identifies baseline phase angle (3.7–5.9◦) as an independent
risk factor for all-cause mortality, aligning with evidence from conditions like advanced
cancers, cirrhosis, and renal failure [79]. To further illustrate the prognostic significance
of phase angle in critically ill patients, we have included a table summarizing cut-off
values reported in prior studies, along with their associated clinical outcomes such as
mortality and clinical improvement (Table 3). However, variability in cutoff across studies
highlights the need for further research to determine more precise thresholds. The wide
range of cutoff values may be influenced by differences in patient populations, underlying
conditions, and methodologies employed across studies. Future investigations should aim
to standardize these thresholds to improve clinical applicability and ensure consistency in
their prognostic value. Moreover, an emerging trend in clinical practice involves utilizing
phase angle as a tool to guide early nutritional interventions in critically ill patients,
particularly those with sepsis. Low PA values can help identify patients at heightened
risk of adverse outcomes who may benefit from aggressive nutritional support aimed at
mitigating catabolic processes and improving cellular health [79,80]. Early and targeted
nutritional interventions guided by PA trends may have the potential to enhance recovery,
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reduce ICU length of stay, and improve survival. This evolving application underscores
the need for further studies to establish evidence-based protocols for incorporating PA into
nutritional therapy strategies.

BCM measurement has been extensively studied in various clinical contexts, partic-
ularly in conditions such as cancer, aging, chronic diseases and hemodialysis, due to its
strong association with inflammation and clinical outcome [81–83]. Patients with lower
BCM tend to exhibit diminished muscle mass, which is crucial for maintaining immune
function, physical performance, and overall recovery. This loss of BCM is often exacerbated
in critically ill patients due to prolonged inflammation, immobilization, and metabolic
stress, further contributing to adverse outcomes. Evidence suggests that low BCM at ICU
admission (27.1 ± 5.8 kg) or preoperatively (≤23 kg) is linked to poorer clinical outcomes
and increased mortality risk [34,84]. Therefore, incorporating BCM assessments into routine
clinical practice can aid in identifying high-risk patients and enable tailored interventions
such as optimizing protein and caloric intake to support muscle preservation, closely moni-
toring hydration to prevent fluid overload, and implementing early mobilization strategies
to counteract muscle wasting.

Table 3. Phase angle as a prognostic indicator in critically ill patients: a summary of studies.

First Author, Year
[Reference] Average PA (◦) PA in Survivors (◦) PA in Non-Survivors (◦) Key Findings

Osuna-Padilla et al.,
2022, [85] 5.0 ± 1.2 5.4 ± 1.2 4.4 ± 1.0

Low PA may serve as a predictor of 60-day
mortality in critically ill patients
with COVID-19.

Formenti P et al.,
2021 [86] 3.8 ± 2.2 - -

PA value predictive of mortality and recovery
in critically ill patients during the first week of
the ICU stay.

da Silva Passos L
et al, 2021 [87] 4.9 ± 1.2 - - PA used as a prognostic marker in ICU patients.

Ko S et al., 2021 [88] 3.6 ± 1.2 4.9 ± 1.2 4.4 ± 1.5 Lower PA in non-survivors, predictive of ICU
mortality.

Yasui-Yamada et al.,
2020 [89] 4.7 (4.2–5.3) 5.0 (4.4–5.5) 4.4 (4.0–4.8) Higher PA values indicated better

clinical outcomes.

Yao J et al., 2020 [90] 3.6 (2.7–4.8) - 3.1 (2.4–3.8) Phase angle <3.0◦ associated with poor
recovery and higher mortality.

Razzera E et al.,
2020 [58] 5.4 ± 1.7 5.6 ± 1.1 5.2 ± 2.2 PA <5.0◦ indicative of worse survival rates.

Jansen A et al., 2019
[91] 5.3 ± 1.7 5.75 ± 1.83 4.82 ± 1.40 PA used for predicting recovery and mortality

in ICU patients.
Buter H et al., 2018
[92] 4.6 ± 1.2 - - PA of 4.4 ± 1.1 associated with worse outcome

in ICU patients.
Ellegård L et al.,
2018 [80] 3.7 ± 1.0 Increased 0.62 ± 1.24 Decreased 0.24 ± 0.82 Lower PA linked to adverse outcomes in

critically ill patients.
do Amaral Paes T,
2018 [93] 4.0 ± 1.5 4.6 (3.5–5.5) 3.7 (3.1–4.5) PA cut-off <3.8◦ linked to higher mortality risk.

Stapel S et al., 2018
[49] 4.9 ± 1.3 5.0 ± 1.3 4.1 ± 1.2

Lower PA values measured during ICU
admission are significantly associated with
higher 90-day mortality.

Lee Y et al., 2017
[94] 4.0 ± 1.4 4.1 ± 1.2 2.9 ± 0.8 PA was significantly lower in non-survivors

within 7 days of admission.
Kuchnia A et al.,
2017 [95] 4.3 ± 1.4 - - PA and impedance ratio correlates with

mortality in ICU patients.

Thibault R et al.,
2016 [36] 4.5 ± 1.9 4.59 ± 1.79 4.10 ± 2.04

Patients with a PA <3.49 on day 1 had higher
ICU severity scores.
Additionally, the 28-day mortality was higher
in patients with a day 1 phase angle of <3.49.

Vermeulen K et al.
2016 [96] 4.2 ± 1.0 - - PA <5.1◦ linked to higher mortality.

Lee Y et al., 2015
[97] 4.0 ± 1.2 4.1 ± 1.2 2.9 ± 0.8 PA in non-survivors was significantly lower.

da Silva T et al.,
2015 [98] 4.9 ± 1.4 - -

A PA cutoff point of 5.1◦ in critically ill patients
with sepsis was associated with a
poorer prognosis.

Visser M et al., 2012
[99] 5.9 ± 1.0 - - Baseline PA associated with mortality risk.
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The extracellular cell mass to body cell mass (ECM/BCM), comparing non-metabolically
active and metabolically active body components, serves as a key marker of nutritional and
hydration status [70,100]. This ratio offers a unique perspective by capturing the balance
between tissue that contributes to metabolic activity and structural or fluid compartments
that do not directly participate in energy expenditure or cellular function. A ratio ≥ 1.20 has
recently been associated with protein-energy wasting (PEW) and fluid overload, showing
significant prognostic value for mortality risk in hemodialysis patients [101].

An increased BCM at a low phase angle value may indicate early signs of cell dysfunc-
tion and apoptosis associated with systemic inflammatory response syndrome (SIRS). A
higher BCM/PA ratio suggests SIRS severity (higher inflammation, cell dysfunction, and
systemic stress) and a poorer prognosis [102]. Monitoring these parameters may assist
clinicians in identifying patients at higher risk of poor outcomes, guiding interventions
aimed at mitigating inflammation and preserving muscle mass and cellular integrity.

In critically ill patients, repeated BIA measurements should be performed with careful
consideration of the patient’s clinical condition and fluid status. Ideally, measurements
should be taken daily to monitor trends in body composition and hydration status, as
ICU patients often experience rapid changes in these parameters due to fluid resuscitation,
diuresis, or nutritional interventions. However, the timing of these measurements is
critical; they should be performed when the patient’s volume status is relatively stable, as
significant fluid imbalances (e.g., dehydration or fluid overload) can affect the accuracy of
BIA readings [48,55,103].

Standardization of the measurement process is essential to minimize variability. Con-
ducting assessments at the same time each day, before interventions like feeding or fluid
administration, ensures more consistent and reliable data. Currently, there is no universally
standardized protocol for the timing and frequency of BIA measurements in critically ill
patients. The practice of conducting measurements at the same time each day, such as
before feeding or fluid administration, is a recommended approach to ensure consistency
and reduce variability, but it largely depends on clinical judgment.

5. Conclusions
Optimizing nutritional support for critically ill patients by integrating BIA into clinical

practice holds substantial promise. BIA provides critical insights into body composition,
hydration status, and nutritional requirements, which are especially important for tailoring
interventions to individual needs. However, current research predominantly focuses on
the early post-admission period, with limited attention to the longer-term phases of critical
illness or recovery. Importantly, no large-scale randomized controlled trials (RCTs) have
evaluated the effectiveness of BIA-guided nutritional interventions beyond the first week of
care, leaving a significant gap in understanding the long-term impact of such approaches.

At present, there is no universally accurate tool capable of precisely determining
individual energy or protein needs in critically ill patients. This limitation is particularly
challenging given that body composition and metabolic demands can change dramatically
between the acute and recovery phases of critical illness. These changes necessitate fre-
quent, individualized assessments using BIA to monitor and adjust nutritional strategies
in alignment with preventing further muscle mass loss. Regular reassessment is critical
because meaningful shifts in body composition and hydration status occur over time, which
can significantly influence patient outcomes.

Although not yet a standard tool for fluid management in intensive care settings,
BIA offers significant potential in this area. It is a rapid, non-invasive and cost-effective
method for detecting overhydration and fluid imbalances, conditions that can exacerbate
morbidity and mortality risks in critically ill patients. By identifying and addressing these
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imbalances promptly, BIA may play a vital role in mitigating the complications associated
with improper fluid management.

Looking ahead, further research is essential to maximize the utility of BIA in critical
care. Studies should focus on determining the optimal timing and frequency for BIA
assessments across different phases of illness. Additionally, research is needed to explore
how BIA can be used to define anabolic responsiveness and how this information could
guide interventions to minimize muscle loss. Such insights could profoundly influence the
development of personalized care strategies aimed at improving recovery trajectories and
long-term outcomes for critically ill patients.

In summary, while BIA has shown considerable potential in improving the nutritional
and fluid management of critically ill patients, its full integration into clinical practice
requires more robust evidence, particularly regarding long-term applications and its role in
personalized patient care.
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