Association between Blood Omega-3 Index and Cognition in Typically Developing Dutch Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Procedure and Participants
2.3. Dependent Variable—Blood Analysis
2.3.1. Independent Variables—Cognitive Measures
2.3.2. D2 Test of Attention
2.3.3. Digit Span Forward and Backward
2.3.4. Concept Shifting Task
2.3.5. Stroop Test
2.3.6. Additional Measures
2.4. Quality Control
2.5. Statistical Analyses
3. Results
3.1. Participants
3.2. Cognitive Performance
Characteristic | All Participants | With Diagnosis 1 | Without Diagnosis 2 | p-Value 5 | |||
---|---|---|---|---|---|---|---|
Mean ± SD or N (%) | N | Mean ± SD or N (%) | N | Mean ± SD or N (%) | N | ||
Age (years) | 14.10 ± 0.49 | 266 | 14.26 ± 0.51 | 69 | 14.05 ± 0.47 | 196 | 0.002 |
Male/Female | 127/139 (47.7/52.3%) | 266 | 36/33 (52.2/47.8%) | 69 | 93/103 (47.5/52.5%) | 196 | 0.499 |
Smoking no/yes 3 | 239/26 (90.2/9.8%) | 265 | 59/10 (85.5/14.5%) | 69 | 179/16 (91.8/8.2%) | 195 | 0.132 |
Body Mass Index (BMI) | 19.92 ± 3.00 | 248 | 20.34 ± 3.61 | 65 | 19.77 ± 2.74 | 183 | 0.187 |
Alcohol units per week 4 | 0.46 ± 1.77 | 266 | 0.69 ± 2.85 | 69 | 0.39 ± 1.19 | 196 | 0.218 |
Level of Parental Education (LPE) | 5.07 ± 1.52 | 248 | 5.21 ± 1.40 | 66 | 5.02 ± 1.56 | 182 | 0.371 |
Fatty Acid (% wt/wt of Total FA) | All Participants | With Diagnosis 1 | Without Diagnosis 2 | p-Value 3 |
---|---|---|---|---|
N = 261 | N = 68 | N = 193 | ||
Mean ± SD | Mean ± SD | Mean ± SD | ||
Omega-3 Index | 3.83 ± 0.60 | 3.79 ± 0.61 | 3.84 ± 0.60 | 0.537 |
DHA 22:6n-3 | 2.58 ± 0.49 | 2.56 ± 0.50 | 2.59 ± 0.49 | 0.667 |
EPA 20:5n-3 | 0.39 ± 0.16 | 0.38 ± 0.13 | 0.39 ± 0.16 | 0.356 |
AA 20:4n-6 | 11.19 ± 1.25 | 11.49 ± 1.34 | 11.08 ± 1.20 | 0.022 |
ObA 22:5n-3 | 0.43 ± 0.10 | 0.43 ± 0.11 | 0.44 ± 0.10 | 0.725 |
Measures | All Participants | With Diagnosis 1 | Without Diagnosis 2 | p-Value 3 |
---|---|---|---|---|
N = 261 | N = 68 | N = 196 | ||
Mean ± SD | Mean ± SD | Mean ± SD | ||
LDST (number) | 34.47 ± 5.46 | 33.52 ± 6.51 | 34.80 ± 5.02 | 0.094 |
D2-correct (number) | 163.13 ± 22.95 | 160.04 ± 24.24 | 164.22 ± 22.45 | 0.194 |
D-error of omission (number) | 11.83 ± 10.73 | 11.25 ± 8.07 | 12.04 ± 11.53 | 0.598 |
D2-error of commission (number) | 1.31 ± 10.73 | 1.54 ± 1.96 | 1.22 ± 1.43 | 0.161 |
D2-Total (number) | 417.33 ± 56.46 | 408.93 ± 55.11 | 420.29 ± 56.77 | 0.151 |
Shifting score (s) | 11.70 ± 6.83 | 11.69 ± 6.50 | 11.71 ± 6.96 | 0.980 |
Inhibition score (s) | 31.35 ± 8.50 | 34.85 ± 9.19 | 30.12 ± 7.91 | 0.000 |
Digit span Forward (digits) | 5.58 ± 0.88 | 5.26 ± 0.87 | 5.70 ± 0.85 | 0.616 |
Digit Span Backward (digits) | 4.56 ± 0.98 | 4.51 ± 0.93 | 4.58 ± 1.00 | 0.000 |
Predictor Variable | Β (Standardized) 1 | Significance 2 |
---|---|---|
Model A (r2 = 0.058, df = 7, p = 0.051) | ||
Smoking | 0.028 | 0.679 |
Alcohol consumption | 0.031 | 0.649 |
BMI | 0.089 | 0.171 |
Age | 0.047 | 0.477 |
Sex | 0.177 | 0.007 |
Highest LPE | −0.056 | 0.387 |
Diagnosis | −0.104 | 0.113 |
Model B (r2 = 0.075, df = 8, p = 0.019) | ||
Smoking | 0.031 | 0.643 |
Alcohol consumption | 0.045 | 0.500 |
BMI | 0.080 | 0.218 |
Age | 0.036 | 0.584 |
Sex | 0.172 | 0.008 |
Highest LPE 3 | −0.084 | 0.203 |
Diagnosis | −0.094 | 0.147 |
Omega-3 Index | 0.136 | 0.039 |
Predictor Variable | Β (Standardized) 1 | Significance 2 |
---|---|---|
Model A (χ2 = 47.90, df = 7, p < 0.001) | ||
Smoking | 0.066 | 0.310 |
Alcohol consumption | 0.036 | 0.030 |
BMI | 0.043 | 0.026 |
Age | 0.036 | 0.068 |
Sex | −0.047 | 0.226 |
Highest LPE | −0.087 | 0.000 |
Diagnosis | −0.071 | 0.109 |
Model B (χ2 = 51.852, df = 8, p < 0.001) | ||
Smoking | 0.062 | 0.349 |
Alcohol consumption | 0.030 | 0.078 |
BMI | 0.043 | 0.028 |
Age | 0.041 | 0.037 |
Sex | −0.052 | 0.181 |
Highest LPE 3 | −0.077 | 0.000 |
Diagnosis | −0.083 | 0.063 |
Omega-3 Index | −0.053 | 0.007 |
3.3. Sub-Group Analyses
Predictor Variable | Β (Standardized) 1 | Significance 2 |
---|---|---|
Model A (χ2 = 42.11, df = 6, p < 0.001) | ||
Smoking | 0.032 | 0.685 |
Alcohol consumption | 0.036 | 0.277 |
BMI | 0.091 | 0.000 |
Age | 0.002 | 0.914 |
Sex | −0.136 | 0.003 |
Highest LPE | −0.085 | 0.000 |
Model B (χ2 = 55.642, df = 7, p < 0.001) | ||
Smoking | 0.029 | 0.714 |
Alcohol consumption | 0.027 | 0.410 |
BMI | 0.089 | 0.000 |
Age | 0.015 | 0.515 |
Sex | −0.138 | 0.002 |
Highest LPE 3 | −0.067 | 0.003 |
Omega-3 Index | −0.083 | 0.000 |
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Richardson, A. Clinical trials of fatty acid treatment in ADHD, dyslexia, dyspraxia and the autistic spectrum. Prostaglandins Leukot. Essent. Fat. Acids 2004, 70, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Gale, C.R.; Robinson, S.M.; Godfrey, K.M.; Law, C.M.; Schlotz, W.; O’Callaghan, F.J. Oily fish intake during pregnancy—Association with lower hyperactivity but not with higher full-scale IQ in offspring. J. Child Psychol. Psychiatry 2008, 49, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- De Groot, R.; Hornstra, G.; Jolles, J. Exploratory study into the relation between plasma phospholipid fatty acid status and cognitive performance. Prostaglandins Leukot. Essent. Fat. Acids 2007, 76, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Stonehouse, W.; Conlon, C.A.; Podd, J.; Hill, S.R.; Minihane, A.M.; Haskell, C.; Kennedy, D. DHA supplementation improved both memory and reaction time in healthy young adults: A randomized controlled trial. Am. J. Clin. Nutr. 2013, 97, 1134–1143. [Google Scholar] [CrossRef] [PubMed]
- Konagai, C.; Yanagimoto, K.; Hayamizu, K.; Han, L.; Tsuji, T.; Koga, Y. Effects of krill oil containing n-3 polyunsaturated fatty acids in phospholipid form on human brain function: A randomized controlled trial in healthy elderly volunteers. Clin. Interv. Aging 2013, 8, 1247–1257. [Google Scholar] [CrossRef] [PubMed]
- Fotuhi, M.; Mohassel, P.; Yaffe, K. Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: A complex association. Nat. Clin. Pract. Neurol. 2009, 5, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Danthiir, V.; Burns, N.R.N.; Nettelbeck, T.; Wilson, C.; Wittert, G. The older people, omega-3, and cognitive health (EPOCH) trial design and methodology: A randomised, double-blind, controlled trial investigating the effect of long-chain omega-3 fatty acids on cognitive ageing and wellbeing in cognitively healthy older adults. Nutr. J. 2011, 10, 117. [Google Scholar] [PubMed]
- Parletta, N.; Milte, C.; Meyer, B.J. Nutritional modulation of cognitive function and mental health. J. Nutr. Biochem. 2013, 24, 725–743. [Google Scholar] [CrossRef] [PubMed]
- Assisi, A.; Banzi, R.; Buonocore, C.; Capasso, F.; di Muzio, V.; Michelacci, F.; Renzo, D.; Tafuri, G.; Trotta, F.; Vitocolonna, M.; et al. Fish oil and mental health: The role of n-3 long-chain polyunsaturated fatty acids in cognitive development and neurological disorders. Int. Clin. Psychopharmacol. 2006, 21, 319–336. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.E.; Tye, C.; Kuntsi, J.; Vassos, E.; Asherson, P. Omega-3 polyunsaturated fatty acid supplementation and cognition: A systematic review and meta-analysis. J. Psychopharmacol. 2015, 29, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Karr, J.E.; Alexander, J.E.; Winningham, R.G. Omega-3 polyunsaturated fatty acids and cognition throughout the lifespan: A review. Nutr. Neurosci. 2011, 14, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Gogtay, N.; Giedd, J.N.; Lusk, L.; Hayashi, K.M.; Greenstein, D.; Vaituzis, A.C.; Nugent, T.F.; Herman, D.H.; Clasen, L.S.; Toga, A.W.; et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. USA 2004, 101, 8174–8179. [Google Scholar] [CrossRef] [PubMed]
- Crone, E.A. Executive functions in adolescence: Inferences from brain and behavior. Dev. Sci. 2009, 12, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Bull, R.; Espy, K.; Wiebe, S. Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Dev. Neuropsychol. 2008, 33, 205–228. [Google Scholar] [CrossRef] [PubMed]
- McNamara, R.K.; Carlson, S.E. Role of omega-3 fatty acids in brain development and function: Potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins. Leukot. Essent. Fat. Acids 2006, 75, 329–349. [Google Scholar] [CrossRef] [PubMed]
- McNamara, R.K.; Able, J.; Jandacek, R.; Rider, T.; Tso, P.; Eliassen, J.; Alfieri, D.; Weber, W.; Jarvis, K.; Delbello, M.; et al. Docosahexaenoic acid supplementation increases prefrontal cortex activation during sustained attention in healthy boys: A placebo-controlled, dose-ranging, functional magnetic resonance imaging study. Am. J. Clin. Nutr. 2010, 91, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Winkvist, A.; Äberg, M.; Äberg, N.; Sundberg, R.; Torén, K.; Brisman, J. Fish consumption and school grades in Swedish adolescents: A study of the large general population. Acta Paediatr. Int. J. Paediatr. 2010, 99, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Äberg, M.; Äberg, N.; Brisman, J.; Sundberg, R.; Winkvist, A.; Torén, K. Fish intake of Swedish male adolescents is a predictor of cognitive performance. Acta Paediatr. 2009, 98, 555–560. [Google Scholar] [CrossRef] [PubMed]
- De Groot, R.; Ouwehand, C.; Jolles, J. Eating the right amount of fish: Inverted U-shape association between fish consumption and cognitive performance and academic achievement in Dutch adolescents. Prostaglandins Leukot. Essent. Fat. Acids 2012, 86, 113–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, B.J.; Mann, N.J.; Lewis, J.L.; Milligan, G.C.; Sinclair, A.J.; Howe, P.R.C. Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids. Lipids 2003, 38, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Köhler, A.; Bittner, D.; Löw, A.; von Schacky, C. Effects of a convenience drink fortified with n-3 fatty acids on the n-3 index. Br. J. Nutr. 2010, 104, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Von Schacky, C. Omega-3 fatty Acids in cardiovascular disease—An uphill battle. Prostaglandins Leukot. Essent. Fat. Acids 2014, 92, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Crone, E.A.; Dahl, R.E. Understanding adolescence as a period of social–affective engagement and goal flexibility. Nat. Rev. Neurosci. 2012, 13, 636–650. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.G.; Sargent, J.R.; Tocher, D.R.; Dick, J.R. Red blood cell fatty acid compositions in a patient with autistic spectrum disorder: A characteristic abnormality in neurodevelopmental disorders? Prostaglandins. Leukot. Essent. Fat. Acids 2000, 63, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Antalis, C.J.; Stevens, L.J.; Campbell, M.; Pazdro, R.; Ericson, K.; Burgess, J.R. Omega-3 fatty acid status in attention-deficit/hyperactivity disorder. Prostaglandins Leukot. Essent. Fat. Acids 2006, 75, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Giskes, K.; Kunst, A.; Benach, J.; Borrell, C.; Costa, G.; Dahl, E.; Dalstra, J.; Federico, B.; Helmert, U.; Judge, K.; et al. Trends in smoking behaviour between 1985 and 2000 in nine European countries by education. J. Epidemiol. Community Health 2005, 59, 395–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulshof, K.; Brussaard, J.H.; Kruizinga, A.G.; Telman, J.; Löwik, M.R.H. Socio-economic status, dietary intake and 10 year trends: The Dutch National Food Consumption Survey. Eur. J. Clin. Nutr. 2003, 57, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Schrijvers, C.T.M.; Schoemaker, C.G. Spelen Met Gezondheid Leefstijl en Psychische Gezondheid van de Nederlandse Jeugd (Playing with Your Health Lifestyle and Mental Health in the Dutch Youth Population); National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2008. [Google Scholar]
- Richardson, A.; Burton, J.; Sewell, R.; Spreckelsen, T.; Montgomery, P. Docosahexaenoic acid for reading, cognition and behavior in children aged 7–9 years: A randomized, controlled trial (the DOLAB Study). PLoS ONE 2012, 7, e43909. [Google Scholar] [CrossRef] [PubMed]
- Centraal Bureau Voor de Statistiek (Statistics Netherlands). VO; Leerlingen, Onderwijssoort in Detail, Leerjaar (Secondary Education, Students, Type of Education in Detail Per Teaching Year). Available online: http://statline.cbs.nl/StatWeb/publication/?VW=T&DM=SLnl&PA=80040NED&LA=nl (accessed on 22 July 2015).
- Harris, W.S.; von Schacky, C. The omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, Y.; Hiraki, K. Neural origin of cognitive shifting in young children. Proc. Natl. Acad. Sci. USA 2009, 106, 6017–6021. [Google Scholar] [CrossRef] [PubMed]
- Brickenkam, R.; Zillmerr, E. The d2 Test of Attention; Hogrefe & Huber Publishers: Seattle, WA, USA, 1998. [Google Scholar]
- Hale, J.B. Analyzing digit span components for assessment of attention processes. J. Psychoeduc. Assess. 2002, 20, 128–143. [Google Scholar] [CrossRef]
- Li, Y.; Dai, Q.; Jackson, J.C.; Zhang, J. Overweight is associated with decreased cognitive functioning among school-age children and adolescents. Obesity 2008, 16, 1809–1815. [Google Scholar] [CrossRef] [PubMed]
- Satterthwaite, T.D.; Wolf, D.H.; Roalf, D.R.; Ruparel, K.; Erus, G.; Vandekar, S.; Gennatas, E.D.; Elliott, M.A.; Smith, A.; Hakonarson, H.; et al. Linked sex differences in cognition and functional connectivity in youth. Cereb. Cortex 2014. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, L. Cognitive and affective development in adolescence. Trends Cogn. Sci. 2005, 9, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Zeigler, D.W.; Wang, C.C.; Yoast, R.A.; Dickinson, B.D.; McCaffree, M.A.; Robinowitz, C.B.; Sterling, M.L. The neurocognitive effects of alcohol on adolescents and college students. Prev. Med. (Baltim) 2005, 40, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, L.K.; Krystal, J.H.; Mencl, W.E.; Westerveld, M.; Frost, S.J.; Pugh, K.R. Effects of smoking and smoking abstinence on cognition in adolescent tobacco smokers. Biol. Psychiatry 2005, 57, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Ardila, A.; Rosselli, M.; Matute, E.; Guajardo, S. The influence of the parents’ educational level on the development of executive functions. Dev. Neuropsychol. 2005, 28, 539–560. [Google Scholar] [CrossRef] [PubMed]
- De Bie, S.E. Standaardvragen 1987: Voorstellen van Uniformering van Vraagstelling naar Achtergrondkenmerken en Interviews (Standard questions 1987: Proposal for Uniformisation of Questions Regarding Background Variables and Interviews); Leiden University Press: Leiden, The Netherlands, 1987. [Google Scholar]
- Kaplan, G.A.; Keil, J.E. Socioeconomic factors and cardiovascular disease: A review of the literature. Circulation 1993, 88, 1973–1998. [Google Scholar] [CrossRef] [PubMed]
- Cooper, H.; Robinson, J.C.; Patall, E.A. Does homework improve academic achievement? A synthesis of research, 1987–2003. Rev. Educ. Res. 2006, 76, 1–62. [Google Scholar] [CrossRef]
- Poropat, A.E. A meta-analysis of the five-factor model of personality and academic performance. Psychol. Bull. 2009, 135, 322–338. [Google Scholar] [CrossRef] [PubMed]
- Portillo-Reyes, V.; Pérez-García, M.; Loya-Méndez, Y.; Puente, A.E. Clinical significance of neuropsychological improvement after supplementation with omega-3 in 8–12 years old malnourished Mexican children: A randomized, double-blind, placebo and treatment clinical trial. Res. Dev. Disabil. 2014, 35, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Parletta, N.; Cooper, P.; Gent, D.N.; Petkov, J.; O’Dea, K. Effects of fish oil supplementation on learning and behaviour of children from Australian Indigenous remote community schools: A randomised controlled trial. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Bakker, E.; Ghys, A.; Kester, A.; Vles, J.; Dubas, J.; Blanco, C.; Hornstra, G. Long-chain polyunsaturated fatty acids at birth and cognitive function at 7 year of age. Eur. J. Clin. Nutr. 2003, 57, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Kairaluoma, L.; Närhi, V.; Ahonen, T.; Westerholm, J.; Aro, M. Do fatty acids help in overcoming reading difficulties? A double-blind, placebo-controlled study of the effects of eicosapentaenoic acid and carnosine supplementation on children with dyslexia. Child Care Health Dev. 2009, 35, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O.; Jackson, P.A.; Elliott, J.M.; Scholey, A.B.; Robertson, B.C.; Greer, J.; Tiplady, B.; Buchanan, T.; Haskell, C.F. Cognitive and mood effects of 8 weeks’ supplementation with 400 mg or 1000 mg of the omega-3 essential fatty acid docosahexaenoic acid (DHA) in healthy children aged 10–12 years. Nutr. Neurosci. 2009, 12, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Frensham, L.J.; Bryan, J.; Parletta, N. Influences of micronutrient and omega-3 fatty acid supplementation on cognition, learning, and behavior: Methodological considerations and implications for children and adolescents in developed societies. Nutr. Rev. 2012, 70, 594–610. [Google Scholar] [PubMed]
- Richardson, A.J.; Puri, B.K. A randomized double-blind, placebo-controlled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specific learning difficulties. Prog. Neuropsychopharmacol. Biol. Psychiatry 2002, 26, 233–239. [Google Scholar] [CrossRef]
- Stevens, L.; Zhang, W.; Peck, L.; Kuczek, T.; Grevstad, N.; Mahon, A.; Zentall, S.S.; Arnold, L.E.; Burgess, J.R. EFA supplementation in children with inattention, hyperactivity, and other disruptive behaviors. Lipids 2003, 38, 1007–1021. [Google Scholar] [CrossRef] [PubMed]
- Milte, C.; Parletta, N.; Buckley, J.; Coates, A.; Young, R.; Howe, P. Eicosapentaenoic and docosahexaenoic acids, cognition, and behavior in children with attention-deficit/hyperactivity disorder: A randomized controlled trial. Nutrition 2012, 28, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Lansbergen, M.M.; Kenemans, J.L.; van Engeland, H. Stroop interference and attention-deficit/hyperactivity disorder: A review and meta-analysis. Neuropsychology 2007, 21, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 5th ed.; Pearson Education: New York City, NY, USA, 2007. [Google Scholar]
- Van Rossum, C.T.M.; Fransen, H.P.; Verkaik-Kloosterman, J.; Buurma-Rethans, E.J.M.; Ocké, M.C. Dutch National Food Consumption Survey 2007–2010—Diet of Children and Adults Aged 7 to 69 Years; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2011. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van der Wurff, I.S.M.; Von Schacky, C.; Berge, K.; Zeegers, M.P.; Kirschner, P.A.; De Groot, R.H.M. Association between Blood Omega-3 Index and Cognition in Typically Developing Dutch Adolescents. Nutrients 2016, 8, 13. https://doi.org/10.3390/nu8010013
Van der Wurff ISM, Von Schacky C, Berge K, Zeegers MP, Kirschner PA, De Groot RHM. Association between Blood Omega-3 Index and Cognition in Typically Developing Dutch Adolescents. Nutrients. 2016; 8(1):13. https://doi.org/10.3390/nu8010013
Chicago/Turabian StyleVan der Wurff, Inge S. M., Clemens Von Schacky, Kjetil Berge, Maurice P. Zeegers, Paul A. Kirschner, and Renate H. M. De Groot. 2016. "Association between Blood Omega-3 Index and Cognition in Typically Developing Dutch Adolescents" Nutrients 8, no. 1: 13. https://doi.org/10.3390/nu8010013
APA StyleVan der Wurff, I. S. M., Von Schacky, C., Berge, K., Zeegers, M. P., Kirschner, P. A., & De Groot, R. H. M. (2016). Association between Blood Omega-3 Index and Cognition in Typically Developing Dutch Adolescents. Nutrients, 8(1), 13. https://doi.org/10.3390/nu8010013