The Interaction between Dietary Fiber and Fat and Risk of Colorectal Cancer in the Women’s Health Initiative
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection and Dietary Assessment
2.3. Colorectal Cancer Case Ascertainment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- American Cancer Society. Cancer Facts & Figures 2016; American Cancer Society: Atlanta, GA, USA, 2016. [Google Scholar]
- World Cancer Research Fund. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective; American Institute for Cancer Research: Washington, DC, USA, 2007. [Google Scholar]
- Perez-Cueto, F.J.; Verbeke, W. Consumer implications of the WCRF’s permanent update on colorectal cancer. Meat. Sci. 2012, 90, 977–978. [Google Scholar] [CrossRef] [PubMed]
- Ben, Q.; Sun, Y.; Chai, R.; Qian, A.; Xu, B.; Yuan, Y. Dietary fiber intake reduces risk for colorectal adenoma: A meta-analysis. Gastroenterology 2014, 146, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Michels, K.B.; Fuchs, C.S.; Giovannucci, E.; Colditz, G.A.; Hunter, D.J.; Stampfer, M.J.; Willett, W.C. Fiber intake and incidence of colorectal cancer among 76,947 women and 47,279 men. Cancer Epidemiol. Biomark. Prev. 2005, 14, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Murphy, N.; Norat, T.; Ferrari, P.; Jenab, M.; Bueno-de-Mesquita, B.; Skeie, G.; Dahm, C.C.; Overvad, K.; Olsen, A.; Tjonneland, A.; et al. Dietary fibre intake and risks of cancers of the colon and rectum in the european prospective investigation into cancer and nutrition (epic). PLoS ONE 2012, 7, e39361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerber, M. Omega-3 fatty acids and cancers: A systematic update review of epidemiological studies. Br. J. Nutr. 2012, 107, S228–S239. [Google Scholar] [CrossRef] [PubMed]
- Kunzmann, A.T.; Coleman, H.G.; Huang, W.Y.; Kitahara, C.M.; Cantwell, M.M.; Berndt, S.I. Dietary fiber intake and risk of colorectal cancer and incident and recurrent adenoma in the prostate, lung, colorectal, and ovarian cancer screening trial. Am. J. Clin. Nutr. 2015, 102, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Wakai, K.; Date, C.; Fukui, M.; Tamakoshi, K.; Watanabe, Y.; Hayakawa, N.; Kojima, M.; Kawado, M.; Suzuki, K.; Hashimoto, S.; et al. Dietary fiber and risk of colorectal cancer in the japan collaborative cohort study. Cancer Epidemiol. Biomark. Prev. 2007, 16, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Kono, S.; Yin, G.; Toyomura, K.; Nagano, J.; Mizoue, T.; Mibu, R.; Tanaka, M.; Kakeji, Y.; Maehara, Y.; et al. Dietary fiber, source foods and colorectal cancer risk: The fukuoka colorectal cancer study. Scand. J. Gastroenterol. 2010, 45, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Hunter, D.J.; Spiegelman, D.; Bergkvist, L.; Berrino, F.; van den Brandt, P.A.; Buring, J.E.; Colditz, G.A.; Freudenheim, J.L.; Fuchs, C.S.; et al. Dietary fiber intake and risk of colorectal cancer: A pooled analysis of prospective cohort studies. JAMA 2005, 294, 2849–2857. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Stampfer, M.J.; Colditz, G.A.; Rosner, B.A.; Speizer, F.E. Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective-study among women. N. Engl. J. Med. 1990, 323, 1664–1672. [Google Scholar] [CrossRef] [PubMed]
- Schatzkin, A.; Mouw, T.; Park, Y.; Subar, A.F.; Kipnis, V.; Hollenbeck, A.; Leitzmann, M.F.; Thompson, F.E. Dietary fiber and whole-grain consumption in relation to colorectal cancer in the nih-aarp diet and health study. Am. J. Clin. Nutr. 2007, 85, 1353–1360. [Google Scholar] [PubMed]
- Fuchs, C.S.; Giovannucci, E.L.; Colditz, G.A.; Hunter, D.J.; Stampfer, M.J.; Rosner, B.; Speizer, F.E.; Willett, W.C. Dietary fiber and the risk of colorectal cancer and adenoma in women. N. Engl. J. Med. 1999, 340, 169–176. [Google Scholar] [CrossRef] [PubMed]
- MacLean, C.H.; Newberry, S.J.; Mojica, W.A.; Khanna, P.; Issa, A.M.; Suttorp, M.J.; Lim, Y.W.; Traina, S.B.; Hilton, L.; Garland, R.; et al. Effects of omega-3 fatty acids on cancer risk: A systematic review. JAMA 2006, 295, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Daniel, C.R.; McCullough, M.L.; Patel, R.C.; Jacobs, E.J.; Flanders, W.D.; Thun, M.J.; Calle, E.E. Dietary intake of omega-6 and omega-3 fatty acids and risk of colorectal cancer in a prospective cohort of US men and women. Cancer Epidemiol. Biomark. Prev. 2009, 18, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Kantor, E.D.; Lampe, J.W.; Peters, U.; Vaughan, T.L.; White, E. Long-chain omega-3 polyunsaturated fatty acid intake and risk of colorectal cancer. Nutr. Cancer 2014, 66, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Ward, H.A.; Norat, T.; Overvad, K.; Dahm, C.C.; Bueno-de-Mesquita, H.B.; Jenab, M.; Fedirko, V.; van Duijnhoven, F.J.; Skeie, G.; Romaguera-Bosch, D.; et al. Pre-diagnostic meat and fibre intakes in relation to colorectal cancer survival in the european prospective investigation into cancer and nutrition. Br. J. Nutr. 2016, 116, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, S.; Liu, J. Fiber consumption and all-cause, cardiovascular, and cancer mortalities: A systematic review and meta-analysis of cohort studies. Mol. Nutr. Food Res. 2015, 59, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Hajishafiee, M.; Saneei, P.; Benisi-Kohansal, S.; Esmaillzadeh, A. Cereal fibre intake and risk of mortality from all causes, cvd, cancer and inflammatory diseases: A systematic review and meta-analysis of prospective cohort studies. Br. J. Nutr. 2016, 116, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Chan, A.T.; Fuchs, C.S.; Ogino, S.; Hu, F.B.; Mozaffarian, D.; Ma, J.; Willett, W.C.; Giovannucci, E.L.; Wu, K. Dietary intake of fish, omega-3 and omega-6 fatty acids and risk of colorectal cancer: A prospective study in U.S. Men and women. Int. J. Cancer 2014, 135, 2413–2423. [Google Scholar] [CrossRef] [PubMed]
- Kraja, B.; Muka, T.; Ruiter, R.; de Keyser, C.E.; Hofman, A.; Franco, O.H.; Stricker, B.H.; Kiefte-de Jong, J.C. Dietary fiber intake modifies the positive association between n-3 pufa intake and colorectal cancer risk in a Caucasian population. J. Nutr. 2015, 145, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Trock, B.; Lanza, E.; Greenwald, P. Dietary fiber, vegetables, and colon cancer: Critical review and meta-analyses of the epidemiologic evidence. J. Natl. Cancer Inst. 1990, 82, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Vargas, A.J.; Neuhouser, M.L.; George, S.M.; Thomson, C.A.; Ho, G.Y.; Rohan, T.E.; Kato, I.; Nassir, R.; Hou, L.; Manson, J.E. Diet quality and colorectal cancer risk in the women’s health initiative observational study. Am. J. Epidemiol. 2016, 184, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Makarem, N.; Nicholson, J.M.; Bandera, E.V.; McKeown, N.M.; Parekh, N. Consumption of whole grains and cereal fiber in relation to cancer risk: A systematic review of longitudinal studies. Nutr. Rev. 2016, 74, 353–373. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Chan, D.S.; Lau, R.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2011, 343, d6617. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Lau, R.; Chan, D.S.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Nonlinear reduction in risk for colorectal cancer by fruit and vegetable intake based on meta-analysis of prospective studies. Gastroenterology 2011, 141, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Beresford, S.A.; Johnson, K.C.; Ritenbaugh, C.; Lasser, N.L.; Snetselaar, L.G.; Black, H.R.; Anderson, G.L.; Assaf, A.R.; Bassford, T.; Bowen, D.; et al. Low-fat dietary pattern and risk of colorectal cancer: The women’s health initiative randomized controlled dietary modification trial. JAMA 2006, 295, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Donohoe, D.R.; Bultman, S.J. Metaboloepigenetics: Interrelationships between energy metabolism and epigenetic control of gene expression. J. Cell. Physiol. 2012, 227, 3169–3177. [Google Scholar] [CrossRef] [PubMed]
- Donohoe, D.R.; Garge, N.; Zhang, X.X.; Sun, W.; O’Connell, T.M.; Bunger, M.K.; Bultman, S.J. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011, 13, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Kolar, S.; Barhoumi, R.; Jones, C.K.; Wesley, J.; Lupton, J.R.; Fan, Y.Y.; Chapkin, R.S. Interactive effects of fatty acid and butyrate-induced mitochondrial Ca(2)(+) loading and apoptosis in colonocytes. Cancer 2011, 117, 5294–5303. [Google Scholar] [CrossRef] [PubMed]
- Kansal, S.; Negi, A.K.; Bhatnagar, A.; Agnihotri, N. Ras signaling pathway in the chemopreventive action of different ratios of fish oil and corn oil in experimentally induced colon carcinogenesis. Nutr. Cancer 2012, 64, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Kolar, S.S.; Barhoumi, R.; Callaway, E.S.; Fan, Y.Y.; Wang, N.; Lupton, J.R.; Chapkin, R.S. Synergy between docosahexaenoic acid and butyrate elicits p53-independent apoptosis via mitochondrial Ca(2+) accumulation in colonocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G935–G943. [Google Scholar] [CrossRef] [PubMed]
- Kolar, S.S.; Barhoumi, R.; Lupton, J.R.; Chapkin, R.S. Docosahexaenoic acid and butyrate synergistically induce colonocyte apoptosis by enhancing mitochondrial Ca2+ accumulation. Cancer Res. 2007, 67, 5561–5568. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.; Barhoumi, R.; Tjalkens, R.B.; Fan, Y.Y.; Kolar, S.; Wang, N.; Lupton, J.R.; Chapkin, R.S. The role of docosahexaenoic acid in mediating mitochondrial membrane lipid oxidation and apoptosis in colonocytes. Carcinogenesis 2005, 26, 1914–1921. [Google Scholar] [CrossRef] [PubMed]
- Hooda, S.; Boler, B.M.; Serao, M.C.; Brulc, J.M.; Staeger, M.A.; Boileau, T.W.; Dowd, S.E.; Fahey, G.C., Jr.; Swanson, K.S. 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J. Nutr. 2012, 142, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.B.; Bruce, S.J.; Blondel-Lubrano, A.; Oguey-Araymon, S.; Beaumont, M.; Bourgeois, A.; Nielsen-Moennoz, C.; Vigo, M.; Fay, L.B.; Kochhar, S.; et al. A whole-grain cereal-rich diet increases plasma betaine, and tends to decrease total and ldl-cholesterol compared with a refined-grain diet in healthy subjects. Br. J. Nutr. 2011, 105, 1492–1502. [Google Scholar] [CrossRef] [PubMed]
- Costabile, A.; Klinder, A.; Fava, F.; Napolitano, A.; Fogliano, V.; Leonard, C.; Gibson, G.R.; Tuohy, K.M. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: A double-blind, placebo-controlled, crossover study. Br. J. Nutr. 2008, 99, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Finley, J.W.; Burrell, J.B.; Reeves, P.G. Pinto bean consumption changes scfa profiles in fecal fermentations, bacterial populations of the lower bowel, and lipid profiles in blood of humans. J. Nutr. 2007, 137, 2391–2398. [Google Scholar] [PubMed]
- Smith, S.C.; Choy, R.; Johnson, S.K.; Hall, R.S.; Wildeboer-Veloo, A.C.; Welling, G.W. Lupin kernel fiber consumption modifies fecal microbiota in healthy men as determined by rrna gene fluorescent in situ hybridization. Eur. J. Nutr. 2006, 45, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.K.; Chua, V.; Hall, R.S.; Baxter, A.L. Lupin kernel fibre foods improve bowel function and beneficially modify some putative faecal risk factors for colon cancer in men. Br. J. Nutr. 2006, 95, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Tuohy, K.M.; Kolida, S.; Lustenberger, A.M.; Gibson, G.R. The prebiotic effects of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides—A human volunteer study. Br. J. Nutr. 2001, 86, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Hylla, S.; Gostner, A.; Dusel, G.; Anger, H.; Bartram, H.P.; Christl, S.U.; Kasper, H.; Scheppach, W. Effects of resistant starch on the colon in healthy volunteers: Possible implications for cancer prevention. Am. J. Clin. Nutr. 1998, 67, 136–142. [Google Scholar] [PubMed]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Faust, K.; Sathirapongsasuti, J.F.; Izard, J.; Segata, N.; Gevers, D.; Raes, J.; Huttenhower, C. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 2012, 8, e1002606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozupone, C.; Faust, K.; Raes, J.; Faith, J.J.; Frank, D.N.; Zaneveld, J.; Gordon, J.I.; Knight, R. Identifying genomic and metabolic features that can underline early successional and opportunistic lifestyles of human gut symbionts. Genome Res. 2012, 22, 1974–1984. [Google Scholar] [CrossRef] [PubMed]
- Bolca, S.; van de Wiele, T.; Possemiers, S. Gut metabotypes govern health effects of dietary polyphenols. Curr. Opin. Biotechnol. 2013, 24, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Heinzmann, S.S.; Merrifield, C.A.; Rezzi, S.; Kochhar, S.; Lindon, J.C.; Holmes, E.; Nicholson, J.K. Stability and robustness of human metabolic phenotypes in response to sequential food challenges. J. Proteome Res. 2012, 11, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Cai, G.; Qiu, Y.; Fei, N.; Zhang, M.; Pang, X.; Jia, W.; Cai, S.; Zhao, L. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012, 6, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Weir, T.L.; Manter, D.K.; Sheflin, A.M.; Barnett, B.A.; Heuberger, A.L.; Ryan, E.P. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS ONE 2013, 8, e70803. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Yang, X.; Zhang, R.; Li, J.; Xiao, X.; Hu, Y.; Chen, Y.; Yang, F.; Lu, N.; Wang, Z.; et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb. Ecol. 2013, 66, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Importance of the omega-6/omega-3 balance in health and disease: Evolutionary aspects of diet. World Rev. Nutr. Diet. 2011, 102, 10–21. [Google Scholar] [PubMed]
- Strobel, C.; Jahreis, G.; Kuhnt, K. Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products. Lipids Health Dis. 2012, 11, 144. [Google Scholar] [CrossRef] [PubMed]
- Skender, B.; Hyrslova Vaculova, A.; Hofmanova, J. Docosahexaenoic fatty acid (dha) in the regulation of colon cell growth and cell death: A review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2012, 156, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Azer, S.A. Overview of molecular pathways in inflammatory bowel disease associated with colorectal cancer development. Eur. J. Gastroenterol. Hepatol. 2012, 25, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Cockbain, A.J.; Toogood, G.J.; Hull, M.A. Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut 2012, 61, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.C.; Chapkin, R.S.; Lupton, J.R. Predictive value of proliferation, differentiation and apoptosis as intermediate markers for colon tumorigenesis. Carcinogenesis 1997, 18, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Sanders, L.M.; Henderson, C.E.; Hong, M.Y.; Barhoumi, R.; Burghardt, R.C.; Wang, N.; Spinka, C.M.; Carroll, R.J.; Turner, N.D.; Chapkin, R.S.; et al. An increase in reactive oxygen species by dietary fish oil coupled with the attenuation of antioxidant defenses by dietary pectin enhances rat colonocyte apoptosis. J. Nutr. 2004, 134, 3233–3238. [Google Scholar] [PubMed]
- Vanamala, J.; Glagolenko, A.; Yang, P.; Carroll, R.J.; Murphy, M.E.; Newman, R.A.; Ford, J.R.; Braby, L.A.; Chapkin, R.S.; Turner, N.D.; et al. Dietary fish oil and pectin enhance colonocyte apoptosis in part through suppression of ppardelta/pge2 and elevation of pge3. Carcinogenesis 2008, 29, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Crim, K.C.; Sanders, L.M.; Hong, M.Y.; Taddeo, S.S.; Turner, N.D.; Chapkin, R.S.; Lupton, J.R. Upregulation of p21waf1/cip1 expression in vivo by butyrate administration can be chemoprotective or chemopromotive depending on the lipid component of the diet. Carcinogenesis 2008, 29, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Kim, H.; Turner, N.D.; Mann, J.C.; Wei, J.; Taddeo, S.S.; Davidson, L.A.; Wang, N.; Vannucci, M.; Carroll, R.J.; et al. A chemoprotective fish oil- and pectin-containing diet temporally alters gene expression profiles in exfoliated rat colonocytes throughout oncogenesis. J. Nutr. 2011, 141, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- The Women’s Health Initiative Study Group. Design of the women’s health initiative clinical trial and observational study. Control. Clin. Trials 1998, 19, 61–109. [Google Scholar]
- Anderson, G.L.; Manson, J.; Wallace, R.; Lund, B.; Hall, D.; Davis, S.; Shumaker, S.; Wang, C.Y.; Stein, E.; Prentice, R.L. Implementation of the women’s health initiative study design. Ann. Epidemiol. 2003, 13, S5–S17. [Google Scholar] [CrossRef]
- Langer, R.D.; White, E.; Lewis, C.E.; Kotchen, J.M.; Hendrix, S.L.; Trevisan, M. The women’s health initiative observational study: Baseline characteristics of participants and reliability of baseline measures. Ann. Epidemiol. 2003, 13, S107–S121. [Google Scholar] [CrossRef]
- Hays, J.; Hunt, J.R.; Hubbell, F.A.; Anderson, G.L.; Limacher, M.; Allen, C.; Rossouw, J.E. The women’s health initiative recruitment methods and results. Ann. Epidemiol. 2003, 13, S18–S77. [Google Scholar] [CrossRef]
- Patterson, R.E.; Kristal, A.R.; Tinker, L.F.; Carter, R.A.; Bolton, M.P.; Agurs-Collins, T. Measurement characteristics of the women’s health initiative food frequency questionnaire. Ann. Epidemiol. 1999, 9, 178–187. [Google Scholar] [CrossRef]
- Curb, J.D.; McTiernan, A.; Heckbert, S.R.; Kooperberg, C.; Stanford, J.; Nevitt, M.; Johnson, K.C.; Proulx-Burns, L.; Pastore, L.; Criqui, M.; et al. Outcomes ascertainment and adjudication methods in the women’s health initiative. Ann. Epidemiol. 2003, 13, S122–S128. [Google Scholar] [CrossRef]
- Haggar, F.A.; Boushey, R.P. Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors. Clin. Colon Rectal Surg. 2009, 22, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Edwards, B.K.; Ward, E.; Kohler, B.A.; Eheman, C.; Zauber, A.G.; Anderson, R.N.; Jemal, A.; Schymura, M.J.; Lansdorp-Vogelaar, I.; Seeff, L.C.; et al. Annual report to the nation on the status of cancer, 1975–2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer 2010, 116, 544–573. [Google Scholar] [CrossRef] [PubMed]
- National Academy of Sciences-Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academy Press: Washington, DC, USA, 2005. [Google Scholar]
- American Institute For Cancer Research. Available online: http://www.Aicr.Org/continuous-update-project/colorectal-cancer.Html (accessed on 4 November 2016).
- Bingham, S.A. Diet and large bowel cancer. J. R. Soc. Med. 1990, 83, 420–422. [Google Scholar] [PubMed]
- Young, G.P.; Hu, Y.; Le Leu, R.K.; Nyskohus, L. Dietary fibre and colorectal cancer: A model for environment--gene interactions. Mol. Nutr. Food Res. 2005, 49, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J.L. Dietary fiber and body weight. Nutrition 2005, 21, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Donohoe, D.R.; Collins, L.B.; Wali, A.; Bigler, R.; Sun, W.; Bultman, S.J. The warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 2012, 48, 612–626. [Google Scholar] [CrossRef] [PubMed]
- Bultman, S.J. Molecular pathways: Gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin. Cancer Res. 2014, 20, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Triff, K.; Kim, E.; Chapkin, R.S. Chemoprotective epigenetic mechanisms in a colorectal cancer model: Modulation by n-3 pufa in combination with fermentable fiber. Curr. Pharmacol. Rep. 2015, 1, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Chapkin, R.S.; Seo, J.; McMurray, D.N.; Lupton, J.R. Mechanisms by which docosahexaenoic acid and related fatty acids reduce colon cancer risk and inflammatory disorders of the intestine. Chem. Phys. Lipids 2008, 153, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Levi, F.; Pasche, C.; Lucchini, F.; la Vecchia, C. Dietary fibre and the risk of colorectal cancer. Eur. J. Cancer 2001, 37, 2091–2096. [Google Scholar] [CrossRef]
- Freudenheim, J.L.; Graham, S.; Horvath, P.J.; Marshall, J.R.; Haughey, B.P.; Wilkinson, G. Risks associated with source of fiber and fiber components in cancer of the colon and rectum. Cancer Res. 1990, 50, 3295–3300. [Google Scholar] [PubMed]
- Le Marchand, L.; Hankin, J.H.; Wilkens, L.R.; Kolonel, L.N.; Englyst, H.N.; Lyu, L.C. Dietary fiber and colorectal cancer risk. Epidemiology 1997, 8, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Negri, E.; Franceschi, S.; Parpinel, M.; La Vecchia, C. Fiber intake and risk of colorectal cancer. Cancer Epidemiol. Biomark. Prev. 1998, 7, 667–671. [Google Scholar]
- Turk, H.F.; Monk, J.M.; Fan, Y.Y.; Callaway, E.S.; Weeks, B.; Chapkin, R.S. Inhibitory effects of omega-3 fatty acids on injury-induced epidermal growth factor receptor transactivation contribute to delayed wound healing. Am. J. Physiol. Cell Physiol. 2013, 304, C905–C917. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Kumlin, M.; Ingelman-Sundberg, M.; Wolk, A. Dietary long-chain n-3 fatty acids for the prevention of cancer: A review of potential mechanisms. Am. J. Clin. Nutr. 2004, 79, 935–945. [Google Scholar] [PubMed]
- Wu, S.; Feng, B.; Li, K.; Zhu, X.; Liang, S.; Liu, X.; Han, S.; Wang, B.; Wu, K.; Miao, D.; et al. Fish consumption and colorectal cancer risk in humans: A systematic review and meta-analysis. Am. J. Med. 2012, 125, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Geelen, A.; Schouten, J.M.; Kamphuis, C.; Stam, B.E.; Burema, J.; Renkema, J.M.; Bakker, E.J.; van’t Veer, P.; Kampman, E. Fish consumption, n-3 fatty acids, and colorectal cancer: A meta-analysis of prospective cohort studies. Am. J. Epidemiol. 2007, 166, 1116–1125. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Zhang, X.; Meyerhardt, J.A.; Giovannucci, E.L.; Ogino, S.; Fuchs, C.S.; Chan, A.T. Marine omega-3 polyunsaturated fatty acid intake and survival after colorectal cancer diagnosis. Gut 2016. [Google Scholar] [CrossRef] [PubMed]
- Vannice, G.; Rasmussen, H. Position of the academy of nutrition and dietetics: Dietary fatty acids for healthy adults. J. Acad. Nutr. Diet. 2014, 114, 136–153. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.H.; Lupton, J.R.; Chapkin, R.S. Dietary fat and fiber modulate the effect of carcinogen on colonic protein kinase c lambda expression in rats. J. Nutr. 1997, 127, 1938–1943. [Google Scholar] [PubMed]
- Fan, Y.Y.; Ran, Q.; Toyokuni, S.; Okazaki, Y.; Callaway, E.S.; Lupton, J.R.; Chapkin, R.S. Dietary fish oil promotes colonic apoptosis and mitochondrial proton leak in oxidatively stressed mice. Cancer Prev. Res. 2011, 4, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Orlich, M.J.; Singh, P.N.; Sabate, J.; Fan, J.; Sveen, L.; Bennett, H.; Knutsen, S.F.; Beeson, W.L.; Jaceldo-Siegl, K.; Butler, T.L.; et al. Vegetarian dietary patterns and the risk of colorectal cancers. JAMA Intern. Med. 2015, 175, 767–776. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, S.J.; Li, J.V.; Lahti, L.; Ou, J.; Carbonero, F.; Mohammed, K.; Posma, J.M.; Kinross, J.; Wahl, E.; Ruder, E.; et al. Fat, fibre and cancer risk in African americans and rural Africans. Nat. Commun. 2015, 6, 6342. [Google Scholar] [CrossRef] [PubMed]
- Kato, I.; Majumdar, A.P.; Land, S.J.; Barnholtz-Sloan, J.S.; Severson, R.K. Dietary fatty acids, luminal modifiers, and risk of colorectal cancer. Int. J. Cancer 2010, 127, 942–951. [Google Scholar] [CrossRef] [PubMed]
- US Department of Agriculture, Agriculture Research Services. Nutrient Intakes from Food: Mean Amounts Consumed per Individual, by Gender and Age. Available online: http://www.ars.usda.gov/ba/bhnrc/fsrg (accessed on 4 November 2016).
- Kristal, A.R.; Shattuck, A.L.; Williams, A.E. Food Frequency Questionnaires for Diet Intervention Research. In Proceedings of the 17th National Nutrient Databank Conference, Baltimore, MD, USA, 7–10 June 1992.
- Satia-Abouta, J.; Kristal, A.R.; Patterson, R.E.; Littman, A.J.; Stratton, K.L.; White, E. Dietary supplement use and medical conditions: The vital study. Am. J. Prev. Med. 2003, 24, 43–51. [Google Scholar] [CrossRef]
- Fasano, E.; Serini, S.; Cittadini, A.; Calviello, G. Long-chain n-3 pufa against breast and prostate cancer: Which are the appropriate doses for intervention studies in animals and humans? Crit. Rev. Food Sci. Nutr. 2015. [Google Scholar] [CrossRef] [PubMed]
- Vece, M.M.; Agnoli, C.; Grioni, S.; Sieri, S.; Pala, V.; Pellegrini, N.; Frasca, G.; Tumino, R.; Mattiello, A.; Panico, S.; et al. Dietary total antioxidant capacity and colorectal cancer in the italian epic cohort. PLoS ONE 2015, 10, e0142995. [Google Scholar] [CrossRef] [PubMed]
- La Vecchia, C.; Decarli, A.; Serafini, M.; Parpinel, M.; Bellocco, R.; Galeone, C.; Bosetti, C.; Zucchetto, A.; Polesel, J.; Lagiou, P.; et al. Dietary total antioxidant capacity and colorectal cancer: A large case-control study in italy. Int. J. Cancer 2013, 133, 1447–1451. [Google Scholar] [CrossRef] [PubMed]
- Bjelakovic, G.; Nikolova, D.; Simonetti, R.G.; Gluud, C. Antioxidant supplements for prevention of gastrointestinal cancers: A systematic review and meta-analysis. Lancet 2004, 364, 1219–1228. [Google Scholar] [CrossRef]
Characteristic | Cases (n = 1952) | Non-Cases (n = 132,065) |
---|---|---|
Age, (years) | 66 (6.9) | 63 (7.3) |
Height (cm) | 162 (6.3) | 162 (6.4) |
Body mass index (kg/m2) | 28 (5.7) | 28 (5.5) |
Race (%) | ||
White | 85 | 84 |
Black | 9 | 8 |
Other/Unknown 2 | 6 | 8 |
Education (% college graduate) | 38 | 40 |
Screening colonoscopy (%) | 49 | 51 |
Family history of CRC (%) | 19 | 15 |
NSAID (% current use) | 17 | 19 |
Alcohol use at baseline (g/day) | 5 (11.3) | 5 (10.8) |
Never smokers (%) | 49 | 50 |
Physical activity (MET-h/week) 3 | 12 (12.6) | 13 (13.7) |
Ever used post-menopausal Hormone therapy (%) | 48 | 56 |
Dietary intake | ||
Total energy (kJ/day) | 6766 (2671) | 6787 (2642) |
Total fiber (g/day) | 16 (6.9) | 16 (6.9) |
Soluble fiber (g/day) | 4.3 (1.8) | 4.3 (1.8) |
Pectins (g/day) | 2.5 (1.2) | 2.5 ( 1.2) |
Insoluble fiber (g/day) | 11.5 (5.1) | 11.8 (5.1) |
Total fat (g/day) | 60 (32.7) | 59 (32.0) |
n-3 (g/day) | 1.41 (0.8) | 1.41 (0.8) |
DHA + EPA (g/day) | 0.12 (0.12) | 0.13 (0.12) |
n-6 (g/day) | 10.8 (6.2) | 10.7 (6.2) |
Linoleic acid (g/day) | 10.8 (6.2) | 10.7 (6.1) |
Linolenic acid (g/day) | 1.3 (0.7) | 1.3 (0.7) |
Calcium (mg/day) | 803 (439) | 827 (453) |
Folate (DFE, µg/day) | 478 (206) | 488 (207) |
Red meat (g/day) | 0.69 (0.57) | 0.67 (0.55) |
Quintiles of Dietary Intake | No. Cases | Person-Years | Multivariate Adjusted HR (95% CI) 1 |
---|---|---|---|
Total fiber (g/day) | |||
<10.3 | 420 | 302,828 | 1.00 (Reference) |
10.3–13.6 | 426 | 312,546 | 1.00 (0.87, 1.15) |
13.6–17.0 | 354 | 316,244 | 0.83 (0.71, 0.97) |
17.0–21.5 | 372 | 318,893 | 0.87 (0.74, 1.03) |
>21.5 | 380 | 318,844 | 0.90 (0.73, 1.10) |
p-trend | 0.09 | ||
Soluble fiber (g/day) | |||
<2.8 | 408 | 304,051 | 1.00 (Reference) |
2.8–3.7 | 409 | 312,599 | 0.97 (0.84, 1.12) |
3.7–4.6 | 361 | 316,928 | 0.85 (0.73, 1.00) |
4.6–5.8 | 410 | 318,628 | 0.96 (0.81, 1.13) |
>5.8 | 364 | 317,148 | 0.84 (0.69, 1.03) |
p-trend | 0.14 | ||
Insoluble fiber (g/day) | |||
<7.4 | 433 | 302,242 | 1.00 (Reference) |
7.4–9.8 | 413 | 312,804 | 0.93 (0.81, 1.07) |
9.8–12.3 | 357 | 316,721 | 0.81 (0.69, 0.94) |
12.3–15.7 | 370 | 318,704 | 0.84 (0.72, 1.00) |
>15.7 | 379 | 318,884 | 0.87 (0.72, 1.06) |
p-trend | 0.08 | ||
Pectin (g/day) | |||
<1.4 | 399 | 303,832 | 1.00 (Reference) |
1.4–2.0 | 397 | 313,746 | 0.97 (0.84, 1.12) |
2.0–2.6 | 379 | 316,302 | 0.92 (0.79, 1.06) |
2.6–3.5 | 396 | 318,847 | 0.97 (0.83, 1.13) |
>3.5 | 381 | 316,626 | 0.94 (0.80, 1.11) |
p-trend | 0.56 |
Quintiles of Dietary Intake | No. Cases | Person-Years | Multivariate Adjusted HR (95% CI) 1 |
---|---|---|---|
Total fat (g/day) | |||
<33.1 | 345 | 309,005 | 1.00 (Reference) |
33.1–45.6 | 432 | 318,884 | 1.20 (1.04, 1.39) |
45.6–59.7 | 394 | 316,808 | 1.05 (0.90, 1.24) |
59.7–80.6 | 381 | 316,629 | 0.98 (0.82, 1.18) |
>80.6 | 400 | 313,067 | 0.98 (0.76, 1.27) |
p-trend | 0.44 | ||
n-6 PUFA (g/day) | |||
<5.9 | 375 | 309,046 | 1.00 (Reference) |
5.9–8.1 | 405 | 314,292 | 1.02 (0.88, 1.18) |
8.1–10.7 | 390 | 316,554 | 0.95 (0.81, 1.11) |
10.7–14.6 | 394 | 317,021 | 0.92 (0.78, 1.09) |
>14.6 | 388 | 312,441 | 0.84 (0.68, 1.05) |
p-trend | 0.10 | ||
n-3 PUFA (g/day) | |||
<0.80 | 401 | 308,532 | 1.00 (Reference) |
0.80–1.09 | 389 | 314,521 | 0.94 (0.82, 1.08) |
1.09–1.41 | 383 | 316,931 | 0.90 (0.78, 1.05) |
1.41–1.90 | 377 | 316,759 | 0.87 (0.75, 1.03) |
>1.90 | 402 | 312,611 | 0.90 (0.74, 1.09) |
p-trend | 0.16 | ||
DHA + EPA (g/day) | |||
<0.04 | 402 | 307,408 | 1.00 (Reference) |
0.04–0.07 | 389 | 312,402 | 0.97 (0.84, 1.12) |
0.07–0.11 | 393 | 315,998 | 0.98 (0.85, 1.13) |
0.11–0.18 | 389 | 318,148 | 0.99 (0.85, 1.14) |
>0.18 | 379 | 315,397 | 0.98 (0.84, 1.13) |
p-trend | 0.87 |
DHA + EPA (g/Day) | HR (95% CI) 1 | p-Trend 2 | ||||||
---|---|---|---|---|---|---|---|---|
Soluble fiber (g/day) | Q1 | Q2 | Q3 | Q4 | Q5 | |||
Q1 | 1.00 | 0.88 | 0.78 | 0.88 | 0.59 | 0.91 | 0.02 | |
(Ref) 3 | (0.68, 1.13) | (0.59, 1.04) | (0.65, 1.20) | (0.40, 0.88) | (0.84, 0.98) | |||
Q2 | 0.81 | 0.82 | 0.91 | 0.80 | 0.91 | 1.03 | 0.44 | |
(0.62, 1.06) | (0.63, 1.07) | (0.70, 1.18) | (0.60, 1.06) | (0.69, 1.23) | (0.96, 1.11) | |||
Q3 | 0.71 | 0.84 | 0.73 | 0.65 | 0.79 | 0.99 | 0.70 | |
(0.53, 0.96) | (0.63, 1.11) | (0.55, 0.97) | (0.48, 0.87) | (0.59, 1.06) | (0.91, 1.06) | |||
Q4 | 0.76 | 0.86 | 0.87 | 0.90 | 0.77 | 1.00 | 0.96 | |
(0.56, 1.05) | (0.65, 1.15) | (0.66, 1.15) | (0.68, 1.18) | (0.57, 1.02) | (0.93, 1.07) | |||
Q5 | 0.70 | 0.53 | 0.73 | 0.81 | 0.80 | 1.08 | 0.07 | |
(0.49, 1.01) | (0.37, 0.78) | (0.53, 1.00) | (0.60, 1.08) | (0.60, 1.08) | (1.00, 1.17) | |||
HR (95% CI) 1 | 0.97 | 0.90 | 1.02 | 0.99 | 1.00 | |||
(0.89, 1.08) | (0.81, 1.00) | (0.92, 1.13) | (0.89, 1.09) | (0.89, 1.11) | ||||
p-trend 2 | 0.62 | 0.05 | 0.72 | 0.80 | 0.95 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, S.L.; Neuhouser, M.L.; Cheng, T.-Y.D.; Tinker, L.F.; Shikany, J.M.; Snetselaar, L.; Martinez, J.A.; Kato, I.; Beresford, S.A.A.; Chapkin, R.S.; et al. The Interaction between Dietary Fiber and Fat and Risk of Colorectal Cancer in the Women’s Health Initiative. Nutrients 2016, 8, 779. https://doi.org/10.3390/nu8120779
Navarro SL, Neuhouser ML, Cheng T-YD, Tinker LF, Shikany JM, Snetselaar L, Martinez JA, Kato I, Beresford SAA, Chapkin RS, et al. The Interaction between Dietary Fiber and Fat and Risk of Colorectal Cancer in the Women’s Health Initiative. Nutrients. 2016; 8(12):779. https://doi.org/10.3390/nu8120779
Chicago/Turabian StyleNavarro, Sandi L., Marian L. Neuhouser, Ting-Yuan David Cheng, Lesley F. Tinker, James M. Shikany, Linda Snetselaar, Jessica A. Martinez, Ikuko Kato, Shirley A. A. Beresford, Robert S. Chapkin, and et al. 2016. "The Interaction between Dietary Fiber and Fat and Risk of Colorectal Cancer in the Women’s Health Initiative" Nutrients 8, no. 12: 779. https://doi.org/10.3390/nu8120779
APA StyleNavarro, S. L., Neuhouser, M. L., Cheng, T. -Y. D., Tinker, L. F., Shikany, J. M., Snetselaar, L., Martinez, J. A., Kato, I., Beresford, S. A. A., Chapkin, R. S., & Lampe, J. W. (2016). The Interaction between Dietary Fiber and Fat and Risk of Colorectal Cancer in the Women’s Health Initiative. Nutrients, 8(12), 779. https://doi.org/10.3390/nu8120779