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Abstract: Background: The human gut microbiome is critical for host health by facilitating 

essential metabolic processes. Our study presents a data-driven analysis across 312 bacte-

rial species and 154 unique metabolites to enhance the understanding of underlying met-

abolic processes in gut bacteria. The focus of the study was to create a strategy to generate 

a theoretical (negative) set for binary classification models to predict the consumption and 

production of metabolites in the human gut microbiome. Results: Our models achieved 

median balanced accuracies of 0.74 for consumption predictions and 0.95 for production 

predictions, highlighting the effectiveness of this approach in generating reliable negative 

sets. Additionally, we applied a kernel principal component analysis for dimensionality 

reduction. The consumption model with a polynomial kernel, and the production model 

with a radial basis function with 32 reduced features, showed median accuracies of 0.58 

and 0.67, respectively. This demonstrates that biological information can still be captured, 

albeit with some loss, even after reducing the number of features. Furthermore, our mod-

els were validated on six previously unseen cases, achieving five correct predictions for 

consumption and four for production, demonstrating alignment with known biological 

outcomes. Conclusions: These findings highlight the potential of integrating data-driven 

approaches with machine learning techniques to enhance our understanding of gut mi-

crobiome metabolism. This work provides a foundation for creating bacteria–metabolite 

datasets to enhance machine learning-based predictive tools, with potential applications 

in developing therapeutic methods targeting gut microbes. 

Keywords: bacteria–metabolite interactions; enzyme–metabolite interactions; theoretical 

(negative) dataset generation; kernel principal component analysis; enzyme encodings; 

chemical embeddings; chemical metabolism; human gut microbiome 

 

1. Introduction 

The human intestinal tract is home to a diverse gut microbiota, which plays a critical 

role in maintaining the host’s health and well-being [1,2]. These microorganisms, which 

include bacteria, archaea, viruses, and fungi, form complex communities that interact 

with each other and their chemical environment [3]. These interactions are central to the 

evolution and stability of the gut microbiota, which has co-evolved with the human host 
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[4–6]. The gut microbiota thrives by utilizing nutrients derived from the host’s diet and 

metabolites produced by other members of the gut microflora. Through the degradation 

of dietary components, gut microbes extract essential nutrients, making them available 

for themselves and other members of the microbial community [7,8]. This dynamic eco-

system often exists in a state of symbiosis or mutualism, wherein the microbes and the 

host mutually benefit from each other’s presence, particularly in healthy individuals [9]. 

However, various external factors can disrupt this delicate balance, leading to a condition 

known as dysbiosis [10,11]. For instance, certain endocrine-disrupting chemicals, such as 

the pesticide chlorpyrifos, or artificial sweeteners like aspartame, have been linked to ad-

verse health outcomes, including obesity, type 2 diabetes, and metabolic syndromes [12–

14]. These compounds have also been shown to induce dysbiosis in the gut, potentially 

leading to deleterious metabolic effects on the host [11,15–17]. Given the crucial role of the 

gut microbiota in host health, understanding the metabolic processes within the microbial 

ecosystem is of utmost importance. A deeper comprehension of these interactions could 

provide critical insights into preventing and managing metabolic disorders and other 

health conditions associated with gut microbiota dysbiosis [18]. 

Understanding these processes requires advanced tools capable of modeling the 

complexity of biological systems, particularly the intricate interactions within the gut mi-

crobiota. In this context, graph neural networks (GNNs) have emerged as powerful tools 

for predicting metabolite consumption and production in bacteria, offering new avenues 

for exploring metabolic pathways and their implications for health and disease. One ex-

ample is the prediction of metabolic pathways using a hybrid framework that incorpo-

rates graph attention networks (GANs). This approach analyzes compound characteris-

tics, such as molecular structure and composition, to predict the metabolic pathways in 

which a drug may participate. This facilitates a deeper understanding of drug absorption, 

distribution, metabolism, and excretion, providing valuable insights into pharmacokinet-

ics and drug interactions [19]. 

Although the application of transformer-based models to predict metabolite con-

sumption and production in bacteria is still in its early stages, these architectures have 

been successfully utilized in biomedicine for tasks such as drug sensitivity prediction, me-

tabolite retention, annotation, and modeling of metabolic reactions in humans. For in-

stance, DrugFormer employs gene-knowledge graphs, GANs, and transformer-based lan-

guage models to predict drug-resistant cancer cell lines and protein targets, aiding in over-

coming drug resistance [20]. Similarly, RT-Transformer combines GANs with a 1D-trans-

former module to predict retention times in liquid chromatography. By learning effective 

molecular representations from molecular graphs and fingerprints, RT-Transformer en-

hances metabolite identification across various chromatographic methods, showcasing 

the versatility of these models in biomedical applications [21]. Numerous studies have 

investigated the interaction between gut microbes and their chemical environment using 

ensemble learning methods. For example, ensemble feature selection techniques have 

been employed to identify microbial biomarkers associated with inflammatory bowel dis-

ease (IBD) [22]. Methods such as conditional mutual information maximization, fast cor-

relation-based filter, and extreme gradient boosting have been applied to develop classi-

fication models that assist in diagnosing IBD. More recently, researchers have predicted 

host phenotypes based on gut microbial composition [23] and identified disease-associ-

ated metabolites [24]. These approaches demonstrate significant potential for predicting 

the consumption and production of metabolites by human gut bacteria, offering new av-

enues for understanding microbial contributions to health and disease. 

To further advance our understanding of the underlying mechanisms that regulate 

the consumption and production of various metabolites by gut microbes, we present a 

comprehensive, data-driven approach aimed at unraveling these intricate interactions. By 
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systematically analyzing differences in chemical consumption and production across a 

broad spectrum of bacterial taxa, we seek to identify distinct features that can inform fu-

ture research and practical applications. Furthermore, we propose a novel methodology 

for constructing a robust theoretical (negative) dataset, specifically designed based on the 

dissimilarity of compounds from those in existing experimental datasets. The curated the-

oretical set is intended to enhance the development of predictive tools that are capable of 

forecasting the consumption and production of novel chemical compounds by the gut 

microbiota. These insights will help to elucidate the role of the gut microbiota in host me-

tabolism and potentially reveal novel therapeutic targets. Furthermore, we employ kernel 

principal component analysis (KPCA) [25] to assess whether dimensionally reduced fea-

tures of experimental and theoretical sets can retain biological information while yielding 

accurate predictions. The work provides a fundamental framework for the more sophisti-

cated machine learning (ML) approaches, such as graph neural networks, which have 

demonstrated superior performance in complex network-based problems. Such predic-

tive tools can be invaluable for expanding our understanding of microbial metabolism 

and its far-reaching impact on human health. They can also offer potential novel strategies 

aimed at managing dysbiosis and associated metabolic disorders, making this work a cru-

cial step for future research. 

2. Materials and Methods 

2.1. Chemical–Microbe Interactions 

Microbial species and their associated metabolites were obtained from NJS16, a liter-

ature-curated interspecies network of the human gut microbiota comprising 4483 entries, 

representing 570 unique microorganisms and host cells [9,26]. Since we wanted to eluci-

date differences and predict the bacterial metabolism of human metabolites, the three host 

(human) cell entries were removed in the preprocessing steps, resulting in a dataset cor-

responding to 567 microbial species, each annotated with specific metabolic labels, namely 

“consumption” (import), “production” (export), “molecular degradation”, and combined 

“consumption and production”. To focus on the role of enzymes in metabolite consump-

tion and production, molecular degradation was categorized under consumption cate-

gory. Additionally, instances labeled as consumption and production were split into sep-

arate entries for each process. Subsequently, all bacterial species in the dataset were 

mapped to the STRING database of known and predicted protein–protein interactions 

(PPIs) [27] to retrieve the taxon ID for each bacterium, resulting in a total of 312 bacterial 

species. Information on Gram-stain and pathogenicity for each bacterium was gathered 

from the BacMap [28,29] and BacDive [30,31] databases. 

A molecular weight filter of 50 to 500 Da was applied to metabolites, based on the 

observation that compounds within this range generally exhibit favorable diffusion prop-

erties across membranes, enhancing their bioavailability and subsequent metabolism 

[32,33]. This filtering approach ensured the retention of biologically relevant molecules 

containing at least one carbon atom, while excluding compounds that were either too 

small to retain functional significance, or too large to efficiently diffuse across membranes. 

As a result, non-carbon-containing molecules, those with molecular weights below 50 Da, 

and those exceeding 500 Da were excluded. The remaining metabolites were mapped to 

the STITCH database, which contains known and predicted interactions between chemi-

cals and proteins [34,35], to obtain the STITCH score for each metabolite–protein pair. This 

process generated a final dataset comprising 2065 instances, representing interactions 

from 312 bacterial species and 154 unique metabolites. Each instance was labeled as either 

consumption or production. Physico-chemical properties, including molecular weight, oc-

tanol–water partition coefficient (logP), and the number of hydrogen bond donors and 

acceptors, were calculated using RDKit v2022.09.5 [32,36]. 
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2.2. Curation of Metabolite Classes 

The initial classification of 154 metabolites into compound classes was performed by 

manually assigning each metabolite to a category based on information retrieved from 

PubChem [37]. This manual curation resulted in 10 distinct categories: alcohols, amines, 

aromatics, amino acids, carbohydrates, carboxylic acid derivatives, fatty acids, nucleo-

sides, steroid derivatives, and vitamins. A residual category, labeled “others”, was also 

created to encompass metabolites that did not fit into any of the previously mentioned 

major categories. 

2.3. Functional Annotation of Protein Sequences Using DeepECTransformer 

To functionally annotate amino acid sequences from the 312 bacterial species ob-

tained from the STITCH database, a neural network-based transformer, DeepECTrans-

former [38], was employed. DeepECTransformer utilizes two prediction engines, a neural 

network and a homologous sequence search, to extract latent features from amino acid 

sequences and predict corresponding Enzyme Commission (EC) numbers. This model 

also provides a prediction confidence score ranging from 0 to 1. For the validation of the 

bitwise accuracy of DeepECTransformer, a total of 376,076 protein sequences with known 

EC numbers from 192 bacterial species within our dataset were collected and Deep-

ECTransformer was run to make predictions of the EC numbers for these sequences. The 

accuracy of these predictions was evaluated using a bitwise accuracy calculation scheme, 

designed to assess the precision of the predicted EC numbers. First, the prediction accu-

racy was considered only if the first digit of the predicted EC number matched the first 

digit of the experimental EC number. If this condition was not met, the prediction was 

deemed incorrect. Next, the accuracy was calculated based on whether the predicted EC 

number matched the true EC number from the STITCH database at varying levels of spec-

ificity—the first digit, the first two digits, the first three digits, or all four digits. For EC 

numbers that were partially missing, the prediction was considered correct if the available 

digits matched between the predicted and true EC numbers. This rigorous validation ap-

proach ensured a robust assessment of the reliability of DeepECTransformer in predicting 

EC numbers for amino acid sequences. DeepECTransformer was subsequently used to 

predict EC numbers for all sequences from the 312 bacterial species in our dataset, 

strengthening the functional annotations. 

2.4. Random Forest-Based Prediction of Enzyme Substrates and Products 

To evaluate the effectiveness of EC2Vec and Mol2vec [39] embeddings in predicting 

the role of a metabolite in a metabolic reaction—specifically, whether it acts as a substrate 

or a product—we utilized the BRENDA database [40]. The BRENDA database is a com-

prehensive repository of enzyme-related information, including curated data on sub-

strates, products, enzyme classes, and their associated reactions. By leveraging this re-

source, we aimed to rigorously test the predictive power of the embeddings, which encode 

enzymatic and molecular features into numerical representations suitable for ML models. 

A set of enzymes that either utilize the identified metabolites as substrates or are involved 

in their production was compiled from the BRENDA database. These enzymes were spe-

cifically associated with the 154 metabolites identified in the metabolite–microbe interac-

tion dataset. To ensure that the enzymes collected from the BRENDA database were of 

bacterial origin, we matched the first three digits of the EC numbers of enzymes from the 

312 bacterial species in our dataset with those of the enzymes from the enzymatic reac-

tions listed in BRENDA. 

This comparison involved 1922 and 1998 unique EC numbers associated with sub-

strate and product data, respectively, in the Brenda dataset, against 3009 unique EC num-

bers in our dataset. The mapping revealed significant overlap, with 1907/1922 (99.21%) 
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substrate EC numbers and 1979/1998 (99.04%) product EC numbers present in the metab-

olite–microbe interaction in our dataset. Given this substantial overlap, we proceeded 

with the data directly obtained from the Brenda dataset. The mapping process resulted in 

a positive dataset for the substrate, containing 5469 instances associated with 1922 unique 

EC numbers, and for the product, comprising 5644 instances corresponding to 1998 

unique EC numbers. The positive instances were defined as pairs of metabolites and en-

zymes where the metabolite is known to be either a substrate or a product of the enzyme. 

Conversely, negative instances were defined as metabolite–enzyme pairs where the me-

tabolite is neither a substrate nor a product of the enzyme. This was carried out by pairing 

BRENDA enzymes that were not in the positive sets with the 154 metabolites, and then 

extracting an equal number of instances as in the positive set. This approach yielded final 

binary classification datasets containing 10,918 and 11,262 instances for substrates and 

products, respectively. 

Two random forest (RF) binary classifiers, each with 200 trees, were trained using the 

generated data to predict substrates and products. The classifiers utilized 1024-dimen-

sional EC2Vec embeddings of enzyme numbers and 300-dimensional structural embed-

dings of metabolites generated using Mol2vec. The RF models were implemented in Py-

thon 3.11, leveraging libraries such as scikit-learn 1.0.2, pandas 1.5.0, joblib 0.17.0, and 

matplotlib 3.3.2. All computations were performed on a High-Performance Computing 

(HPC) cluster at LSU, featuring 32-core Intel Xeon Platinum 8358 processors and running 

the Red Hat Enterprise Linux 8 operating system. 

2.5. Benchmarking Random Forest Models Against kNN 

To validate and compare the predictive capabilities of the previously mentioned RF-

based substrate and product models, we constructed a dataset containing enzymatic re-

actions from the EnzyMine database [41]. This analysis aimed to evaluate whether ML 

models, such as RF-based models, outperform the k-nearest neighbor (kNN) approach in 

predicting enzymatic substrates or products. To achieve this, we performed a Tanimoto 

similarity [42] search to compare the 154 metabolites in our dataset with known substrates 

and products. Simultaneously, a cosine similarity [43] search was conducted to match EC 

numbers from the BRENDA substrate/product datasets with those in the EnzyMine data-

base. This dual similarity analysis provided a comprehensive framework for benchmark-

ing the performance of RF-based models against the kNN approach, specifically in pre-

dicting the enzymatic roles of metabolites. The Tanimoto similarity search identified 46 

unique substrates and 45 unique products from the EnzyMine database that matched the 

154 metabolites in our dataset. Following this, the kNN method was applied to classify 

the instances in the substrate and product datasets generated in the previous section. For 

kNN classification, we used three and five nearest neighbors, determined by ranking in-

stances based on the highest Euclidean distance-based similarity, which combined both 

Tanimoto and cosine similarity measures. The majority label was then assigned to each 

instance based on the true labels of the nearest neighbors. This approach enabled a de-

tailed comparison of ML-based predictions with traditional similarity-based methods. 

2.6. Analysis of Microbe–Metabolite Interactions 

To evaluate potential differences in the number of proteins and enzymes interacting 

with metabolites—either by binding, using them as substrates, or producing them—be-

tween experimental data and a random background set, predictions from the RF models 

were analyzed. Instances from two datasets, strictly consumption and strictly production, 

were collected for this assessment. A strictly consumption set consisted of 512 instances 

representing a microbe–metabolite pair with corresponding consumption labels. The con-

sumption dataset included 180 unique bacteria known to consume 79 unique metabolites, 
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and these bacteria were absent in the strictly production set. Additionally, a strictly pro-

duction set was created, consisting of 61 instances with 13 different metabolites and 35 

unique bacteria that were not present in the previous strictly consumption set. As the 

counter parts of the consumption and production sets, two random background sets were 

created, one for the strictly consumption dataset and another for the production dataset. 

To generate instances in random background sets, for each metabolite–bacteria pair in the 

consumption or production sets, a bacterium from the list of available bacteria not having 

a microbe in the experimental instance was collected. This implies that for each experi-

mental instance in the strictly consumption set, a microbe was chosen from 179 bacteria, 

and for the production set, a bacterium was chosen from the list of 34 unique bacteria that 

were not present in the experimental instance. Then, these new microbes were paired with 

the metabolite in the experimental instance to create new instances for random back-

ground datasets. This dataset enabled the test to see if there were any significant differ-

ences between the number of proteins, enzymes binding to the metabolite, and enzymes 

using the metabolite as a substrate or producing it in experimental set, compared to the 

random pairings of microbes with metabolites. For this, the Mann–Whitney U Test [44] 

was performed between the strictly consumption or production sets and the correspond-

ing random sets for the number of proteins, enzymes binding to metabolites, and enzymes 

utilizing metabolites as either substrates or products. 

2.7. Curation of Negative Set 

Given that the NJS16 dataset provides experimental evidence of microbe–metabolite 

interactions, each instance within this dataset can be regarded as a positive instance for 

constructing a classification model. For each positive instance defined as a metabolite–

bacterium pair and with a consumption or production label, we excluded metabolites that 

belonged to the same chemical category (from a predefined set of ten categories listed in 

Section 2.2) as the metabolite in the positive instance. This step was crucial to ensure that 

no metabolites resembling the positive instance were included in the negative set for that 

bacterium. A superset of negative instances was then generated by combining the remain-

ing structurally distinct metabolites to bacteria in the positive sets: consumption (1325 in-

stances, Supplementary Figure S1A) and production (702 instances, Supplementary Fig-

ure S1B), where each negative instance consisted of a distinct metabolite–bacterium pair 

that did not match any of the positive interactions. From this superset, we down-sampled 

negative sets (1214 negative instances for consumption and 550 negative instances for pro-

duction), for which the distribution of the STITCH score between the enzymes and me-

tabolites was the same as for the positive sets. A chi-square test [45] was used to find sim-

ilar distributions for both the consumption and production sets, ensuring a robust nega-

tive dataset for subsequent classification models. 

2.8. Minimum Number of Enzymes for Classification Models 

To determine the optimal number of enzymes to be encoded as 1024-dimensional 

vectors for training a binary classification model, we constructed binary classification da-

tasets for consumption and production, consisting of 5, 10, 15, 20, 40, 60, 80, 100, and 120 

enzymes that bind to given metabolites. The enzymes were selected based on the highest 

STITCH score, sorted in descending order for that metabolite. For instance, in constructing 

a dataset with five enzymes binding to a metabolite, if a metabolite bound to more than 

five enzymes, then the top five enzymes with the highest STITCH scores were selected. In 

cases where fewer than five enzymes were associated with a metabolite, all available en-

zymes were selected, and the remaining positions were padded with non-enzymes (EC 

0.0.0.0). This approach ensured consistent data dimensions for binary classification da-

tasets. For both the consumption and production sets, RF models consisting of 200 trees 
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were created. A five-fold cross-validation was performed, with stratified sampling for 

each fold. 

2.9. Dimensionality Reduction Using Kernel PCA 

After determining the minimum number of enzymes required to accurately predict 

the consumption and production of metabolites in the human gut microbiota, a kernel 

principal component analysis (KPCA) [25] was conducted on both the consumption and 

production datasets. The analysis aimed to determine if dimensionality reduction could 

retain the relevant biological information necessary to make accurate predictions. For this 

purpose, dimensionality reduction using five different kernels in KPCA, namely cosine, 

polynomial, radial basis function (RBF), sigmoid, and linear, were explored. The classifi-

cation dataset for consumption contained 15 enzymes and metabolite embeddings, with 

15,660 features derived from the combination of 1024-dimensional EC2Vec embeddings 

for each enzyme and 300-dimensional Mol2vec embeddings for metabolites. Since the 

number of principal components was limited by the minimum number of either samples 

or features, for the consumption dataset containing 2539 instances, this resulted in re-

duced datasets, with features ranging from 8 to 2048. On the other hand, the production 

dataset consisted of 10,540 features with 1252 instances, which resulted in reduced da-

tasets with feature counts ranging from 8 to 1024. For each of these sets, RF models con-

sisting of 200 trees were created. The five-fold cross-validation was performed, with strat-

ified sampling for each fold. 

2.10. Preparation of Unseen Data 

After training the consumption and production models and their corresponding di-

mensionally reduced models, we wanted to test their efficacy on unseen data. For this, we 

curated two sets of unseen data. For the first dataset, we gathered six instances of metab-

olite–bacterium pairings for which experimental data were not present in our dataset, but 

for which there was external literature supporting their consumption or production by 

the microbes in the respective instances. As for the second unseen dataset, we created 

negative sets for consumption and production instances. The consumption unseen nega-

tive set was generated by pairing 13 metabolites from the strictly production set with 180 

bacterial species from the strictly consumption set. Instances with microbes having at least 

one enzyme binding to metabolites were kept as input for the RF model. Using this pro-

cedure, 2275 instances were generated for the consumption unseen negative set. Similarly, 

the production unseen negative dataset was curated by combining 35 metabolites from 

the strictly consumption set with 35 microbes from the strictly production set, generating 

2539 instances. The new instances were considered valid only if there was at least one 

enzyme in the microbe metabolizing the metabolite. 

Metabolite SMILES embeddings and EC number embeddings for enzymes interact-

ing with these compounds were used as input for the consumption and production mod-

els. From these models, prediction probabilities and predicted labels were collected. For 

the first unseen dataset, the prediction probabilities from both the consumption and pro-

duction models were combined to calculate a consensus prediction. The consensus for 

each prediction was determined by averaging the probabilities for positive and negative 

classifications from both models. Specifically, for the consumption model, the consensus 

was calculated by combining the probabilities of the compound being classified as posi-

tive (consumed) and as negative (not produced). Similarly, for the production model, the 

consensus was based on the probabilities of the compound being classified as positive 

(produced) and as negative (not consumed). This approach ensured that both the con-

sumption and production models contributed equally to the final predictions. 
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3. Results 

3.1. Data Collection, Curation and Analysis 

To explore the taxonomic diversity of our dataset, we collected the total number of 

bacteria per phylum and per family. This dataset includes 312 gut bacterial species and 

154 unique metabolites, identified by their corresponding compound ID (CID) from the 

STITCH database [34,35]. These 312 bacterial species are classified across 15 different 

phyla and 99 distinct families, with an average of 3.15 species per family. Among these, 

150 species are Gram-negative and 162 are Gram-positive. Additionally, within the da-

taset, 105 bacteria are identified as pathogenic to humans and animals, while 111 are la-

beled as non-pathogenic. Virulence data for the remaining 96 species could not be deter-

mined. To streamline the data for analysis and improve interpretability, bacterial families 

with fewer than three species were grouped into a “miscellaneous” category, resulting in 

23 distinct bacterial families being retained for further analysis. Figure 1 provides insight 

into the distribution of Gram-positive and Gram-negative bacteria across these families, 

in terms of the number of bacteria per family and per phylum. Figure 1A shows that the 

“miscellaneous” category consists of the highest number of bacteria in the dataset, with 

the Lactobacillaceae family being the largest specific family, comprising 31 bacterial species. 

Among Gram-negative bacteria, the Prevotellaceae family is the most prominent, contain-

ing 14 species. Figure 1B highlights that the Firmicutes phylum includes the most Gram-

positive bacteria in the dataset, while the Pseudomonadota phylum contains the highest 

number of Gram-negative bacteria. These visualizations provide a clear overview of the 

taxonomic composition of the gut microbiota represented in the dataset. 

 

Figure 1. Stacked histograms showing distribution of bacteria across families and phyla for 312 spe-

cies. (A) Number of bacteria per family. Families with fewer than or equal to three species are 

grouped under “Miscellaneous”. (B) Number of bacteria per phylum. Blue bars represent Gram-

positive species, while red bars represent Gram-negative species. 

The analysis of the physico-chemical properties of metabolites across three distinct 

sets—strictly consumption, strictly production, and a mixed set of metabolites that can be 
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both consumed and produced by bacteria—shown in Figure 2, revealed significant differ-

ences between the consumption and production sets. The median number of hydrogen 

bond donors in the consumption, production, and common sets were four, two, and two, 

respectively. The median number of hydrogen bond acceptors in the production and com-

mon sets was two, while the consumption set had a median of five hydrogen bond accep-

tors. The median molecular weights of the consumption and production sets were 177.65 

Da and 117.15 Da, respectively, with no statistically significant difference between the 

two. The common set had a median molecular weight of 123.11 Da. The median octanol–

water partition coefficients (logP) for the consumption and production sets were −2.19 and 

0.59, respectively, while the common set had a median logP of −0.19. This suggests that 

while metabolites in the consumption and production sets exhibit distinct physico-chem-

ical characteristics, these differences are not as pronounced when considering metabolites 

that can be both consumed and produced by the microbes in the human gut. 

 

Figure 2. Box plots comparing physico-chemical properties of metabolites across three datasets: 

strictly consumption, strictly production, and compounds metabolized by bacteria in both 
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consumption and production sets. (A) Number of hydrogen bond donors, (B) number of hydrogen 

bond acceptors, (C) molecular weight, and (D) octanol–water partition coefficient (logP). Horizontal 

line within each box indicates median value. Significance levels (p-values) between distributions are 

shown at top, with lines indicating datasets being compared. 

The categorization of metabolites shown in Figure 3 reveals that the majority belong 

to the carbohydrate category, accounting for 26.4% of the total metabolites. Carboxylic 

acid derivatives and amino acids represent the second and third largest categories, respec-

tively. This distribution is consistent with the biological roles of these compounds, as car-

bohydrates serve as a primary carbon source for microbes [7], and carboxylic acid deriv-

atives participate in several key metabolic processes. For instance, D-tagaturonate is an 

intermediate involved in hexuronate degradation in E. coli, where it is converted to alde-

hydo-D-galacturonate [46]. Another example is succinate, a critical metabolite in the tri-

carboxylic acid cycle, where it acts as a substrate for succinate dehydrogenase, thereby 

playing a vital role in energy production [47]. This distribution underscores the im-

portance of these metabolites in microbial metabolism and their essential roles in sustain-

ing cellular functions. 

 

Figure 3. Pie chart showing the percentage distribution of metabolites across ten chemical catego-

ries. Each section of the pie chart represents the proportion of metabolites belonging to a specific 

category. The “other” category includes compounds that could not be classified into any of the nine 

predefined categories. 

In Figure 4, the cumulative distribution of total proteins, enzymes, and metabolite-

binding enzymes across the 312 bacterial species in our dataset is illustrated, providing a 

comprehensive overview of the abundance of these biomolecules within the microbial 

community under study. In the dataset, 249 bacterial species have a total number of 
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proteins that falls within one standard deviation of the mean protein count. Among these 

the phylum, Firmicutes is the largest, with 132 bacterial species. The mean values for pro-

teins, enzymes, proteins binding to metabolites, and enzymes binding to metabolites are 

2050.39 ± 1066.59, 1361.70 ± 624.64, 637.91 ± 514.63, and 298.70 ± 192.43, respectively. No-

tably, Mycoplasma haemofelis, a member of the phylum Mycoplasmatota, is the smallest or-

ganism in the dataset, with 260 total proteins, 357 enzymes, 47 proteins binding to metab-

olites, and 28 enzymes binding to metabolites. In contrast, Burkholderia multivorans, from 

the phylum Pseudomonadota, represents the largest organism in the dataset, possessing 

8800 total proteins, 2952 total enzymes, and 359 proteins and 100 enzymes that bind to 

metabolites. On the other hand, the Bacteroides thetaiotaomicron, which was shown to be 

most promiscuous bacteria [9], contains 2677 total proteins, 2132 total enzymes, and 1774 

and 718 proteins and enzymes binding to metabolites, respectively. In our final curated 

dataset, there are 30 metabolites consumed and 22 metabolites produced by Bacteroides 

thetaiotaomicron. These values highlight the significant variation in biomolecular content 

across different bacterial species in the dataset. Given that metabolite conversion is an 

enzymatic process, the next step was to gather the EC numbers for all enzymes across the 

microbes in our data. 

 

Figure 4. Scatter line plot showing distribution of protein and enzyme counts per bacterium, as well 

as proteins and enzymes that bind to metabolites. Green squares represent total number of proteins, 

pink pentagons represent enzymes, blue hexagons represent proteins that bind to metabolites, and 

brown diamonds represent enzymes binding to metabolites. Dashed lines indicate third-degree 
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polynomial fit for each category. x-axis represents bacterial index, sorted by total number of proteins 

per bacterium in dataset. 

3.2. Accuracy of Functional Annotation with DeepECTransformer 

The performance of DeepECTransformer was originally reported in terms of F1-

scores, which ranged from 0.699 to 0.947 [38]. Here, we conducted an independent vali-

dation to assess the accuracy of EC number predictions at different hierarchical levels. 

Our validation demonstrated bitwise mean accuracies of 0.811 ± 0.037 for the first digit, 

0.785 ± 0.037 for the first two digits, 0.763 ± 0.036 for the first three digits, and 0.670 ± 0.034 

for all four digits. The distribution of these bitwise accuracies, shown in Figure 5, offers a 

detailed view of the model performance across different EC number positions. Given the 

strong predictive accuracy of DeepECTransformer, we utilized this method to predict EC 

numbers for bacterial sequences obtained from the STRING database [27]. Since the bio-

logical conversion of the molecule involves enzymes, we aimed to test whether encoding 

the EC numbers and SMILES of the metabolites could capture the biological information 

necessary to indicate their consumption or production. When a metabolite is consumed, 

it serves as a substrate for an enzyme; conversely, when produced, it acts as a product of 

the enzymatic reaction. 

 

Figure 5. Violin plot illustrating bitwise accuracy of DeepECTransformer predictions for EC num-

bers on amino acid sequences from 192 bacterial species with experimentally validated EC numbers. 

White dot in center of each violin represents mean prediction accuracy and different colors represent 

accuracies at different bit-levels. 
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3.3. Feasibility of EC Number Encodings and Chemical Embeddings 

To evaluate the feasibility of using EC number encodings from EC2Vec and chemical 

embeddings from Mol2Vec [39] for predicting whether a metabolite binding to an enzyme 

acts as a substrate or product, we compiled a dataset of 154 metabolites and their corre-

sponding enzymes. In this dataset, the metabolites function as reactants, either as sub-

strates or products, according to the BRENDA database [40]. The five-fold cross-validated 

binary classification performance of RF and 3-nearest neighbors (3NN) models for pre-

dicting substrates and products is presented in Table 1.  

Table 1. Performance of binary classifiers predicting reactants (substrates or products) of enzymatic 

reactions in gut bacteria, based on BRENDA enzymatic reactions. The classifiers used are Random 

Forest (RF) and 3-Nearest Neighbors (3NN), with the performance metrics representing the average 

over 5-fold cross-validation. 

Reactant Classifier BAC AUC PPV TPR FPR F1-score MCC 

Substrate 
RF 0.788 0.870 0.794 0.775 0.200 0.785 0.575 

3NN 0.508 0.508 0.508 0.454 0.438 0.479 0.016 

Product 
RF 0.791 0.870 0.799 0.775 0.194 0.787 0.582 

3NN 0.491 0.491 0.489 0.479 0.496 0.484 −0.017 

BAC—the balanced accuracy, AUC—the area under the ROC curve, PPV—the precision, TPR—the 

recall, FPR—the false positive rate, MCC—the Matthews correlation coefficient. 

The RF models demonstrate promising results, achieving balanced accuracies of 

0.788 for substrate prediction and 0.791 for product prediction. These outcomes indicate 

that the embeddings used in these models are effective for predicting metabolite–enzyme 

interactions. In comparison, the performance of the 3NN classifier is significantly lower 

than that of RF. Specifically, 3NN-based predictions for the substrate dataset yielded a 

balanced accuracy of 0.508, while the product dataset prediction shows balanced accuracy 

of 0.491. These results highlight the superior predictive power of the RF-based approaches 

over simple deductions relying on cosine similarity with neighboring datapoints. The 

higher performance of the RF models indicates the effectiveness of enzyme and chemical 

embeddings in predicting metabolite–enzyme interactions. 

After predicting substrates and products with the models above, we examined the 

distribution of proteins and enzymes binding to metabolites, focusing on those that use 

the metabolites as substrates or produce them. Our aim was to determine whether the 

number of proteins and enzymes observed in experimentally verified instances (metabo-

lite–bacteria label) differed significantly from those in randomly selected bacteria from 

either the consumption or production sets. Figure 6 shows that the median values in the 

experimental (consumption) set for the number of proteins binding to metabolites, en-

zymes binding to metabolites, and enzymes utilizing metabolites as substrates were 136, 

98, and 17, respectively (Figure 6A), compared to 100, 76, and 11 in the random set (Figure 

6B). Further, we calculated Mann–Whitney U test p-values comparing experimental and 

random sets for three categories: proteins binding to metabolites, enzymes binding to me-

tabolites, and enzymes using metabolites as substrates. The p-values for these compari-

sons were 2 × 10−4, 4 × 10−4, and 1 × 10−4, respectively, indicating statistically significant 

differences in the number of proteins, enzymes, and enzymes using the metabolite as sub-

strate between the experimental and random sets. 
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Figure 6. Cumulative histograms comparing number of proteins (blue), enzymes (green), and en-

zymes utilizing metabolites as substrates or products (red) in experimental dataset (solid lines) ver-

sus random background sets (dotted lines). (A) Substrates in experimental dataset, (B) substrates in 

random background dataset, (C) products in experimental dataset, and (D) products in random 

background dataset. y-axis is shown on a logarithmic scale, and x-axis represents cumulative in-

stances, indicating total number of instances at specific cumulative counts. 

In contrast to the production set, the cumulative numbers of proteins, enzymes bind-

ing to metabolites, and enzymes utilizing metabolites as products were comparable be-

tween the experimental and random sets. The median values for the experimental (pro-

duction) set were 95 for proteins binding to metabolites, 80 for enzymes binding to me-

tabolites, and 8 for enzymes producing metabolites (Figure 6C), compared to 76, 57, and 

7, respectively, in the random set (Figure 6D). The corresponding p-values between the 

experimental and random sets were 0.24, 0.15, and 0.58, respectively. These findings sug-

gest that while significant differences were observed in the consumption set between the 

experimental and random sets, no such differences were evident in the case of the pro-

duction set. 

3.4. Curation of Negative Set and RF-Based Prediction of Metabolism 

Since all the experimental instances in our dataset were positive examples, we 

needed to create a balanced negative set. To avoid inherent bias in the binary classification 

dataset caused by metabolite–enzyme affinities, we ensured that the distribution of me-

tabolite–enzyme association scores (STITCH scores) was similar in both the positive and 
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negative sets. We used a chi-square test for this purpose, which yielded chi-square scores 

of 0.001 and 0.005 for the consumption and production sets, respectively, with a p-value 

of 1 for both, indicating no significant difference. The mean STITCH scores ± standard 

deviation for the positive and negative instances were, respectively, 389 ± 265 and 371 ± 

261 in the consumption set, and 387 ± 274 and 355 ± 252 in the production set (Supplemen-

tary Figure S1). 

The next step was to determine the minimum number of enzymes needed to train 

ML models for the optimal prediction of metabolite consumption and production in hu-

man gut microbes. We analyzed enzyme groups ranging from 5 to 120, ranked by their 

STITCH scores. If an instance did not have the exact number of required enzymes, we 

supplemented it with encodings from non-enzymes. Figure 7 presents the median bal-

anced accuracy (BAC) achieved by an RF binary classifier trained with varying enzyme 

group sizes as features. Each group represents a different number of top-ranked enzymes 

used to predict metabolite consumption and production in human gut microbes. The BAC 

values illustrate how the choice of enzyme group size impacts classification performance, 

with specific group sizes leading to higher accuracy in capturing the interactions between 

enzymes and metabolites. This analysis helps in identifying the optimal number of en-

zymes needed for accurate predictions. For the consumption set, the classifier achieved its 

highest median BAC of 0.742 when using the top 15 enzymes as features (Figure 7A). In 

contrast, for the production set, the optimal model was selected with the top 10 enzymes 

as features, yielding a median BAC of 0.947 (Figure 7B). This model was chosen because 

it demonstrated similar mean accuracy to the model using the top five enzymes, but pro-

vided a larger feature set, enabling a more detailed examination of how dimensionality 

reduction affects classification performance in gut microbe metabolism. This additional 

feature information supports a more comprehensive analysis of enzyme contributions to 

metabolite production. 

 

Figure 7. Box plots showing the balanced accuracy of random forest binary classification models as 

a function of the number of enzymes used to generate enzyme embeddings as features. (A) The 

consumption dataset and (B) the production dataset. In each box plot, the orange line indicates the 

median accuracy. 
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3.5. Kernel Principal Component Analysis 

To discern the impact of dimensionality reduction on the biologically relevant encod-

ings, we trained RF models using features with reduced dimensions, ranging from 8 to 

2048 for the consumption set. In the consumption prediction, the polynomial kernel 

showed a median accuracy of 0.582 with 32 features (Figure 8A). The cosine, RBF, linear, 

and sigmoid kernels showed median accuracies of 0.575 with 64 features, 0.575 with 256 

features, 0.579 with 64 features, and 0.581 with 128 reduced features, respectively (Sup-

plementary Figure S2). For the production set, the dimensionally reduced features ranged 

from 8 to 1024, and the polynomial kernel showed the best median accuracy of 0.674 with 

32 features (Figure 8B). The cosine, RBF, linear, and sigmoid kernels demonstrated mean 

balanced accuracies of 0.668 with 128 features, 0.672 with 32 features, 0.670 with 32 fea-

tures, and 0.645 with 128 features, respectively (Supplementary Figure S3). These results 

indicate that ML methods, such as RF, can learn biologically relevant information even 

with a reduced number of features. Thus, this points towards their relevance in reducing 

computational cost, with minimal compromise on model performance, in sophisticated 

ML models such as the GNN. 

 

Figure 8. Box plots showing the balanced accuracy of random forest binary classification models 

trained on polynomial kernel-based dimensionally reduced features, with a varying number of fea-

ture subsets (2n). For the consumption dataset, n ranges from 3 to 11, while for the production da-

taset, n ranges from 3 to 10. (A) The consumption dataset and (B) the production dataset. In each 

box plot, the orange line represents the median accuracy. 

3.6. Validation Against Unseen Data 

Following the training of the consumption and production models, we aimed to eval-

uate their efficacy on previously unseen data. Six test instances were selected: miglitol, 

betaine, 4-aminobutyrate, maltitol, D-psicose, and taurochenodeoxycholate. For these six 

unseen cases, the consumption model was able to make five correct predictions, and the 

production model made four correct predictions. A consensus was calculated based on 

the prediction probabilities of these two models, leading to five correct predictions with a 

consensus accuracy of 0.83, which is comparable to previous consumption and production 

models (Table 2).  
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Table 2. Validation results of random forest models for consumption and production predictions 

on unseen data. The models were trained using enzyme embeddings derived from 15 EC numbers 

for the consumption model and 10 EC numbers for the production model. Incorrect predictions are 

shown in italics, while instances where the consumption model could not make a prediction are 

labeled “unspecified”. Values under the “Predicted” columns indicate the probabilities for the neg-

ative and positive classes in the respective models. 

Metabolite Microbe 
Original  

Label 

Predicted Label 

Consumption 

Model 

Production 

Model 
Consensus 

miglitol Gluconobacter oxydans production 
production 

(0.64, 0.36) 

consumption 

(0.87, 0.13) 

consumption 

(0.62, 0.38) 

betaine Bifidobacterium bifidum production 
production 

(0.62, 0.38) 

production 

(0.48, 0.52) 

production 

(0.57, 0.43) 

4-aminobutyrate Bacteroides fragilis production 
production 

(0.62, 0.38) 

production 

(0.08, 0.92) 

production 

(0.77, 0.23) 

maltitol Bacteroides ovatus consumption 
unspecified 

(0.5, 0.5) 

consumption 

(0.80, 0.20) 

consumption 

(0.35, 0.65) 

D-psicose Clostridium carboxidivorans consumption 
consumption 

(0.27, 0.73) 

consumption 

(0.96, 0.04) 

consumption 

(0.16, 0.84) 

taurochenodeoxycholate Lactobacillus acidophilus consumption 
consumption 

(0.06, 0.94) 

production 

(0.26, 0.74) 

consumption 

(0.40, 0.60) 

For betaine, 4-aminobutyrate, and D-psicose, both consumption and production 

models reached a consensus on the production of the consumption of these compounds. 

In the case of maltitol, the models also reached a consensus, despite the consumption 

model being unable to provide a specific prediction. Based on this consensus, the con-

sumption of maltitol by Bacteroides ovatus was correctly identified. Similarly, for tau-

rochenodeoxycholate, although the production model yielded an incorrect prediction, the 

consensus between the two models successfully identified the consumption of tau-

rochenodeoxycholate by Lactobacillus acidophilus. For miglitol, an α-glucosidase inhibitor 

used in the treatment of type 2 diabetes [48], the consumption model correctly predicted 

its production by Gluconobacter oxydans, but the production model failed to make a correct 

prediction. 

To further elucidate our predictions and investigate their molecular basis, we ana-

lyzed enzymes interacting with compounds in our unseen dataset. Miglitol interacted 

with two proteins, α-glucosidase (EC 3.2.1.20) and chromosome partition protein (EC 

2.3.2.27 and EC 3.6.1). These enzymes did not form a protein–protein interaction, which 

may account for the incorrect prediction of miglitol production in G. oxydans in the con-

sensus results. A consensus on the production of betaine by Bifidobacterium bifidum was 

achieved by both the consumption and production model. Betaine is a naturally occurring 

choline derivative that is commonly ingested through the diet [49]. The accuracy of the 

models can be attributed to the EC2Vec embeddings of the enzymes involved in the bio-

chemical pathway of choline to betaine oxidation. For the construction of EC2Vec features, 

we extracted enzymes binding to betaine from the STITCH database. Betaine interacted 

with a total of six enzymes in B. bifidum, five of which were part of the PPI network. These 

enzymes were associated with the oxidation of choline by alcohol dehydrogenase (EC 

1.1.1.1) and aldehyde dehydrogenase (EC 1.2.1.68), leading to the production of betaine 

and other compounds, including methionine, homocysteine, and glycine [50]. 

4-Aminobutyrate (GABA) is an inhibitory neurotransmitter associated with various 

neurological disorders, including ADHD, Alzheimer’s disease, and autism spectrum dis-

order [51–53]. In the case of the production of GABA, we found 113 proteins in Bacteroides 

fragilis that interact with GABA. Among these 113 proteins, we ranked 15 enzymes with 
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the highest metabolite–enzymes association scores according to STITCH. All of these en-

zymes, except Xaa-Pro dipeptidase (amidohydrolase) and ThiJ/PfpI family protein, were 

part of the same PPI network. The enzyme Glutamate decarboxylase was part of the network 

and it was shown to be involved in the production of GABA in B. fragilis [54]. On the other 

hand, maltitol, which is a disaccharide polyol containing D-glucitol with α-D-glucosyl 

residue [55], interacted with 20 proteins in B. ovatus, forming two sub-networks of PPI. B. 

ovatus can utilize maltitol, as well as other sugars like D-arabitol, D-mannitol, and lactitol, 

to support its growth [56]. In addition to these, it can metabolize peptides, monosaccha-

rides, disaccharides, and polysaccharides [57]. To process these complex molecules, the 

bacterium requires the activity of peptidases and hydrolases to break them down effec-

tively. Of the twenty proteins in the network binding to maltitol, six were peptidase, form-

ing one of the subnetworks involved in the metabolism of maltitol. The hydrolase was the 

part of a PPI subnetwork which was linked to enzymes responsible for growth of the or-

ganism, including helicase, DNA primase, and DNA polymerase III [34]. Thus, the correct 

prediction of maltitol by consensus can be attributed to the EC2Vec embeddings gener-

ated using these important proteins and enzymes responsible for the growth of the B. 

ovatus. 

Both the consumption and production models were able predict the consumption of 

D-piscose by Clostridium carboxidivorans. D-psicose is an epimer of fructose at position C3 

which is generally found in commercial carbohydrates and agricultural products [37,58]. 

In the unseen data, D-psicose, also known as D-allulose, binds to seven different enzymes 

in C. carboxidivorans. This includes sugar-phosphate isomerase (EC 5.3.1.6), which is in-

volved in fructose and mannose metabolism, where allulose is converted to allulose-6-

phosphate, later transforming into D-fructose-6-phosphate and participating in the Calvin 

cycle for carbon fixation [59]. Considering the metabolic pathways linking D-allulose to 

D-fructose-6-phosphate, there is a possibility that C. carboxidivorans can consume D-psi-

cose (D-allulose). For taurochenodeoxycholate (TC) consumption by L. acidophilus, the 

compound was found to interact with a total of 27 proteins in this bacterium, as identified 

from interactions extracted from STITCH [34]. Among these, 13 proteins were involved in 

PPIs and drug-protein interactions (DPIs) with taurine and bile acids. The PPI network 

included two choloylglycine hydrolases, also known as bile salt hydrolases (BSH, EC 

3.5.1.24), as well as two alpha/beta hydrolases. Studies have shown that BSHs from L. ac-

idophilus exhibit specificity for deconjugating taurine-conjugated bile acids [60], support-

ing the prediction that L. acidophilus is capable of consuming TC. 

In the validation conducted on the consumption negative dataset, out of a total of 

2275 instances, 1936 instances were predicted as negative, while 339 instances were pre-

dicted as positive. Figure 9 shows that the median probability for the positive (consump-

tion) class was 0.29. Similarly, during the validation of the production model on an unseen 

production negative dataset, 2090 instances were predicted as negative, and 449 instances 

were predicted as positive, out of 2539 instances, with a median positive class probability 

of 0.25. Subsequently, we evaluated the KPCA-based models for both consumption and 

production predictions. The KPCA models yielded median positive class probabilities of 

0.52 and 0.55 for consumption and production, respectively. These relatively high proba-

bilities compared to the full models may be attributed to the lower training accuracies 

observed in the KPCA models within our study. The analysis demonstrates that microbes 

metabolizing compounds possess proteins and enzymes that form a PPI network, which 

is directly involved in the metabolic pathways associated with these compounds within 

the microbial system. This observation supports the rationale for incorporating EC2Vec 

embeddings in the training of ML models, and provides validation for their predictive 

performance on previously unseen data. 
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Figure 9. Violin plots showing the positive class probabilities from full and kernel principal compo-

nent analysis (KPCA) models for consumption and production predictions, validated on unseen 

negative data. The negative data were generated by combining microbes and metabolites from the 

strictly consumption and production sets. The light-gray half-violins represent consumption class 

probabilities from the consumption models (full and KPCA), while the light-yellow half-violins rep-

resent production class probabilities from the production models (full and KPCA). The white dot in 

the middle of the violin represents median probability of prediction. 

4. Discussion 

This study presents a comprehensive data-driven analysis of metabolite–microbe in-

teractions within the human gut microbiome, providing critical insights into the complex 

metabolic processes that underlie the microbiome in the gut. Given the influence of gut 

microbes on host health, including their role in various health-related issues depending 

on host metabolic conditions, this work highlights the importance of curating versatile 

datasets and biological features for developing predictive ML models. Our results clearly 

demonstrate that enzyme and metabolite encodings as training features are effective in 

preserving biological information that is crucial for understanding metabolite–microbe 

interactions in the human gut. The dataset curated from the NJS16 study, comprising 2065 

instances across 312 bacterial species and 154 unique metabolites, provides a robust foun-

dation for exploring the metabolic activities of gut microbes. The taxonomic distribution 

[61] of these species, primarily within Firmicutes and Pseudomonadota, is consistent with 

previous findings that bacteria from these phyla can both be common colonizers of a 

healthy human gut and that are known to be pathogenic [62,63]. For instance, Bacillus ce-

reus, a human pathogen from Firmicutes, has been shown to adhere to mucins and alter 

gut microflora by decreasing populations of proteobacterium, like Escherichia coli and Lacto-

bacillus species [64]. Conversely, Lactobacillus ruminis, an indigenous bacterium of the hu-

man gut belonging to the Lactobacillaceae family, produces lactic acid and helps to maintain 

a healthy intestinal microflora [65]. Additionally, previously published culture-dependent 

investigations of the human gut flora have shown that species such as Bifidobacterium 

breve, B. bifidum, B. adolescentis, B. pseudocatenulatum, and B. animalis are among the most 
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prevalent in the human gut [66–70]. These members of the Bifidobacteriaceae family play a 

significant role in the gut ecosystem, and have applications in pharmaceuticals and func-

tional food products, due to their ability to exclude intestinal pathogens [71–74]. 

Since the human gut microbiome can be affected by the available metabolites in the 

surroundings, the categorization of metabolites becomes extremely important in under-

standing metabolite–microbe interactions. Among the metabolites, the prevalence of car-

bohydrates, carboxylic acid derivatives, and amino acids underlines the central role of 

these compounds in microbial metabolism, particularly as carbon sources and key inter-

mediates in biochemical pathways. Indeed, the role of carbohydrate-rich diets in contrib-

uting to metabolic disorders has been well documented, with these diets also shown to 

influence the composition and function of the human gut microbiome [75]. Another study 

demonstrated the impact of carbohydrate ingestion on gut microbiota composition across 

different taxonomic levels. The findings revealed that soluble fibers increased the abun-

dance of Bacteroides, while insoluble fibers were associated with an increase in Bacteroides 

and Actinobacteria, and a decrease in Firmicutes. Additionally, oligosaccharides were 

linked to an increase in Lactobacillus and a decrease in the Enterococcus population within 

the human gut [76]. These studies further solidify the importance of carbohydrates in 

shaping the human gut microbiome. Carboxylic acids have been known to be used as food 

preservatives, and based on the concentration of the carboxylic acids in the gut, they can 

have inhibitory effects on the bacterial population. A lower concentration of carboxylic 

acids in the gut environment has been shown to reduce the populations of E. coli and Sac-

charomyces cerevisiae, emphasizing the critical role of carboxylic acids and their derivatives 

in maintaining microbial balance [77]. In some cases, the gut bacteria are responsible for 

the production of neurotransmitters. For example, a known neurotransmitter, GABA, is 

produced in the gut by microbes in a higher amount compared to any other human body 

part [78]. This hints towards differences in the mechanisms of consumption and produc-

tion of metabolites and their effects on the human gut microbiota. 

Since enzymes serve as essential biological catalysts, facilitating the consumption and 

production of metabolites by accelerating biochemical reactions [79], it is important to 

study the enzymes found in gut microbes in detail. Given their catalytic role in biological 

systems, we analyzed the abundance of enzymes in both experimental and random sets. 

This approach was designed to elucidate bacteria-specific metabolism, recognizing that 

not all bacterial species possess the same number of enzymes to metabolize a compound, 

consequently capturing metabolite–enzyme interaction differences at the taxon level. For 

example, based on the predictions from the BRENDA substrate model, α-ketoglutarate, 

which was shown to be consumed by Aeromicrobium marinum in [80], contained 88 en-

zymes using it as substrate. On the other hand, C. carboxidivorans, from the random da-

taset, contained only 37 enzymes that use α-ketoglutarate as substrate. In another example 

from the consumption dataset, Porphyromonas asaccharolytica was found to have four en-

zymes that use 2-oxobutyrate as a substrate [81]. In contrast, Mycoplasma mycoides, from 

the random set, contained only one enzyme utilizing 2-oxobutyrate as a substrate. The 

analysis showed the variation in the number of enzymes between the experimental and 

random sets, hinting towards the usefulness of enzyme numbers and metabolite struc-

tures in generating features for binary ML classifiers. 

Binary ML classifiers require both positive and negative data. Thus, to ensure the 

robustness of our predictive models, we generated negative sets for both consumption 

and production, comprising bacterial species and metabolite interactions by removing 

metabolites that were structurally similar to the molecules in the experimental instances. 

This process ensured that there was no overlap of compound categories between negative 

instances and experimental (positive) instances. The negative set simulated a scenario 

where a bacterium lacks the required enzymes to metabolize certain compounds. The high 
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performance of the RF models for both consumption and production instances under-

scored the effectiveness of the theoretical negative set. Further, the dimensionality reduc-

tion analysis using KPCA revealed that RF models could retain biologically relevant in-

formation, even with a reduced number of features. These findings suggest that dimen-

sionality reduction is a valuable tool for optimizing features, reducing computational 

costs, and preserving biological information, in order to enable the creation of effective 

machine learning models. 

The validation of RF models on the first unseen dataset resulted in five out of six 

predictions being correctly identified. This high predictive performance can be attributed 

to the carefully curated input features used in the models. For the second unseen dataset, 

the results for both consumption and production were as expected. This dataset was gen-

erated by cross-combining metabolites and microbes from opposing strictly consumption 

and production datasets. It is likely that not every microbe in the new negative validation 

sets possesses the relevant enzymatic pathways required to consume or produce the given 

metabolites. For example, α-ketobutyrate was predicted as negative for production in Lis-

teria monocytogenes by the production model. The prediction can be attributed to the lack 

of α-ketoglutarate dehydrogenase in the microbe, which leads to incomplete tricarboxylic 

acid cycle in the microbe [82]. L. monocytogenes was predicted to be negative for bicar-

bonate production. This could be because L. monocytogenes consumes bicarbonate to neu-

tralize acidic environments, enhancing its survivability and enabling it to grow across a 

wide pH range of 4.1 to 9.6 [83]. 

Literature and database analyses of all the unseen sets revealed that proteins inter-

acting with metabolites in microbes are frequently part of PPI and DPI networks. Among 

these interacting proteins, enzymes play a pivotal role in metabolic pathways, often cata-

lyzing key biochemical reactions that drive microbial metabolism. For instance, the accu-

rate predictions for metabolites such as taurochenodeoxycholate and 4-aminobutyrate 

highlight the involvement of bile acid deconjugation and amino acid catabolism path-

ways, respectively. These pathways are critical for host–microbiome interactions, influ-

encing processes such as bile acid recycling and neurotransmitter regulation. The strong 

performance of the models also emphasizes the relevance of enzyme embeddings, which 

integrate enzymatic function and substrate specificity into the predictive framework. By 

capturing biologically meaningful information, these embeddings likely reflect the func-

tional importance of enzymes in mediating metabolic reactions. Additionally, the predic-

tions align with known metabolic mechanisms, such as sugar fermentation pathways for 

metabolites like D-psicose and maltitol, further supporting the robustness of the model 

design. These findings underscore the ability of our machine learning framework to high-

light biologically relevant pathways, providing new insights into gut microbial metabo-

lism. Moreover, the effectiveness of the negative set curation strategy strengthens the 

model’s capacity to predict interactions that align with established biological knowledge, 

paving the way for novel discoveries in gut microbiome research. 

5. Conclusions 

This study demonstrated the power of combining data-driven approaches with ML 

techniques to unravel the complexities of the human gut microbiome. By creating a nega-

tive dataset and representing metabolite–microbe interactions with enzymatic and chem-

ical embeddings, we were able to establish a framework for future research aimed at ac-

curately predicting the metabolism of compounds by the human gut microbiome. The 

negative dataset generation strategy can pave the way for the development of novel ML 

models for therapeutics targeting the gut microbiota, with potential applications in the 

management of metabolic disorders and other dysbiosis-related conditions. 
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Supplementary Materials: The following supporting information can be downloaded at 

https://www.mdpi.com/article/10.3390/nu17030469/s1. Figure S1: Comparison of the distribution of 

metabolite–enzyme association scores (STITCH scores) between positive and negative sets in the 

(A) consumption and (B) production datasets. The blue histograms and density lines represent the 

positive sets, while the orange histograms and density lines represent the negative sets. The vertical 

dotted lines indicate the mean STITCH scores for the positive sets (blue) and negative sets (orange); 

Figure S2: Box plots showing the balanced accuracy of random forest binary classification models 

trained on kernel principal component analysis (KPCA)-reduced features for the consumption da-

taset, with varying numbers of feature subsets (2n) for different kernel types. (A) Cosine kernel, (B) 

radial basis function (RBF) kernel, (C) linear kernel, and (D) sigmoid kernel. The value of n varies 

between 3 and 11 for all kernels except the sigmoid kernel, where n ranges from 3 to 9, due to major 

eigenvectors becoming negative beyond the 9th component in the consumption dataset. In each box 

plot, the orange line represents the median balanced accuracy for the random forest model trained 

with each kernel; Figure S3: Box plots showing the balanced accuracy of random forest binary clas-

sification models trained on kernel principal component analysis (KPCA)-reduced features for the 

production dataset, with varying numbers of feature subsets (2n) for different kernel types. (A) Co-

sine kernel, (B) radial basis function (RBF) kernel, (C) linear kernel, and (D) sigmoid kernel. The 

value of n varies between 3 and 10 for all kernels except the sigmoid kernel, where n ranges from 3 

to 8 due to major eigenvectors becoming negative beyond the 8th component in the consumption 

dataset. In each box plot, the orange line represents the median balanced accuracy for the random 

forest model trained with each kernel. 
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