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Abstract: Background/Objectives: Existing resting energy expenditure (REE) predictive
equations, including Mifflin-St Jeor and Harris–Benedict, show limited accuracy, particu-
larly in patients with a BMI over 35, often leading to overestimation or underestimation
of REE. This study aimed to develop a new predictive equation specifically designed to
identify normometabolic status in patients with obesity, enabling more precise qualitative
assessments of basal metabolism through indirect calorimetry. Methods: A cohort of
89 hospitalized patients with obesity (BMI > 30) underwent REE measurement and com-
prehensive anthropometric assessments. Patients were classified as normometabolic if their
REE was within ±10% of the Mifflin-St Jeor prediction or if their fat-free mass-specific
REE fell between 23 and 30 kcal/kg. Results: The newly developed equation demon-
strated high predictive accuracy (R2 = 0.923, root mean square error = 81.872 kcal/day),
with a mean bias of −0.054 kcal/day and narrower limits of agreement (−156.834 to
156.725 kcal/day) compared to widely used models. Conclusions: These advancements
could enhance follow-up and management of diet therapy in patients with obesity, allowing
for a more tailored approach to their metabolic health over time.

Keywords: obesity; normometabolic status; resting energy expenditure; predictive
equation; diet therapy

1. Introduction
Obesity is a multifactorial condition resulting from a sustained positive energy balance,

where caloric intake exceeds expenditure [1]. This condition is associated with an elevated
risk of metabolic and cardiovascular disorders, type 2 diabetes, and certain cancers, rep-
resenting a major challenge for global healthcare systems [2]. The accurate assessment of
resting energy expenditure (REE), a critical component of energy balance, is essential for
tailoring dietary interventions and optimizing clinical management in obese individuals.

Predictive equations, such as Mifflin-St Jeor and Harris–Benedict, are widely used to
estimate REE but frequently lack precision, particularly in patients with a BMI exceeding
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40 kg/m2. Errors in REE estimation can exceed 250–315 kcal/day in this population,
rendering these equations less reliable in clinical practice [3,4]. Indirect calorimetry remains
the gold standard for REE measurement, but its cost and logistical demands often limit its
application in routine clinical settings [5]. These limitations are further exacerbated by the
lack of a standardized definition for normometabolic status in obesity, which complicates
metabolic evaluations and the interpretation of REE values.

The primary determinant of REE is fat-free mass (FFM), a metabolically active com-
partment comprising skeletal muscle and organs such as the liver and brain. Based on
predictive equations and allometric models, the specific metabolic rate (KiK_iKi) of FFM is
generally estimated at 23–24 kcal/kg/day [6,7]. However, under conditions of metabolic
stress, such as sepsis, the KiK_iKi of FFM can rise significantly to 30–35 kcal/kg/day due
to increased systemic inflammation and catabolic activity [8]. In contrast, fat mass (FM)
exhibits a relatively constant metabolic rate of approximately 4–5 kcal/kg, irrespective of
physiological or pathological states [6]. This disparity underscores the predominant role of
FFM in driving interindividual variability in REE.

Despite these insights, significant challenges remain. Current predictive models and
allometric equations fail to capture the complex interplay between body composition
and metabolic rate, making it difficult to define normometabolism in obese individuals.
Additionally, no consensus exists regarding the KiK_iKi value of FFM specific to obese pop-
ulations. While data suggest that this value should range between 23 and 30 kcal/kg/day,
variability across studies highlights the need for more precise and standardized method-
ologies to assess metabolic status in obesity [6,8].

To address the limitations of existing predictive equations, we developed a math-
ematical model based on a linear regression equation specifically designed to predict
normometabolic status in patients with obesity. The primary objective of this study is to
provide a novel tool for assessing whether a patient’s metabolic rate is normal, slowed,
or accelerated relative to their body composition, a critical aspect currently overlooked
by existing models. This model aims to complement indirect calorimetry by offering a
practical and reliable method for evaluating metabolic health. By integrating this equation
into clinical practice, we intend to support more precise dietary adaptations, enhance the
phenotyping of obese individuals, and improve the long-term management of obesity
through tailored interventions.

2. Materials and Methods
2.1. Study Design and Participant Selection

This cross-sectional observational study included 89 patients with obesity
(BMI > 30 kg/m2), recruited from the inpatient units of the Santa Margherita Institute,
Pavia, Italy, between January 2016 and January 2024.

Inclusion criteria required participants to be normometabolic obese individuals, de-
fined by two primary conditions.

Eligible participants were classified as normometabolic based on the following inclu-
sion criteria:

• Resting Energy Expenditure (REE) ≥ 90% and ≤110% of the value predicted by the
Mifflin-St Jeor equation.

• Fat-free mass-specific REE (FFM Ki) between 23 and 30 kcal/kg, calculated using
calorimetry and dual-energy X-ray absorptiometry (DXA).

Patients with conditions known to affect metabolism, such as uncontrolled thyroid
disorders or recent weight-loss interventions, were excluded.
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2.2. Anthropometric, Body Composition Measurements, and Indirect Calorimetric Data

Anthropometric data included the following: body weight (kg), height (m), waist
and hip circumferences (cm), and arm and calf circumferences (cm). Measurements were
performed using calibrated electronic scales and stadiometers.

Body composition was assessed using the Lunar Prodigy DXA system with Prodigy
software (GE Healthcare encore V17), providing precise estimates of fat mass (FM), fat-
free mass (FFM), and visceral adipose tissue (VAT). Adherence to standardized protocols
ensured accuracy and repeatability.

REE was measured using the COSMED Q-NRG calorimeter in canopy mode. Testing
was conducted in the morning after a 12 h fasting period and a 30 min resting phase in a
thermoneutral environment. Measurement criteria included the following:

• A minimum of 5 min of steady-state data,
• Coefficients of variation for VO2 and VCO2 < 4%,
• Maintenance of steady-state conditions for at least 3 consecutive minutes.

REE calculations employed the Weir equation, using oxygen consumption (VO2) and
carbon dioxide production (VCO2) values [5].

2.3. Statistical Analysis

All statistical analyses were performed using JASP software (0.19.3.0 version) De-
scriptive statistics summarized baseline characteristics, providing means and standard
deviations for continuous variables. The following analytical approaches were employed:

2.3.1. Correlation and Residual Analysis

Correlations between anthropometric variables and metabolic parameters were an-
alyzed using Pearson’s correlation coefficient to evaluate the strength and direction of
linear relationships among continuous variables. Specifically, correlations were examined
between weight, height, age, gender, and body circumferences (waist, hip, arm, and calf)
and REE measured via indirect calorimetry. Significant correlations (p < 0.05) were further
explored to assess their relevance in predicting REE. Residuals from the regression model
were examined for normality using the Shapiro–Wilk test and graphically assessed via
histograms and Q-Q plots. Homoscedasticity was verified by plotting residuals against
predicted values to ensure uniform variance.

2.3.2. Regression Analysis

To construct a predictive model for REE, multiple linear regression analysis was
employed. Anthropometric variables such as weight, height, age, gender, and body circum-
ferences were used as independent variables. The model was developed using a stepwise
procedure, which progressively included the most statistically significant variables to en-
hance predictive capability. Variable selection was based on minimizing the standard error
and maximizing the coefficient of determination (R2).

2.3.3. Bland–Altman Analysis

This method assessed agreement between measured REE (via indirect calorimetry)
and predicted values from the established equations. Agreement between measured and
predicted REE was assessed for the developed equation and the following predictive
equation: Mifflin-St Jeor, Harris–Benedict, Bernstein, Henry, Ravussin, Cunningham, Owen.
Mean bias (mean difference) and 95% limits of agreement provided insights into the
systematic error and variability of each predictive equation.
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2.3.4. Paired t-Tests

Paired sample t-tests compared the mean differences (bias) between the REE predicted
by each equation and the measured REE. The t-test results provided insights into systematic
overestimation or underestimation by each model. Differences were considered statistically
significant at p < 0.05.

2.4. Ethical Considerations

This study was conducted in accordance with the Declaration of Helsinki and ap-
proved by the Ethics Committee of the University of Pavia (Approval Code: 6723/22052019).
All participants provided written informed consent prior to enrollment.

3. Results
3.1. Baseline Characteristics of the Sample

The selected sample included 89 normometabolic patients with obesity, of which
69.6% were female (n = 62) and 30.4% were male (n = 27). All patients presented with a
BMI > 30, confirming their classification as obese based on the criteria set by the World
Health Organization (WHO, 2020). The patients’ anthropometric measurements and body
composition data are summarized in Table 1.

Table 1. General characteristics of the sample.

Characteristic Mean ± SD Median (Range)

Total sample
Age (years) 61.7 ± 11.8 63.0 (24.0–80.0)
Weight (kg) 104.3 ± 17.9 103.6 (69.8–151.5)
Height (m) 1.60 ± 0.10 1.58 (1.41–1.80)

BMI (kg/m2) 40.85 ± 6.48 40.30 (29.61–58.40)
Waist circumference (cm) 123.9 ± 13.1 123.0 (94.0–160.0)
Hip circumference (cm) 125.7 ± 12.9 125.5 (101.5–155.0)

FFM (kg) 51.2 ± 9.6 48.7 (35.9–76.3)
FM (kg) 49.2 ± 11.3 48.7 (28.1–72.4)

Male
Age (years) 61.4 ± 14.6 62.0 (22.0–83.0)
Weight (kg) 114.1 ± 18.8 117.7 (81.2–151.5)
Height (m) 1.69 ± 0.07 1.70 (1.53–1.80)

BMI (kg/m2) 39.7 ± 5.5 40.5 (29.6–50.5)
Waist circumference (cm) 129.9 ± 12.6 131.0 (105.0–160.0)
Hip circumference (cm) 119.2 ± 11.5 119.0 (101.5–141.0)

FFM (kg) 62.0 ± 7.8 63.2 (47.7–76.3)
FM (kg) 47.2 ± 12.6 48.7 (28.1–72.4)

Female
Age (years) 64.1 ± 10.9 66.0 (31.0–80.0)
Weight (kg) 99.9 ± 15.8 97.0 (69.8–144.0)
Height (m) 1.56 ± 0.08 1.56 (1.41–1.79)

BMI (kg/m2) 41.4 ± 6.9 40.1 (31.1–58.4)
Waist circumference (cm) 121.1 ± 12.5 120.3 (94.0–150.0)
Hip circumference (cm) 128.5 ± 12.6 128.0 (108.5–155.0)

FFM (kg) 46.3 ± 5.3 46.3 (35.9–60.9)
FM (kg) 50.1 ± 10.7 47.2 (32.5–72.2)

3.2. Normality Analysis and Pearson Correlation

The normality of the sample was assessed using the Shapiro–Wilk test (Table 2), a
graphical analysis of residuals versus predicted values (Figure 1A), and a Q-Q plot of
standardized residuals (Figure 1B).
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Table 2. Shapiro–Wilk Test Results.

Variable Shapiro–Wilk Statistic p-Value

RMR Calorimetry
(kcal/day) 0.948 0.001

Height (m) 0.967 0.022
Weight Kg 0.981 0.224

Arm cm 0.966 0.029
Calf cm 0.953 0.005

Waist cm 0.992 0.901
Hips (cm) 0.977 0.214
FFM (g) 0.937 <0.001
FM (g) 0.972 0.054
VAT (g) 0.939 0.002

BMI 0.967 0.023
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The Shapiro–Wilk test results (Table 2) revealed significant deviations from normality
for multiple variables, with RMR Calorimetry T0 showing a statistic of 0.948 (p = 0.001)
and FFM T0 presenting a more pronounced departure with a statistic of 0.937 (p < 0.001).
Other variables, such as Height and Waist Circumference, showed borderline significance
(p = 0.022 and p = 0.901, respectively), suggesting varying degrees of normality across the
dataset. These results indicate that the assumption of normality is not fully met for key
predictors and outcome variables.

The Q-Q plot of standardized residuals (Figure 1B) provides additional visual confir-
mation, where slight deviations from the expected diagonal line are observed, particularly
in the tails. This indicates the presence of outliers or a non-normal distribution of residuals.
The residuals vs. predicted values plot (Figure 1A) further highlights potential issues,
displaying a non-random pattern of residuals, which may reflect heteroscedasticity or
systematic bias in the model predictions.

These deviations from normality likely stem from specific characteristics of the sample.
The relatively small sample size may limit the robustness of the statistical analyses, while
the uneven demographic distribution introduces additional challenges. In particular, the
cohort contains a disproportionate number of older individuals, predominantly female
participants, and individuals with higher BMI values (notably in the 35–40 kg/m2 and
40–45 kg/m2 ranges), compared to those in the 30–35 kg/m2 range. These factors contribute
to the skewed distribution of variables and residuals, affecting the normality assumptions
of the regression model.

Despite this non-normality in certain critical variables, the regression model remains
theoretically robust. The graphical analysis of residuals further supports the adequacy of
the model by demonstrating a random distribution of residuals without systematic patterns.
However, the lack of normality in these key variables has likely reduced the predictive
accuracy of the model, underscoring the importance of larger and more diverse samples in
future validations to enhance reliability and generalizability.

The analysis of Pearson’s correlations revealed a strong positive relationship between
REE and FFM (r = 0.928; p < 0.001), confirming that FFM is the primary determinant of
REE due to its high metabolic activity. REE also showed a moderate correlation with FM
(r = 0.443; p < 0.001), indicating a smaller but measurable contribution of fat tissue to energy
expenditure. A similar moderate positive correlation was observed between REE and
waist circumference (r = 0.662; p < 0.001), highlighting the metabolic impact of visceral
fat. Conversely, a moderate negative correlation was identified between REE and age
(r = −0.404; p < 0.001), reflecting the decline in energy expenditure with aging, likely due
to sarcopenia and reduced metabolic activity. Lastly, sex was significantly correlated with
REE (r = 0.707; p < 0.001), with men exhibiting higher REE values, attributed to their greater
FFM and hormonal differences. These findings underline the multifactorial determinants
of REE in obese individuals. Full correlation data are detailed in Table 3.

Table 3. Pearson correlation analysis of variables collected in patients with obesity.

Variable RMR Calorimetry
T0 (kcal/day) FM T0 (g) FFM T0

(g) Entry Hips Waist T0 Age
(Years) Gender

1. REE
(kcal/day) Pearson’s r — 0.441 *** 0.924 *** 0.081 0.661 *** −0.375

***
p-value — <0.001 <0.001 0.506 <0.001 <0.001

Spearman’s rho — 0.466 *** 0.898 *** 0.137 0.659 *** −0.368
***

p-value — <0.001 <0.001 0.258 <0.001 <0.001
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Table 3. Cont.

Variable RMR Calorimetry
T0 (kcal/day) FM T0 (g) FFM T0

(g) Entry Hips Waist T0 Age
(Years) Gender

2. FM (g) Pearson’s r 0.441 *** — 0.238 * 0.820 *** 0.734 *** −0.105
p-value <0.001 — 0.024 <0.001 <0.001 0.329

Spearman’s rho 0.466 *** — 0.306 ** 0.808 *** 0.748 *** −0.146
p-value <0.001 — 0.004 <0.001 <0.001 0.172

3. FFM (g) Pearson’s r 0.924 *** 0.238 * — −0.047 0.550 *** −0.388
***

p-value <0.001 0.024 — 0.697 <0.001 <0.001

Spearman’s rho 0.898 *** 0.306 ** — −7.352 × 10−4 0.585 *** −0.369
***

p-value <0.001 0.004 — 0.995 <0.001 <0.001
4. Hip (cm) Pearson’s r 0.081 0.820 *** −0.047 — 0.632 *** 0.101

p-value 0.506 <0.001 0.697 — <0.001 0.404
Spearman’s rho 0.137 0.808 *** −7.352 × 10−4 — 0.607 *** 0.048

p-value 0.258 <0.001 0.995 — <0.001 0.673
5. Waist (cm) Pearson’s r 0.661 *** 0.734 *** 0.550 *** 0.632 *** — −0.023

p-value <0.001 <0.001 <0.001 <0.001 — 0.826
Spearman’s rho 0.659 *** 0.748 *** 0.585 *** 0.607 *** — −0.038

p-value <0.001 <0.001 <0.001 <0.001 — 0.712
6. Age
(years) Pearson’s r −0.375 *** −0.105 −0.388 *** 0.101 −0.023 —

p-value <0.001 0.329 <0.001 0.404 0.826 —
Spearman’s rho −0.368 *** −0.146 −0.369 *** 0.082 −0.038 —

p-value <0.001 0.172 <0.001 0.501 0.712 —
7. Gender Pearson’s r 0.704 *** −0.120 0.766 *** −0.332 ** 0.314 ** −0.105

p-value <0.001 0.265 <0.001 0.005 0.003 0.327
Spearman’s rho 0.663 *** −0.110 0.720 *** −0.325 ** 0.300 ** −0.074

p-value <0.001 0.304 <0.001 0.006 0.005 0.488

REE: resting energy expenditure (kcal/day); FM: fat mass (g); FFM: fat-free mass (g). Correlation significance
levels: * p < 0.05, ** p < 0.01, *** p < 0.001.

3.3. Regression Model Development

A stepwise linear regression identified weight, sex, height, and age as significant
predictors of REE, as shown in Table 4. The final regression model (M4) identified weight,
sex, height, and age as the most significant predictors of resting energy expenditure (REE)
in normometabolic patients with obesity. This model demonstrated a high explanatory
capacity, with an R2 of 0.923, indicating that 92.3% of the variability in REE could be
accounted for by these variables. Among the predictors, weight emerged as the most
influential, while the inclusion of age further enhanced the model’s accuracy, reflecting
the metabolic impact of aging. The root mean square error (RMSE) of 81.872 kcal/day
underscores the precision of this model in predicting REE.

Equation elaborated from Model (M4)

RMR predicted (kcal/day) = −* + (*×Weight(Kg)) + (*×1 for men or ×0 for women) + (*×Height (m)) − (*×Age (years))

Table 4. Linear Regression Model Performance.

Model Predictors Included R2 Adjusted
R2 RMSE Sum of

Squares df Mean Square F p

M1 Weight (Kg) 0.704 0.701 157.922 5.168 × 106 1 5.168 × 106 207.226 <0.001
M2 Weight (Kg), Gender 0.884 0.882 99.279 6.490 × 106 2 3.245 × 106 329.243 <0.001

M3
Weight (Kg), Gender,

Height (m) 0.918 0.915 84.218 6.735 × 106 3 2.245 × 106 316.519 <0.001
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Table 4. Cont.

Model Predictors Included R2 Adjusted
R2 RMSE Sum of

Squares df Mean Square F p

M4
Weight (Kg), Gender,

Height (m), Age (years) 0.923 0.920 81.872 6.775 × 106 4 1.694 × 106 252.678 <0.001

Coefficients for Model (M4).

Predictor t p

(Intercept) −1.332 0.187
Weight (Kg) 16.292 <0.001

Gender 8.651 <0.001
Height (m) 4.780 <0.001
Age (years) −2.438 0.017

R2: coefficient of determination, Adjusted R2: adjusted coefficient of determination, RMSE: root mean square error,
Predictors Included: variables included in the model, Sum of Squares: total variance explained by the model,
df : degrees of freedom, Mean Square: average variance per predictor, F: F-statistic, p: p-value for significance,
t: t-statistic, p: p-value for hypothesis testing.

3.4. Bland–Altman Analysis and Paired t-Tests

Bland–Altman Analysis: The predictive accuracy of the newly developed equation
was compared against existing models for estimating resting energy expenditure (REE)
using Bland–Altman analysis (Figure 2 and Table 5). The new equation demonstrated a
mean bias of −0.054 kcal/day with relatively narrow limits of agreement (−156.834 to
156.725 kcal/day), indicating consistent performance across the sample. In contrast, other
commonly used equations, such as Mifflin-St Jeor, Harris–Benedict, and Bernstein, exhibited
wider limits of agreement (LOA) and significant biases. For instance, the Mifflin-St Jeor
equation displayed a mean bias of −8.452 kcal/day, but with a broader LOA (−187.390 to
170.486 kcal/day). The Bernstein equation showed notable overestimation, with a mean
bias of +191.846 kcal/day and an extremely wide LOA (−64.022 to 447.714 kcal/day).

Table 5. Bland–Altman Analysis of Predictive Equations.

Equation Mean Bias (kcal/day) 95% Limits of Agreement
(kcal/day)

Equation from M4 model −0.054 −156.834 to 156.725
Mifflin-St Jeor −8.452 −187.390 to 170.486

Bernstein +191.846 −64.022 to 447.714
Harris–Benedict −98.838 −320.722 to 123.046

Henry −74.547 −241.460 to 92.366
Ravussin +33.705 −225.842 to 293.253

Cunningham −17.942 −260.408 to 224.523
Owen −69.786 −296.256 to 156.684

The Harris–Benedict equation demonstrated a systematic underestimation, with a
mean bias of −98.838 kcal/day and LOA ranging from −320.722 to 123.046 kcal/day. Other
equations, such as those by Henry and Owen, also displayed systematic underestimations,
while the equations by Ravussin and Cunningham performed moderately better. These
latter models showed biases of +33.705 kcal/day and −17.942 kcal/day, respectively,
though both exhibited greater variability compared to the newly developed model.
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The Bland–Altman plots (Figure 2) visually depict these findings, highlighting the
tighter agreement and reduced variability of the new equation compared to other models.

Paired t-tests: Paired t-tests were conducted to evaluate differences in bias between
the new equation and established predictive equations (Table 6). The analysis revealed
that the new equation outperforms others in terms of precision and consistency, with the
smallest mean bias (−0.054 kcal/day) and the narrowest limits of agreement (−156.834 to
156.725 kcal/day). These findings underscore the superior accuracy of the new equation
compared to the widely used Mifflin-St Jeor equation, which exhibited a slightly higher bias
(−8.452 kcal/day) and broader limits of agreement (−187.390 to 170.486 kcal/day). The
bias difference between the new equation and Mifflin-St Jeor was not statistically significant
(p = 0.075), further highlighting the robustness of the new equation. Its narrower limits of
agreement indicate greater precision in predicting REE across the cohort, making it a more
reliable tool in clinical applications where reducing variability is crucial, such as metabolic
monitoring during weight-loss interventions.

Table 6. Paired t-tests Comparing Predictive Models.

Equation p-Value (Bias vs. Measured REE)

Mifflin-St Jeor 0.414
Bernstein <0.001

Harris–Benedict <0.001
Henry <0.001

Ravussin 0.008
Cunningham 0.161

Owen <0.001

In contrast, other predictive equations showed significant limitations. The Bern-
stein equation presented a substantial overestimation bias (+191.846 kcal/day; p < 0.001)
with the broadest limits of agreement, while the Harris–Benedict equation significantly
underestimated REE (−98.838 kcal/day; p < 0.001). Similarly, the Henry and Owen
equations demonstrated notable underestimations, with biases of −74.547 kcal/day and
−69.786 kcal/day, respectively (p < 0.001 for both). Although the Cunningham equation ex-
hibited a relatively smaller bias (−17.942 kcal/day), its wider variability limits its precision
in clinical settings.

Overall, the new equation stands out as the most precise and consistent model, with
the lowest mean bias and the narrowest limits of agreement among all equations analyzed,
reaffirming its superiority as a predictive tool for REE estimation in patients with obesity.

4. Discussion
4.1. Accuracy and Clinical Relevance of the New Equation

The newly developed equation exhibited robust predictive accuracy for estimating
REE in normometabolic obese individuals, as demonstrated by its low mean bias and
narrow limits of agreement when compared to REE measured via indirect calorimetry.
These findings suggest that the model performs with reduced variability relative to existing
predictive equations, which are commonly used in clinical practice.

The comparative analysis revealed that the new equation outperformed traditional pre-
dictive models in terms of accuracy and risk of bias within the sample. For instance, while
the Mifflin-St Jeor equation performed relatively well, its broader limits of agreement and
increased variability indicate less precision compared to the new model. Additionally, the
Mifflin-St Jeor equation exhibited a slightly lower mean bias than the new model; however,
this difference was not statistically significant, likely due to the limited sample size. Other
predictive equations, such as Bernstein, Harris–Benedict, and Owen, demonstrated higher
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mean biases and wider limits of agreement, further highlighting the superior performance
of the new equation in this cohort.

Overall, the new equation demonstrated the best alignment with measured REE values
in the sample, providing both improved accuracy and reduced bias compared to existing
models. This characteristic underscores its potential utility as a reliable tool in clinical
practice, particularly in scenarios where direct calorimetry is not feasible.

4.2. Practical Implications and Applications

The primary advantage of the newly developed equation lies in its ability to evaluate
the normometabolic status of patients with obesity. Unlike traditional predictive models,
which focus solely on estimating REE, this equation offers a framework for determining
whether a patient’s metabolism is normal, slowed, or accelerated relative to their body
composition. This unique capability provides a critical tool for phenotyping obese indi-
viduals and adds significant value to the metabolic assessment of this population. By
assessing normometabolic status, the equation facilitates a more nuanced understanding of
metabolic variability among patients with obesity. This is particularly relevant for identify-
ing subclinical chronic inflammation or the impact of comorbidities, such as diabetes, on
metabolic function. Such insights are crucial for tailoring interventions and understanding
the broader clinical implications of metabolic health in obesity.

The ability to evaluate normometabolic status has important practical implications in
both clinical and research contexts. Clinically, this evaluation can support the design of
personalized dietary interventions. For instance, if a patient’s metabolism is classified as
slowed relative to their normometabolic status, adjustments to caloric intake or macronu-
trient composition—such as increasing dietary protein—could be considered to mitigate
potential muscle loss and support metabolic health. Moreover, monitoring changes in nor-
mometabolic status during long-term interventions can provide valuable feedback on the
effectiveness of dietary strategies. For example, a decline in normometabolic status during
a very-low-calorie ketogenic diet (VLCKD) might indicate the need for temporary caloric
increases (reverse dieting) to prevent metabolic adaptation and optimize outcomes [9].

From a research perspective, the equation opens new avenues for investigating how
specific comorbidities influence the metabolic quality of patients with obesity. This is a
relatively unexplored area that could provide critical insights into the interplay between
obesity, inflammation, and systemic metabolic dysregulation. By enabling a standard-
ized assessment of normometabolic status, the equation could facilitate studies aimed at
understanding the qualitative effects of chronic conditions on energy expenditure.

4.3. Limitations of the Proposed Equation and Future Direction

Despite its promising performance, the new equation has several limitations. First, the
relatively small sample size may restrict the generalizability of the findings, highlighting
the need for validation in larger and more diverse populations to confirm their broader
applicability. A second limitation lies in the demographic composition of the sample,
which included a predominance of female participants (66.7%). This imbalance might affect
the equation’s performance in predominantly male populations, as metabolic differences
between genders, although partially accounted for by including sex as a variable, may
not be fully addressed. The age distribution of the sample, with a mean age of 61 years,
raises additional concerns. Younger individuals, who often exhibit different metabolic
rates and body compositions, were underrepresented. This limits the equation’s utility
in populations with a wider age range. Moreover, some variables did not follow normal
distributions, as evidenced by the Shapiro–Wilk test. Although residual analysis suggested
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that the regression model was appropriate, deviations from normality could affect the
reliability of predictions, particularly at the extremes of the dataset.

To address these limitations, further studies are essential, involving larger and more
diverse cohorts that better reflect the variability in demographic and clinical profiles. Such
research would not only refine the equation but also validate its utility across broader pop-
ulations. Future efforts should prioritize expanding cohort diversity by including younger
individuals, patients with significant metabolic disorders, and a more balanced represen-
tation of genders. This would improve the generalizability of the equation and ensure its
applicability to a wider range of clinical scenarios. Additionally, longitudinal studies are
needed to evaluate the equation’s performance over time, particularly in dynamic contexts
such as weight-loss programs or metabolic interventions. This approach would establish
its reliability and effectiveness in monitoring metabolic changes and guiding long-term
therapeutic strategies.

These steps would not only solidify the equation’s role in clinical practice but also
expand its relevance in cutting-edge metabolic research.

5. Conclusions
The newly developed equation for predicting REE in normometabolic patients with

obesity demonstrated superior accuracy and reliability compared to traditional models,
including Mifflin-St Jeor and Bernstein. With reduced bias and narrower limits of agree-
ment, the new equation emerged as the most precise tool for estimating REE in this specific
population. These characteristics make it particularly valuable for clinical scenarios where
indirect calorimetry is unavailable, supporting personalized dietary and therapeutic strate-
gies essential for effective obesity management.

However, the equation has some limitations that require consideration. The relatively
small sample size (n = 89) may limit the generalizability of the findings, necessitating
validation in larger and more diverse cohorts. Additionally, the demographic imbalance,
with a predominance of older and female participants, restricts its applicability to younger
or predominantly male populations, where metabolic rates and body composition differ
significantly. Furthermore, deviations from normality in some variables might reduce
predictive reliability, particularly at dataset extremes.

Future research should focus on several key areas to strengthen the applicability and
impact of the proposed equation. Firstly, studies involving larger and more demographi-
cally diverse cohorts are essential to confirm the generalizability of the findings. Specifi-
cally, including younger individuals, males, and patients with varied metabolic conditions
will provide a more comprehensive understanding of the equation’s robustness across
different populations.

Secondly, longitudinal investigations are needed to assess how the equation performs
over time, particularly in dynamic clinical contexts such as weight-loss programs, metabolic
rehabilitation, and the management of chronic conditions like type 2 diabetes. Such studies
will clarify the utility of the equation in monitoring metabolic adaptations and guiding
long-term therapeutic strategies.

Finally, integrating the equation into interventional studies could provide valuable in-
sights into its practical utility in personalizing dietary interventions and improving clinical
outcomes. For instance, evaluating how the equation informs caloric and macronutrient
adjustments during very low-calorie diets or ketogenic interventions could further demon-
strate its relevance in routine clinical practice. These efforts will refine the equation’s utility
and ensure its applicability across a broader spectrum of clinical scenarios, ultimately
advancing metabolic assessment and personalized care for patients with obesity.
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