Alternative Dietary Fiber Sources in Companion Animal Nutrition
Abstract
:1. Introduction
2. Traditional Fiber Sources Used in Companion Animal Nutrition
Item | Beet Pulp | Microcrystalline Cellulose |
---|---|---|
Dry matter, % | 87.6–92.3 [8,9,12,13,14,15,16] | 93.0–96.6 [8,9,12,14,16,17] |
Organic matter, % | 90.4–95.4 [8,9,11,12,13,14,15,16] | 99.4–100 [8,9,12,14,16,17] |
Crude protein, % | 7.5–16.3 [8,9,11,12,13,14,15,16] | 0–2.0 [8,9,12,14,16,17] |
Total dietary fiber, % | 57.0–82.6 [8,9,11,12,16,18,19] | 91.6–99.9 [8,9,12,14,16,17] |
Insoluble dietary fiber, % | 46.9–68.9 [14,16] | 92.0–97.0 [14,16,17] |
Soluble dietary fiber, % | 13.1–28.6 [14,16] | 2.3–3.5 [14,16,17] |
Insoluble:Soluble dietary fiber | 1.9–5.3:1 [14,16] | 27.5–42.2:1 [14,16,17] |
3. Alternative Dietary Fiber Sources in Companion Animal Nutrition
3.1. Corn Fiber
3.2. Fruit Fibers
3.3. Rice Bran
3.4. Whole Grains
Role of β-Glucans in Companion Animal Nutrition
4. Concluding Remarks and Future Considerations
List of Abbreviations
AHF | acid hydrolyzed fat |
BCFA | branched-chain fatty acid |
CP | crude protein |
DM | dry matter |
DRI | Dietary Reference Intakes |
FDA | Food and Drug Administration |
GIT | gastrointestinal tract |
MW | molecular weight |
N | nitrogen |
OM | organic matter |
OMD | organic matter disappearance |
SCFA | short-chain fatty acid |
TDF | total dietary fiber |
Conflict of Interest
References
- American Veterinary Medical Association, US Pet Ownership & Demographics Sourcebook (2012); American Veterinary Medical Association: Schaumburg, IL, USA, 2012.
- Institute of Medicine of the National Academies, Dietary Reference Intakes; The National Academies Press: Washington, DC, USA, 2002.
- Jenkins, A.L.; Jenkins, D.J.; Wolever, T.M.; Rogovik, A.L.; Jovanovski, E.; Bozikov, V.; Rahelic, D.; Vuksan, V. Comparable postprandial glucose reductions with viscous fiber blend enriched biscuits in healthy subjects and patients with diabetes mellitus: Acute randomized controlled clinical trial. Croat. Med. J. 2008, 49, 772–782. [Google Scholar] [CrossRef]
- Brennan, C.S.; Cleary, L.J. The potential role of cereal (1→3,1→4)-beta-d-glucans as functional food ingredients. J. Cereal Sci. 2005, 42, 1–13. [Google Scholar] [CrossRef]
- Tungland, B.C. Fructooligosaccharides and other fructans: Structures and occurence, production, regulatory aspects, food applications and nutritional health significance. ACS Symp. Ser. 2003, 849, 135–152. [Google Scholar] [CrossRef]
- German, J.B.; Xu, R.; Walzem, R.; Kinsella, J.E.; Knuckles, B.; Nakamura, M.; Yokoyama, W.H. Effect of dietary fats and barley fiber on total cholesterol and lipoprotein cholesterol distribution in plasma of hamsters. Nutr. Res. 1996, 16, 1239–1249. [Google Scholar] [CrossRef]
- Wenk, C. The role of dietary fibre in the digestive physiology of the pig. Anim. Feed Sci. Technol. 2001, 90, 21–33. [Google Scholar] [CrossRef]
- Sunvold, G.D.; Fahey, G.C., Jr.; Merchen, N.R.; Bourquin, L.D.; Titgemeyer, E.C.; Bauer, L.L.; Reinhart, G.A. Dietary fiber for cats: In vitro fermentation of selected fiber sources by cat fecal inoculum and in vivo utilization of diets containing selected fiber sources and their blends. J. Anim. Sci. 1995, 73, 2329–2339. [Google Scholar]
- Sunvold, G.D.; Fahey, G.C., Jr.; Merchen, N.R.; Titgemeyer, E.C.; Bourquin, L.D.; Bauer, L.L.; Reinhart, G.A. Dietary fiber for dogs: IV. In vitro fermentation of selected fiber sources by dog fecal inoculum and in vivo digestion and metabolism of fiber-supplemented diets. J. Anim. Sci. 1995, 73, 1099–1109. [Google Scholar]
- Sunvold, G.D.; Fahey, G.C., Jr.; Merchen, N.R.; Reinhart, G.A. In vitro fermentation of selected fibrous substrates by dog and cat fecal inoculum: Influence of diet composition on substrate organic matter disappearance and short-chain fatty acid production. J. Anim. Sci. 1995, 73, 1110–1122. [Google Scholar]
- Fahey, G.C., Jr.; Merchen, N.R.; Corbin, J.E.; Hamilton, A.K.; Serbe, K.A.; Lewis, S.M.; Hirakawa, D.A. Dietary fiber for dogs: I. Effects of graded levels of dietary beet pulp on nutrient intake, digestibility, metabolizable energy and digesta mean retention time. J. Anim. Sci. 1990, 68, 4221–4228. [Google Scholar]
- Sunvold, G.D.; Hussein, H.S.; Fahey, G.C., Jr.; Merchen, N.R.; Reinhart, G.A. In vitro fermentation of cellulose, beet pulp, citrus pulp, and citrus pectin using fecal inoculum from cats, dogs, horses, humans, and pigs and ruminal fluid from cattle. J. Anim. Sci. 1995, 73, 3639–3648. [Google Scholar]
- Bosch, G.; Pellikaan, W.F.; Rutten, P.G.P.; van der Poel, A.F.B.; Verstegen, M.W.A.; Hendriks, W.H. Comparative in vitro fermentation activity in the canine distal gastrointestinal tract and fermentation kinetics of fiber sources. J. Anim. Sci. 2008, 86, 2979–2989. [Google Scholar] [CrossRef]
- Fischer, M.M.; Kessler, A.M.; de Sá, L.R.M.; Vasconcellos, R.S.; Roberti Filho, F.O.; Nogueira, S.P.; Oliveira, M.C.C.; Carciofi, A.C. Fiber fermentability effects on energy and macronutrient digestibility, fecal traits, postprandial metabolite responses, and colon histology of overweight cats. J. Anim. Sci. 2012, 90, 2233–2245. [Google Scholar] [CrossRef]
- Fekete, S.G.; Hullár, I.; Andrásofszky, E.; Kelemen, F. Effect of different fiber types on the digestibility of nutrients in cats. J. Anim. Physiol. Anim. Nutr. 2004, 88, 138–142. [Google Scholar] [CrossRef]
- Kerr, K.R.; Morris, C.L.; Burke, S.L.; Swanson, K.S. Influence of dietary fiber type and amount on energy and nutrient digestibility, fecal characteristics, and fecal fermentative end-product concentrations in captive exotic felids fed a raw beef-based diet. J. Anim. Sci. 2013, 91, 2199–2210. [Google Scholar] [CrossRef]
- Swanson, K.S.; Grieshop, C.M.; Clapper, G.M.; Shields, R.G., Jr.; Belay, T.; Merchen, N.R.; Fahey, G.C., Jr. Fruit and vegetable fiber fermentation by gut microflora from canines. J. Anim. Sci. 2002, 79, 919–926. [Google Scholar]
- Fahey, G.C., Jr.; Merchen, N.R.; Corbin, J.E.; Hamilton, A.K.; Serbe, K.A.; Hirakawa, D.A. Dietary fiber for dogs: II. Iso-total dietary fiber (TDF) additions of divergent fiber sources to dog diets and their effects on nutrient intake, digestibility, metabolizable energy and digesta mean retention time. J. Anim. Sci. 1990, 68, 4229–4235. [Google Scholar]
- Fahey, G.C.; Merchen, N.R.; Corbin, J.E.; Hamilton, A.K.; Bauer, L.L.; Titgemeyer, R.C.; Hirakawa, D.A. Dietary fiber for dogs: III. Effects of beet pulp and oat fiber additions to dog diets on nutrient intake, digestibility, metabolizable energy and digesta mean retention time. J. Anim. Sci. 1992, 70, 1169–1174. [Google Scholar]
- Kerley, M.S.; Garleb, K.A.; Fahey, G.C., Jr.; Berger, L.L.; Moore, K.J.; Phillips, G.N.; Gould, J.M. Effects of alkaline hydrogen peroxide treatment of cotton and wheat straw on cellulose crystallinity and on composition and site and extent of disappearance of wheat straw cell wall phenolics and monosaccharides by sheep. J. Anim. Sci. 1988, 66, 3235–3244. [Google Scholar]
- Guillon, F.; Auffret, A.; Robertson, J.A.; Thibault, J.F.; Barry, J.L. Relationship between physical characteristics of sugar beet fibre and its fermentability by human feacal flora. Carb. Polym. 1998, 37, 185–197. [Google Scholar] [CrossRef]
- Muir, H.E.; Murray, S.M.; Fahey, G.C., Jr.; Merchen, N.R.; Reinhart, G.A. Nutrient digestion by ileal cannulated dogs as affected by dietary fibers with various fermentation characteristics. J. Anim. Sci. 1996, 74, 1641–1648. [Google Scholar]
- Middelbos, I.S.; Fastinger, N.D.; Fahey, G.C., Jr. Evaluation of fermentable oligosaccharides in diets fed to dogs in comparison to fiber standards. J. Anim. Sci. 2007, 85, 3033–3044. [Google Scholar] [CrossRef]
- Hendriks, W.H.; Sritharan, K. Apparent ileal and fecal digestibility of dietary protein is different in dogs. J. Nutr. 2002, 132, 1692–1694. [Google Scholar]
- Zentek, J.; Meyer, H. Normal handling of diets–are all dogs created equal? J. Small Anim. Pract. 1995, 36, 354–359. [Google Scholar] [CrossRef]
- Howard, M.D.; Kerley, M.S.; Sunvold, G.D.; Reinhart, G.A. Source of dietary fiber fed to dogs affects nitrogen and energy metabolism and intestinal microflora populations. Nutr. Res. 2000, 20, 1473–1484. [Google Scholar]
- Hesta, M.; Hoornaert, E.; Verlinden, A.; Janssens, G.P.J. The effect of oligofructose on urea metabolism and faecal odour components in cats. J. Anim. Physiol. Anim. Nutr. 2005, 89, 208–214. [Google Scholar] [CrossRef]
- Verbrugghe, A.; Janssens, G.P.J.; Meininger, E.; Daminet, S.; Piron, K.; Vanhaecke, L.; Wuyts, B.; Buyse, J.; Hesta, M. Intestinal fermentation modulates postprandial acylcarnitine profile and nitrogen metabolism in a true carnivore: The domestic cat (Felis catus). Br. J. Nutr. 2010, 104, 972–979. [Google Scholar] [CrossRef]
- Yadav, M.P.; Moreau, R.A.; Hicks, K.B. Phenolic acids, lipids, and proteins associated with purified corn fiber arabinoxylans. J. Agric. Food Chem. 2007, 55, 943–947. [Google Scholar] [CrossRef]
- NRC, Nutrient Requirements of Dogs and Cats, 2nd ed.; National Academies Press: Washington, DC, USA, 2006.
- Guevara, M.A.; Bauer, L.L.; Abbas, C.A.; Beery, K.E.; Holzgraefe, D.P.; Cecava, M.J.; Fahey, G.C., Jr. Chemical composition, in vitro fermentation characteristics, and in vivo digestibility responses by dogs to select corn fibers. J. Agric. Food Chem. 2008, 56, 1619–1626. [Google Scholar] [CrossRef]
- Wilson, T.A.; DeSimone, A.P.; Romano, C.A.; Nicolosi, R.J. Corn fiber oil lowers plasma cholesterol levels and increases cholesterol excretion greater than corn oil and similar to diets containing soy sterols and soy stanols in hamsters. J. Nutr. Biochem. 2000, 11, 443–449. [Google Scholar] [CrossRef]
- De Godoy, M.R.C.; Bauer, L.L.; Parsons, C.M.; Fahey, G.C., Jr. Select corn coproducts from the ethanol industry and their potential as ingredients in pet foods. J. Anim. Sci. 2009, 87, 189–199. [Google Scholar]
- De Godoy, M.R.C.; Bauer, L.L.; Parsons, C.M.; Swanson, K.S.; Fahey, G.C., Jr. In vitro hydrolytic digestion, glycemic response in dogs, and true metabolizable energy content of soluble corn fibers. J. Anim. Sci. 2013. submitted for publication. [Google Scholar]
- De Godoy, M.R.C.; Bauer, L.L.; Parsons, C.M.; Swanson, K.S.; Fahey, G.C., Jr. Blending of soluble corn fiber with pullulan, sorbitol, or fructose attenuates glycemic and insulinemic responses in the dog and affects hydrolytic digestion in vitro. J. Anim. Sci. 2013, in press. [Google Scholar]
- Knapp, B.K.; Parsons, C.M.; Bauer, L.L.; Swanson, K.S.; Fahey, G.C., Jr. Soluble fiber dextrins and pullulans vary in extent of hydrolytic digestion in vitro and in energy value and attenuate glycemic and insulinemic responses in dogs. J. Agric. Food Chem. 2010, 58, 1355–1363. [Google Scholar]
- Knapp, B.K.; Bauer, L.L.; Swanson, K.S.; Tappenden, K.A.; Fahey, G.C., Jr.; de Godoy, M.R.C. Soluble fiber dextrin and soluble corn fiber supplementation modify indices of health in cecum and colon of Sprague-Dawley rats. Nutrients 2013, 5, 396–410. [Google Scholar] [CrossRef]
- Vester Boler, B.M.; Serao, M.C.R.; Bauer, L.L.; Staeger, M.A.; Boileau, T.W.; Swanson, S.S.; Fahey, G.C., Jr. Digestive physiological outcomes related to polydextrose and soluble maize fibre consumption by healthy adult men. Br. J. Nutr. 2011, 106, 1864–1871. [Google Scholar] [CrossRef]
- Maathuis, A.; Hoffman, A.; Evans, A.; Sanders, L.; Venema, K. The effect of the undigested fraction of maize products on the activity and composition of the microbiota determined in a dynamic in vitro model of the human proximal large intestine. J. Am. Coll. Nutr. 2009, 28, 657–666. [Google Scholar] [CrossRef]
- Walter, R.H.; Rao, M.A.; Sherman, R.M.; Cooley, H.J. Edible fibre from apple pomace. J. Food Sci. 1985, 60, 747–749. [Google Scholar]
- Fischer, J. Fruit Fibers. In Fiber Ingredients: Food Applications and Health Benefits; Cho, S.S., Samuel, P., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2009; pp. 427–438. [Google Scholar]
- Fahey, G.C., Jr.; Flickinger, E.A.; Grieshop, C.M.; Swanson, K.S. The Role of Dietary Fiber in Companion Animal Nutrition. In Dietary Fibre: Bio-Active Carbohydrates for Food and Feed; Van der Kamp, J.W., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2004; pp. 295–328. [Google Scholar]
- Fekete, S.; Hullar, I.; Andrasofszky, E.; Rigo, Z.; Berkenyi, T. Reduction of the energy density of cat foods by increasing their fibre content with a view to nutrients’ digestibility. J. Anim. Physiol. Anim. Nutr. 2001, 85, 200–204. [Google Scholar] [CrossRef]
- Ryan, E. Bioactive food components and health properties of rice bran. JAVMA 2011, 238, 593–600. [Google Scholar] [CrossRef]
- Kahlon, T.S. Rice Bran: Production, Composition, Functionality and Food Applications, Physiological Benefits. In Fiber Ingredients: Food Applications and Health Benefits; Cho, S.S., Samuel, P., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2009; pp. 305–322. [Google Scholar]
- Cicero, A.F.G.; Derosa, G. Rice bran and its main components: Potential role in the management of coronary risk factors. Curr. Topics Nutr. Res. 2005, 3, 29–46. [Google Scholar]
- Spears, J.K.; Grieshop, C.M.; Fahey, G.C., Jr. Evaluation of stabilized rice bran as an ingredient in dry extruded dog diets. J. Anim. Sci. 2004, 82, 1122–1135. [Google Scholar]
- Ogué-Bon, E.; Khoo, C.; Hoyles, L.; McCartney, A.L.; Gibson, G.R.; Rastall, R.A. In vitro fermentation of rice bran combined with Lactobacillus acidophilus 14150B or Bifidobacterium longum 05 by the canine feacal microbiota. FEMS 2011, 75, 365–376. [Google Scholar] [CrossRef]
- Stratton-Phelps, M.; Backus, R.C.; Rogers, Q.R.; Fascetti, A.J. Dietary rice bran decreases plasma and whole-blood taurine in cats. J. Nutr. 2002, 132, 1745S–1747S. [Google Scholar]
- Foster, G.M.; Raina, K.; Kumar, A.; Kumar, S.; Agarwal, R.; Chen, M.H.; Bauer, J.E.; McClung, A.M.; Ryan, E.P. Rice varietal differences in bioactive bran components for inhibition of colorectal cancer cell growth. Food Chem. 2013, 145, 1545–1552. [Google Scholar]
- American Association of Cereal Chemists. The definition of dietary fiber. Cereal Foods World 2001, 46, 112–129.
- Food and Drug Administration. Health Claim Notification for Whole Grain Foods. 1999. Available online: http://www.fda.gov/Food/IngredientsPackagingLabeling/LabelingNutrition/ucm073639.htm (accessed on 12 December 2012).
- Slavin, J.L.; Jacobs, D.; Marquart, L.; Wiemer, K. The role of whole grains in disease prevention. J. Am. Diet. Assoc. 2001, 101, 780–785. [Google Scholar] [CrossRef]
- Fardet, A. New hypothesis for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef]
- Jones, J.M.; Englenson, J. Whole grains: Benefits and challenges. Annu. Rev. Food Technol. 2010, 1, 19–40. [Google Scholar] [CrossRef]
- Jonnalagadda, S.S.; Harnack, L.; Liu, R.H.; McKeown, N.; Seal, C.; Liu, S.; Fahey, G.C., Jr. Putting the whole grain puzzle together: Health benefits associated with grains—Summary of American Society for Nutrition 2010 Satellite Symposium. J. Nutr. 2011, 141, 1011S–1022S. [Google Scholar] [CrossRef]
- Wood, J.P. Cereal beta-glucans in diet and health. J. Cereal Sci. 2007, 46, 230–238. [Google Scholar] [CrossRef]
- Skendi, A.; Biliaderis, C.G.; Lazaridou, A.; Izydorczyk, M.S. Structure and rheological properties of water soluble beta-glucan from oat cultivars of Avena sativa and Avena bysantina. J. Cereal Sci. 2003, 38, 15–31. [Google Scholar] [CrossRef]
- Wood, P.J.; Braaten, J.T.; Scott, F.W.; Riedel, K.D.; Wolynetz, M.S.; Collins, M.W. Effect of dose and modification of viscous properties of oat gum on plasma glucose and insulin following an oral glucose load. Br. J. Nutr. 1994, 72, 731–743. [Google Scholar] [CrossRef]
- Queenan, K.M.; Stewart, M.L.; Smith, K.N.; Thomas, W.; Fulcher, R.G.; Slavin, J.L. Concentrated oat beta-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial. Nutr. J. 2007, 6, 6. [Google Scholar] [CrossRef]
- Wood, P.J.; Beer, M.U. Functional Oat Products. In Functional Foods Biochemical and Processing Aspects; Mazza, G., Ed.; Technomic Publishing: Lancaster, PA, USA, 1998; pp. 1–37. [Google Scholar]
- Vasanthan, T.; Temelli, F. Grain fractionation technologies for cereal beta-glucan concentration. Food Res. Int. 2008, 41, 876–881. [Google Scholar] [CrossRef]
- Guillon, F.; Champ, M. Structural and physical properties of dietary fibers, and consequences of processing on human physiology. Food Res. Int. 2003, 33, 233–245. [Google Scholar] [CrossRef]
- Wolever, T.M.; Jenkins, D.J.; Mueller, S.; Boctor, D.L.; Ransom, T.P.; Patten, R.; Chao, E.S.; McMillan, K.; Fulgoni, V. Method of administration influences the serum cholesterol-lowering effect of psyllium. Am. J. Clin. Nutr. 1994, 59, 1055–1059. [Google Scholar]
- Kerckhoffs, D.A.; Hornstra, G.; Mensink, R.P. Cholesterol-lowering effect of beta-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when beta-glucan is incorporated into bread and cookies. Am. J. Clin. Nutr. 2003, 78, 221–227. [Google Scholar]
- Biorklund, M.; van Rees, A.; Mensink, R.P.; Onning, G. Changes in serum lipids and postprandial glucose and insulin concentrations after consumption of beverages with beta-glucans from oats or barley: A randomised dose-controlled trial. Eur. J. Clin. Nutr. 2005, 59, 1272–1281. [Google Scholar] [CrossRef]
- Anderson, T.G.; Tan, A.; Ganz, P.; Seelig, J. Calorimetric measurement of phospholipid interaction with methyl-beta-cyclodextrin. Biochemistry 2004, 43, 2251–2261. [Google Scholar] [CrossRef]
- Beer, M.U.; Wood, P.J.; Fillion, N.; Weisz, J. Effect of cooking and storage on the amount and molecular weight of (1→3,1→4)-β-glucan extracted from oat products by an in vitro digestion system. Cereal Chem. 1997, 74, 705–709. [Google Scholar] [CrossRef]
- Ripsin, C.M.; Keenan, J.M.; Jacobs, D.R., Jr.; Elmer, P.J.; Welch, R.R.; van Horn, L.; Liu, K.; Turnbull, W.H.; Thye, F.W.; Kestin, M. Oat products and lipid lowering. A meta-analysis. JAMA 1992, 267, 3317–3325. [Google Scholar] [CrossRef]
- Groner, T.; Pfeffer, E. Digestibility of organic matter and digestible energy in single ingredients of extruded dog feeds and their effect on fecal dry matter concentration and consistency. J. Anim. Physiol. Anim. Nutr. 1997, 77, 214–220. [Google Scholar] [CrossRef]
- Swanson, K.S.; Grieshop, C.M.; Flickinger, E.A.; Bauer, L.L.; Healy, H.P.; Dawson, K.; Merchen, N.R.; Fahey, G.C., Jr. Supplemental fructooligosaccharides and mannanoligosaccharides influence immune function, ileal and total tract nutrient digestibilities, microbial populations and concentrations of protein catabolites in the large bowel of dogs. J. Nutr. 2002, 132, 980–989. [Google Scholar]
- Owusu-Asiedu, A.; Patience, J.F.; Laarveld, B.; van Kessel, A.G.; Simmins, P.H.; Zijlstra, R.T. Effects of guar gum and cellulose on digesta passage rate, ileal microbial populations, energy and protein digestibility, and performance of grower pigs. J. Anim. Sci. 2006, 84, 843–852. [Google Scholar]
- Bray, G.A. The underlying basis for obesity: Relationship to cancer. J. Nutr. 2002, 132, 3451S–3455S. [Google Scholar]
- Schneeman, B.O. Dietary fiber and gastrointestinal function. Nutr. Res. 1998, 18, 625–632. [Google Scholar] [CrossRef]
- Le Goff, G.; Noblet, J. Comparative total tract digestibility of dietary energy and nutrients in growing pigs and adult sows. J. Anim. Sci. 2001, 79, 2418–2427. [Google Scholar]
- Dunaif, G.; Schneeman, B.O. The effect of dietary fiber on human pancreatic enzyme activity in vitro. Am. J. Clin. Nutr. 1981, 34, 1034–1035. [Google Scholar]
- Panahi, S.; Ezatagha, A.; Temelli, F.; Vasanthan, T.; Vuksan, V. Beta-glucan from two sources of oat concentrates affect postprandial glycemia in relation to the level of viscosity. J. Am. Coll. Nutr. 2007, 26, 639–644. [Google Scholar] [CrossRef]
- Juvonen, K.R.; Purhonen, A.K.; Salmenkallio-Marttola, M.; Lahteenmaki, L.; Laaksonen, D.E.; Herzig, K.H.; Uusitupa, M.I.; Poutanen, K.S.; Karhunen, L.J. Viscosity of oat bran-enriched beverages influences gastrointestinal hormonal responses in healthy humans. J. Nutr. 2009, 139, 461–466. [Google Scholar] [CrossRef]
- Nazare, J.A.; Normand, S.; Triantafyllou, A.O.; Brac de la Perriere, A.; Desage, M.; Laville, M. Modulation of the postprandial phase by beta-glucan in overweight subjects: Effects on glucose and insulin kinetics. Mol. Nutr. Food Res. 2009, 53, 361–369. [Google Scholar] [CrossRef]
- Kim, H.; Stote, K.S.; Behall, K.M.; Spears, K.; Vinyard, B.; Conway, J.M. Glucose and insulin responses to whole grain breakfasts varying in soluble fiber, beta-glucan: A dose response study in obese women with increased risk for insulin resistance. Eur. J. Nutr. 2009, 48, 170–175. [Google Scholar] [CrossRef]
- Liatis, S.; Tsapogas, P.; Chala, E.; Dimosthenopoulos, C.; Kyriakopoulos, K.; Kapantais, E.; Katsilambros, N. The consumption of bread enriched with beta-glucan reduces LDL-cholesterol and improves insulin resistance in patients with type 2 diabetes. Diabetes Metab. 2009, 35, 115–120. [Google Scholar] [CrossRef]
- Frank, J.; Sundberg, B.; Kamal-Eldin, A.; Vessby, B.; Aman, P. Yeast-leavened oat breads with high or low molecular weight beta-glucan do not differ in their effects on blood concentrations of lipids, insulin, or glucose in humans. J. Nutr. 2004, 134, 1384–1388. [Google Scholar]
- Bach Knudsen, K.E.; Jorgensen, H.; Canibe, N. Quantification of the absorption of nutrients derived from carbohydrate assimilation: Model experiment with catheterised pigs fed on wheat- or oat-based rolls. Br. J. Nutr. 2000, 84, 449–458. [Google Scholar]
- Bach Knudsen, K.E.; Serena, A.; Kjaer, A.K.; Jorgensen, H.; Engberg, R. Rye bread enhances the production and plasma concentration of butyrate but not the plasma concentrations of glucose and insulin in pigs. J. Nutr. 2005, 135, 1696–1704. [Google Scholar]
- De Godoy, M.R.C. Fish Oil and Barley Supplementation of Diets for Adult Dogs: Effects on Lipid and Protein Metabolism, Nutrient Digestibility, Fecal Quality, and Postprandial Glycemia. Ph.D. Thesis, University of Kentucky, Lexington, MA, USA, 2011; pp. 96–103. [Google Scholar]
- Adolphe, J.L.; Murray, D.D.; Huang, Q.; Silver, T.I.; Weber, L.P. Postprandial impairment of flow-mediated dilation and elevated methylglyoxal after simple but not complex carbohydrate consumption in dogs. Nutr. Res. 2012, 32, 273–284. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
De Godoy, M.R.C.; Kerr, K.R.; Fahey, Jr., G.C. Alternative Dietary Fiber Sources in Companion Animal Nutrition. Nutrients 2013, 5, 3099-3117. https://doi.org/10.3390/nu5083099
De Godoy MRC, Kerr KR, Fahey, Jr. GC. Alternative Dietary Fiber Sources in Companion Animal Nutrition. Nutrients. 2013; 5(8):3099-3117. https://doi.org/10.3390/nu5083099
Chicago/Turabian StyleDe Godoy, Maria R. C., Katherine R. Kerr, and George C. Fahey, Jr. 2013. "Alternative Dietary Fiber Sources in Companion Animal Nutrition" Nutrients 5, no. 8: 3099-3117. https://doi.org/10.3390/nu5083099
APA StyleDe Godoy, M. R. C., Kerr, K. R., & Fahey, Jr., G. C. (2013). Alternative Dietary Fiber Sources in Companion Animal Nutrition. Nutrients, 5(8), 3099-3117. https://doi.org/10.3390/nu5083099