Sweet Taste Receptor TAS1R2 Polymorphism (Val191Val) Is Associated with a Higher Carbohydrate Intake and Hypertriglyceridemia among the Population of West Mexico
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
2.2. Anthropometric Measurements
2.3. Dietary Assessment
2.4. Biochemical Tests
2.5. TAS1R2 Genotyping
2.6. Statistical Analyses
2.7. EthicalGuidelines
3. Results
3.1. Distribution of the TAS1R2 Gene Polymorphism and Characteristics of the Study Population
3.2. Daily Dietary Intake of the Study Population
3.3. Biochemical Profile
3.4. Lipid Profile and Association of TAS1R2 Genotype with Hypertriglyceridemia
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Roman, S.; Ojeda-Granados, C.; Ramos-Lopez, O.; Panduro, A. Genome-based nutrition: An intervention strategy for the prevention and treatment of obesity and nonalcoholic steatohepatitis. World J. Gastroenterol. 2015, 21, 3449–3461. [Google Scholar] [CrossRef] [PubMed]
- Román, S.; Ojeda-Granados, C.; Panduro, A. Genética y evolución de la alimentación de la población en México. Rev. Endocrinol. Nutr. 2013, 21, 42–51. [Google Scholar]
- Barrera-Cruz, A.; Rodríguez-González, A.; Molina-Ayala, M.A. Escenario actual de la obesidad en México. Rev. Med. Inst. Mex. Segurol. Soc. 2013, 51, 292–299. [Google Scholar]
- Ramos-López, O.; Román, S.; Ojeda-Granados, C.; Sepúlveda-Villegas, M.; Martínez-López, E.; Torres-Valadez, R.; Trujillo-Trujillo, E.; Panduro, A. Patrón de ingesta alimentaria y actividad física en pacientes hepatópatas en el Occidente de México. Rev. Endocrinol. Nutr. 2013, 21, 7–15. [Google Scholar]
- Ramos-López, O.; Ojeda-Granados, C.; Román, S.; Panduro, A. Influencia genética en las preferencias alimentarias. Rev. Endocrinol. Nutr. 2013, 21, 74–83. [Google Scholar]
- Flores, M.; Macias, N.; Rivera, M.; Lozada, A.; Barquera, S.; Rivera-Dommarco, J.; Tucker, K.L. Dietary patterns in Mexican adults are associated with risk of being overweight or obese. J. Nutr. 2010, 140, 1869–1873. [Google Scholar] [CrossRef] [PubMed]
- Rtveladze, K.; Marsh, T.; Barquera, S.; Sanchez, R.L.M.; Levy, D.; Melendez, G.; Webber, L.; Kilpi, F.; McPherson, K.; Brown, M. Obesity prevalence in Mexico: Impact on health and economic burden. Public Health Nutr. 2014, 17, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Parks, E.J.; Hellerstein, M.K. Carbohydrate-induced hypertriacylglycerolemia: Historical perspective and review of biological mechanisms. Am. J. Clin. Nutr. 2000, 71, 412–433. [Google Scholar] [PubMed]
- Rutledge, J.C.; Hyson, D.A.; Garduno, D.; Cort, D.A.; Paumer, L.; Kappagoda, C.T. Lifestyle modification program in management of patients with coronary artery disease: The clinical experience in a tertiary care hospital. J. Cardiopulm. Rehabil. 1999, 19, 226–234. [Google Scholar] [CrossRef]
- Hudgins, L.C. Effect of high-carbohydrate feeding on triglyceride and saturated fatty acid synthesis. Proc. Soc. Exp. Biol. Med. 2000, 225, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Hudgins, L.C.; Hellerstein, M.; Seidman, C.; Neese, R.; Diakun, J.; Hirsch, J. Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J. Clin. Investig. 1996, 97, 2081–2091. [Google Scholar] [CrossRef] [PubMed]
- Fried, S.K.; Rao, S.P. Sugars, hypertriglyceridemia, and cardiovascular disease. Am. J. Clin. Nutr. 2003, 78, 873S–880S. [Google Scholar] [PubMed]
- Subramanian, S.; Chait, A. Hypertriglyceridemia secondary to obesity and diabetes. Biochim. Biophys. Acta 2012, 1821, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Schult, A.; Eriksson, H.; Wallerstedt, S.; Kaczynski, J. Overweight and hypertriglyceridemia are risk factors for liver cirrhosis in middle-aged Swedish men. Scand. J. Gastroenterol. 2011, 46, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Salinas, C.A.; Canizales-Quinteros, S.; Rojas-Martínez, R.; García-García, E.; Olaiz-Fernández, G.; Gómez-Pérez, F.J.; Tusié-Luna, M.T. Colaboraciones exitosas entre tres instituciones mexicanas en el estudio de las dislipidemias, la obesidad y la diabetes. Gac. Méd. Méx. 2007, 143, 355–364. [Google Scholar] [PubMed]
- Gómez-Dantés, O.; Sesma, S.; Becerril, V.M.; Knaul, F.M.; Arreola, H.; Frenk, J. Sistema de salud de México. Salud Publica Mex. 2011, 53, 220–232. [Google Scholar]
- Garcia-Bailo, B.; Toguri, C.; Eny, M.; El-Sohemy, A. Genetic variation in taste and its influence on food selection. OMICS 2009, 13, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Bachmanov, A.A.; Bosak, N.P.; Floriano, W.B.; Inoue, M.; Li, X.; Lin, C.; Murovets, V.O.; Reed, D.R.; Zolotarev, V.A.; Beauchamp, G.K. Genetics of sweet taste preferences. Flavour Fragr. J. 2011, 26, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Jiang, P.; Maillet, E.; Max, M.; Margolskee, R.F.; Osman, R. The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr. Pharm. Des. 2006, 12, 4591–4600. [Google Scholar] [CrossRef] [PubMed]
- Toda, Y.; Nakagita, T.; Hayakawa, T.; Okada, S.; Narukawa, M.; Imai, H.; Ishimaru, Y.; Misaka, T. Two distinct determinants of ligand specificity in T1R1/T1R3 (the umami taste receptor). J. Biol. Chem. 2013, 288, 36863–36877. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A. Taste preferences and food intake. Annu. Rev. Nutr. 1997, 17, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Schultz, P.G. Three sweet receptor genes are clustered in human chromosome 1. Mamm. Genome 2003, 14, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.K.; Wooding, S.; Riaz, N.; Jorde, L.B.; Drayna, D. Variation in the human TAS1R taste receptor genes. Chem. Senses 2006, 31, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Eny, K.M.; Wolever, T.M.; Corey, P.N.; El-Sohemy, A. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. Am. J. Clin. Nutr. 2010, 92, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, A.J.; Morrissette, H.; Gagné, J.M.; Bergeron, J.; Gagné, C.; Couture, P. Validation of the Friedewald formula for the determination of low-density lipoprotein cholesterol compared with beta-quantification in a large population. Clin. Biochem. 2004, 37, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Secretaría de Salud. Norma Oficial Mexicana NOM-037-SSA2–2002, Para la Prevención, Tratamiento y Control de las Dislipidemias. Available online: Http://www.dof.gob.mx/nota_detalle.php?codigo=5285372&fecha=22/01/2013NOM (accessed on 5 June 2015).
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Barojas, S. Fórmulas para el cálculo de la muestra en investigaciones de salud. Salud en Tabasco 2005, 11, 333–338. [Google Scholar]
- Ramos-Lopez, O.; Martinez-Lopez, E.; Roman, S.; Fierro, N.A.; Panduro, A. Genetic, metabolic and environmental factors involved in the development of liver cirrhosis in Mexico. World J. Gastroenterol. 2015, 21, 11552–11566. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Villalobos, H.; Muñoz-Valle, J.F.; González-Martín, A.; Gorostiza, A.; Magaña, M.T.; Páez-Riberos, L.A. Genetic admixture, relatedness, and structure patterns among Mexican populations revealed by the Y-chromosome. Am. J. Phys. Anthropol. 2008, 135, 448–461. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cortés, G.; Salazar-Flores, J.; Haro-Guerrero, J.; Rubi-Castellanos, R.; Velarde-Félix, J.S.; Muñoz-Valle, J.F.; López-Casamichana, M.; Carrillo-Tapia, E.; Canseco-Avila, L.M.; Bravi, C.M.; et al. Maternal admixture and population structure in Mexican-Mestizos based on mtDNA haplogroups. Am. J. Phys. Anthropol. 2013, 151, 526–537. [Google Scholar] [CrossRef] [PubMed]
- International HapMap Consortium. The International HapMap Project. Nature 2003, 426, 789–796. [Google Scholar]
- Rubi-Castellanos, R.; Martínez-Cortés, G.; Muñoz-Valle, J.F.; González-Martín, A.; Cerda-Flores, R.M.; Anaya-Palafox, M.; Rangel-Villalobos, H. Pre-Hispanic Mesoamerican demography approximates the present-day ancestry of Mestizos throughout the territory of Mexico. Am. J. Phys. Anthropol. 2009, 139, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Aceves, D.; Ruiz, B.; Nuño, P.; Roman, S.; Zepeda, E.; Panduro, A. Heterogeneity of apolipoprotein E polymorphism in different Mexican populations. Hum. Biol. 2006, 78, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lopez, E.; Garcia-Garcia, M.R.; Gonzalez-Avalos, J.M.; Maldonado-Gonzalez, M.; Ruiz-Madrigal, B.; Vizmanos, B.; Hernandez-Nazara, Z.; Roman, S.; Panduro, A. Effect of Ala54Thr polymorphism of FABP2 on anthropometric and biochemical variables in response to a moderate-fat diet. Nutrition 2013, 29, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Lopez, O.; Panduro, A.; Martinez-Lopez, E.; Fierro, N.A.; Ojeda-Granados, C.; Sepulveda-Villegas, M.; Roman, S. Genetic variant in the CD36 Gene (rs1761667) is associated with higher fat intake and high serum cholesterol among the population of West Mexico. J. Nutr. Food Sci. 2015, 5, 353. [Google Scholar]
- Ramos-Lopez, O.; Roman, S.; Martinez-Lopez, E.; Gonzalez-Aldaco, K.; Ojeda-Granados, C.; Sepulveda-Villegas, M.; Panduro, A. Association of a novel TAS2R38 haplotype with alcohol intake among Mexican-Mestizo population. Ann. Hepatol. 2015, 14, 729–734. [Google Scholar] [PubMed]
- Roman, S.; Zepeda-Carrillo, E.A.; Moreno-Luna, L.E.; Panduro, A. Alcoholism and liver disease in Mexico: Genetic and environmental factors. World J. Gastroenterol. 2013, 19, 7972–7982. [Google Scholar] [CrossRef] [PubMed]
- Salguero, M.L.; Leon, R.E.; Santos, A.; Roman, S.; Segura-Ortega, J.E. The role of FABP2 gene polymorphism in alcoholic cirrhosis. Hepatol. Res. 2005, 33, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.G.; Eny, K.M.; Cockburn, M.; Chiu, W.; Nielsen, D.E.; Duizer, L.; El-Sohemy, A. Variation in the TAS1R2 Gene, Sweet Taste Perception and Intake of Sugars. J. Nutrigenet. Nutrigenomics 2015, 8, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Izakovicova Holla, L.; Borilova Linhartova, P.; Lucanova, S.; Kastovsky, J.; Musilova, K.; Bartosova, M.; Kukletova, M.; Kukla, L.; Dusek, L. GLUT2 and TAS1R2 Polymorphisms and Susceptibility to Dental Caries. Caries Res. 2015, 49, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Haznedaroğlu, E.; Koldemir-Gündüz, M.; Bakır-Coşkun, N.; Bozkuş, H.M.; Çağatay, P.; Süsleyici-Duman, B.; Menteş, A. Association of sweet taste receptor gene polymorphisms with dental caries experience in school children. Caries Res. 2015, 49, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Robino, A.; Bevilacqua, L.; Pirastu, N.; Situlin, R.; Di Lenarda, R.; Gasparini, P.; Navarra, C.O. Polymorphisms in sweet taste genes (TAS1R2 and GLUT2), sweet liking, and dental caries prevalence in an adult Italian population. Genes Nutr. 2015, 10, 485. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Vigues, S.; Hobbs, J.R.; Conn, G.L.; Munger, S.D. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli. Curr. Biol. 2005, 15, 1948–1952. [Google Scholar] [CrossRef] [PubMed]
- Pin, J.P.; Galvez, T.; Prézeau, L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther. 2003, 98, 325–354. [Google Scholar] [CrossRef]
- Xu, H.; Staszewski, L.; Tang, H.; Adler, E.; Zoller, M.; Li, X. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc. Natl. Acad. Sci. USA 2004, 101, 14258–14263. [Google Scholar] [CrossRef] [PubMed]
- Salanti, G.; Southam, L.; Altshuler, D.; Ardlie, K.; Barroso, I.; Boehnke, M.; Cornelis, M.C.; Frayling, T.M.; Grallert, H.; Grarup, N.; et al. Underlying genetic models of inheritance in established type 2 diabetes associations. Am. J. Epidemiol. 2009, 170, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Benítez, M.A.; Bonnefond, A.; Yengo, L.; Huyvaert, M.; Dechaume, A.; Peralta-Romero, J.; Klünder-Klünder, M.; García Mena, J.; El-Sayed Moustafa, J.S.; Falchi, M.; et al. Beneficial effect of a high number of copies of salivary amylase AMY1 gene on obesity risk in Mexican children. Diabetologia 2015, 58, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Parks, E.J. Effect of dietary carbohydrate on triglyceride metabolism in humans. J. Nutr. 2001, 131, 2772S–2774S. [Google Scholar] [PubMed]
- Roberts, R.; Bickerton, A.S.; Fielding, B.A.; Blaak, E.E.; Wagenmakers, A.J.; Chong, M.F.; Gilbert, M.; Karpe, F.; Frayn, K.N. Reduced oxidation of dietary fat after a short term high-carbohydrate diet. Am. J. Clin. Nutr. 2008, 87, 824–831. [Google Scholar] [PubMed]
- Chong, M.F.; Fielding, B.A.; Frayn, K.N. Metabolic interaction of dietary sugars and plasma lipids with a focus on mechanisms and de novo lipogenesis. Proc. Nutr. Soc. 2007, 66, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Hudgins, L.C.; Hellerstein, M.K.; Seidman, C.E.; Neese, R.A.; Tremaroli, J.D.; Hirsch, J. Relationship between carbohydrate-induced hypertriglyceridemia and fatty acid synthesis in lean and obese subjects. J. Lipid Res. 2000, 41, 595–604. [Google Scholar] [PubMed]
- Schwarz, J.M.; Linfoot, P.; Dare, D.; Aghajanian, K. Hepatic de novo lipogenesis in normoinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am. J. Clin. Nutr. 2003, 77, 43–50. [Google Scholar] [PubMed]
- Chong, M.F.; Hodson, L.; Bickerton, A.S.; Roberts, R.; Neville, M.; Karpe, F.; Frayn, K.N.; Fielding, B.A. Parallel activation of de novo lipogenesis and stearoyl-CoA desaturase activity after 3 d of high-carbohydrate feeding. Am. J. Clin. Nutr. 2008, 87, 817–823. [Google Scholar] [PubMed]
- Mittendorfer, B.; Sidossis, L.S. Mechanism for the increase in plasma triacylglycerol concentrations after consumption of short-term, high-carbohydrate diets. Am. J. Clin. Nutr. 2001, 73, 892–899. [Google Scholar] [PubMed]
- Marques-Lopes, I.; Ansorena, D.; Astiasaran, I.; Forga, L.; Martínez, J.A. Postprandial de novo lipogenesis and metabolic changes induced by a high-carbohydrate, low-fat meal in lean and overweight men. Am. J. Clin. Nutr. 2001, 73, 253–261. [Google Scholar] [PubMed]
- Parks, E.J.; Parks, E.J. Changes in fat synthesis influenced by dietary macronutrient content. Proc. Nutr. Soc. 2002, 61, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Baum, C.L.; Brown, M. Low-fat, high-carbohydrate diets and atherogenic risk. Nutr. Rev. 2000, 58, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Schernhammer, E.S.; Hu, F.B.; Giovannucci, E.; Michaud, D.S.; Colditz, G.A.; Stampfer, M.J.; Fuchs, C.S. Sugar-sweetened soft drink and risk of pancreatic cancer in two prospective cohorts. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2098–2105. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Bergkvist, L.; Wolk, A. Consumption of sugar and sugar-sweetened foods and the risk of pancreatic cancer in a prospective study. Am. J. Clin. Nutr. 2006, 84, 1171–1176. [Google Scholar] [PubMed]
- Schulze, M.B.; Manson, J.E.; Ludwig, D.S.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 2004, 292, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Schulze, M.B.; Hu, F.B. Intake of sugar-sweetened beverages and weight gain: A systematic review. Am. J. Clin. Nutr. 2006, 84, 274–288. [Google Scholar] [PubMed]
- Martinez-Lopez, E.; Curiel-Lopez, F.; Hernandez-Nazara, A.; Moreno-Luna, L.E.; Ramos-Marquez, M.E.; Roman, S.; Panduro, A. Influence of ApoE and FABP2 polymorphisms and environmental factors in the susceptibility to gallstone disease. Ann. Hepatol. 2015, 14, 515–523. [Google Scholar] [PubMed]
- Hernández-Nazará, Z.H.; Ruiz-Madrigal, B.; Martínez-López, E.; Roman, S.; Panduro, A. Association of the epsilon 2 allele of APOE gene to hypertriglyceridemia and to early-onset alcoholic cirrhosis. Alcohol Clin. Exp. Res. 2008, 32, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Bo, S.; Cavallo-Perin, P.; Gentile, L.; Repetti, E.; Pagano, G. Low HDL-cholesterol: A component of the metabolic syndrome only in the presence of fasting hypertriglyceridemia in type 2 diabetic patients. Diabetes Metab. 2001, 27, 31–35. [Google Scholar] [PubMed]
- Weissglas-Volkov, D.; Aguilar-Salinas, C.A.; Nikkola, E.; Deere, K.A.; Cruz-Bautista, I.; Arellano-Campos, O.; Muñoz-Hernandez, L.L.; Gomez-Munguia, L.; Ordoñez-Sánchez, M.L.; Reddy, P.M.; et al. Genomic study in Mexicans identifies a new locus for triglycerides and refines European lipid loci. J. Med. Genet. 2013, 50, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Molina, M.T.; Aguilar-Salinas, C.A.; Rodríguez-Cruz, M.; Riaño, D.; Villalobos-Comparan, M.; Coral-Vazquez, R.; Menjivar, M.; Yescas-Gomez, P.; Königsoerg-Fainstein, M.; Romero-Hidalgo, S.; et al. The ATP-binding cassette transporter A1 R230C variant affects HDL cholesterol levels and BMI in the Mexican population: Association with obesity and obesity-related comorbidities. Diabetes 2007, 56, 1881–1887. [Google Scholar] [CrossRef] [PubMed]
- Ossoli, A.; Gomaraschi, M.; Franceschini, G.; Calabresi, L. Genetic determinants of HDL metabolism. Curr. Med. Chem. 2014, 21, 2855–2863. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Chasman, D.I.; Buring, J.E.; Lee, I.M.; Ridker, P.M.; Everett, B.M. Physical activity modifies the effect of LPL, LIPC, and CETP polymorphisms on HDL-C levels and the risk of myocardial infarction in women of European ancestry. Circ. Cardiovasc. Genet. 2011, 4, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Mizuta, E.; Kokubo, Y.; Yamanaka, I.; Miyamoto, Y.; Okayama, A.; Yoshimasa, Y.; Tomoike, H.; Morisaki, H.; Morisaki, T. Leptin gene ad leptin receptor gene polymorphisms are associated with sweet preference and obesity. Hypertens. Res. 2008, 31, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Eny, K.M.; Wolever, T.M.; Fontaine-Bisson, B.; El-Sohemy, A. Genetic variant in the glucose transporter type 2 is associated with higher intakes of sugars in two distinct populations. Physiol. Genomics 2008, 33, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Eny, K.M.; Corey, P.N.; El-Sohemy, A. Dopamine D2 receptor genotype (C957T) and habitual consumption of sugars in a free-living population of men and women. J. Nutrigenet. Nutrigenomics 2009, 2, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W. Dietary fiber prevents carbohydrate-induced hypertriglyceridemia. Curr. Atheroscler. Rep. 2000, 2, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Jenkis, D.J.; Kendall, C.W.; Vuksan, V.; Vidgen, E.; Parker, T.; Faulkner, D.; Mehling, C.C.; Garsetti, M.; Testolin, G.; Cunnane, S.C.; et al. Soluble fiber intake at a dose approved by the US Food and Drug Administration for a claim of health benefits: Serum lipid risk factors for cardiovascular disease assessed in a randomized controlled crossover trial. Am. J. Clin. Nutr. 2002, 75, 834–839. [Google Scholar]
- Parks, E.J.; Krauss, R.M.; Christiansen, M.P.; Neese, R.A.; Hellerstein, M.K. Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. J. Clin. Investig. 1999, 104, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Panduro, A.; Zacarias Castillo, R. ¿Estamos incidiendo en el manejo médico-nutricional del paciente obeso en Mexico? Rev. Mex. Endocrinol. Metabol. Nutr. 2014, 1, 189–192. [Google Scholar]
Variable | TAS1R2 Genotype | p-Value | ||
---|---|---|---|---|
Ile/Ile | Ile/Val | Val/Val | ||
Number of subjects, n (%) | 251 (56.9) | 165 (37.4) | 25 (5.7) | - |
Age (years) | 41.8 ± 14.1 | 41.4 ± 14.2 | 41.1 ± 14.7 | 0.94 |
Gender (F/M) | (146/105) | (87/78) | (14/11) | 0.55 |
BMI (kg/m2) | 27.4 ± 5.4 | 27.8 ± 5.3 | 28.7 ± 5.9 | 0.20 |
Macronutrient | TAS1R2 Genotype | p-Value | ||
---|---|---|---|---|
Ile/Ile N = 251 | Ile/Val N = 165 | Val/Val N = 25 | ||
Calories | 2069 ± 587 | 2017 ± 627 | 2287 ± 627 | 0.12 |
Protein (%) | 16.1 ± 3.5 | 16.9 ± 4.3 | 16.5 ± 4.3 | 0.53 |
Protein (g) | 83.4 ± 26.5 | 83.9 ± 29.6 | 89.2 ± 23.7 | 0.61 |
Total fat (%) | 29.1 ± 7.1 | 31.6 ± 9.4 | 32.4 ± 9.3 | 0.20 |
Total fat (g) | 73.8 ± 28.4 | 72.2 ± 32.2 | 74.2 ± 30.2 | 0.81 |
Total carbohydrates (%) | 52.4 ± 10.5 | 53.1 ± 11.3 | 58.5 ± 8.8 | 0.04 * |
Total carbohydrates (g) | 273 ± 102.4 | 265.2 ± 98.1 | 332.7 ± 102.6 | 0.01 ** |
Fiber (g) | 17.4 ± 11.3 | 19.1 ± 12.9 | 26.3 ± 12.1 | 0.002 ** |
Food Group | TAS1R2 Genotype | p-Value | ||
---|---|---|---|---|
Ile/Ile N = 251 | Ile/Val N = 165 | Val/Val N = 25 | ||
Sugars | 5.4 ± 5.1 | 5.3 ± 4.7 | 5.5 ± 4.1 | 0.96 |
Meat | 6.4 ± 3.3 | 6.7 ± 4.0 | 5.9 ± 3.0 | 0.52 |
Fruits | 1.5 ± 1.9 | 1.7 ± 2.1 | 2.0 ± 1.9 | 0.30 |
Vegetables | 2.5 ± 2.3 | 2.5 ± 2.2 | 4.2 ± 4.7 | 0.005 ** |
Fats | 4.4 ± 3.4 | 4.2 ± 3.7 | 5.5 ± 3.6 | 0.19 |
Milk | 1.0 ± 1.1 | 0.9 ± 1.1 | 0.9 ± 0.8 | 0.96 |
Legumes | 0.6 ± 0.9 | 0.7 ± 0.9 | 0.9 ± 1.1 | 0.21 |
Cereals | 9.5 ± 4.9 | 8.8 ± 4.7 | 11.8 ± 5.3 | 0.01 *** |
Variable | TAS1R2 Genotype | p-Value | ||
---|---|---|---|---|
Ile/Ile N = 251 | Ile/Val N = 165 | Val/Val N = 25 | ||
Glucose (mg/dL) | 93.8 ± 14.6 | 93.6 ± 13.2 | 97.1 ± 25.2 | 0.56 |
TC (mg/dL) | 180.8 ± 46.8 | 184.9 ± 46.2 | 188.1 ± 86.1 | 0.61 |
TG (mg/dL) | 149 ± 82 | 150 ± 75 | 194 ± 100 | 0.02 ** |
HDL-c (mg/dL) | 40.4 ± 11.5 | 41.4 ± 12.6 | 43.2 ± 14.9 | 0.46 |
LDL-c (mg/dL) | 110.1 ± 39.6 | 118.6 ± 38.6 | 105.1 ± 56.4 | 0.13 |
VLDL-c (mg/dL) | 32.5 ± 23.8 | 32.6 ± 22.6 | 42.1 ± 22.1 | 0.26 |
TAS1R2 Genotypes | Non-HTG n (%) | HTG n (%) | Genotype Comparison | Odds Ratio (95%CI) | p-Value |
---|---|---|---|---|---|
Ile/Ile | 193 (56.8) | 58 (57.4) | Val/Val vs. Ile/Val | 3.26 (1.35–7.86) | 0.006 |
Ile/Val | 133 (39.1) | 32 (31.7) | Val/Val vs. Ile/Ile | 2.61 (1.12–6.07) | 0.02 |
Val/Val | 14 (4.1) | 11 (10.9) | Val/Val vs. Ile/Val and Ile/Ile | 2.84 (1.24–6.48) | 0.009 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Lopez, O.; Panduro, A.; Martinez-Lopez, E.; Roman, S. Sweet Taste Receptor TAS1R2 Polymorphism (Val191Val) Is Associated with a Higher Carbohydrate Intake and Hypertriglyceridemia among the Population of West Mexico. Nutrients 2016, 8, 101. https://doi.org/10.3390/nu8020101
Ramos-Lopez O, Panduro A, Martinez-Lopez E, Roman S. Sweet Taste Receptor TAS1R2 Polymorphism (Val191Val) Is Associated with a Higher Carbohydrate Intake and Hypertriglyceridemia among the Population of West Mexico. Nutrients. 2016; 8(2):101. https://doi.org/10.3390/nu8020101
Chicago/Turabian StyleRamos-Lopez, Omar, Arturo Panduro, Erika Martinez-Lopez, and Sonia Roman. 2016. "Sweet Taste Receptor TAS1R2 Polymorphism (Val191Val) Is Associated with a Higher Carbohydrate Intake and Hypertriglyceridemia among the Population of West Mexico" Nutrients 8, no. 2: 101. https://doi.org/10.3390/nu8020101
APA StyleRamos-Lopez, O., Panduro, A., Martinez-Lopez, E., & Roman, S. (2016). Sweet Taste Receptor TAS1R2 Polymorphism (Val191Val) Is Associated with a Higher Carbohydrate Intake and Hypertriglyceridemia among the Population of West Mexico. Nutrients, 8(2), 101. https://doi.org/10.3390/nu8020101