Cysteic Acid in Dietary Keratin is Metabolized to Glutathione and Liver Taurine in a Rat Model of Human Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diets
2.2. Animal Study
2.3. Tissue and Sample Analyses
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Newell, G.W.; Elvehjem, C.A. Nutritive value of keratin; effect of source, particle size, and method of grinding. J. Nutr. 1947, 33, 673–683. [Google Scholar] [PubMed]
- Kim, W.K.; Patterson, P.H. Nutritional value of enzyme- or sodium hydroxide-treated feathers from dead hens. Poult. Sci. 2000, 79, 528–534. [Google Scholar] [CrossRef] [PubMed]
- van Heugten, E.; van Kempen, T.A. Growth performance, carcass characteristics, nutrient digestibility and fecal odorous compounds in growing-finishing pigs fed diets containing hydrolyzed feather meal. J. Anim. Sci. 2002, 80, 171–178. [Google Scholar] [PubMed]
- Wang, X.; Parsons, C.M. Effect of processing systems on protein quality of feather meals and hog hair meals. Poult. Sci. 1997, 76, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Bertsch, A.; Coello, N. A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Bioresour. Technol. 2005, 96, 1703–1708. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.K.; Lorenz, E.S.; Patterson, P.H. Effect of enzymatic and chemical treatments on feather solubility and digestibility. Poult. Sci. 2002, 81, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Apple, J.K.; Boger, C.B.; Brown, D.C.; Maxwell, C.V.; Friesen, K.G.; Roberts, W.J.; Johnson, Z.B. Effect of feather meal on live animal performance and carcass quality and composition of growing-finishing swine. J. Anim. Sci. 2003, 81, 172–181. [Google Scholar] [PubMed]
- Hegedus, M.; Bokori, J.; Andrasofszky, E.; Kovari, L. Optimizing protein quality of mixtures of blood meal, feather meal and bone meal. Acta Vet. Hung. 1990, 38, 143–152. [Google Scholar] [PubMed]
- Koelkebeck, K.W.; Parsons, C.M.; Douglas, M.W.; Leeper, R.W.; Jin, S.; Wang, X.; Zhang, Y.; Fernandez, S. Early postmolt performance of laying hens fed a low-protein corn molt diet supplemented with spent hen meal. Poult. Sci. 2001, 80, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Southern, L.L.; LeMieux, F.M.; Matthews, J.O.; Bidner, T.D.; Knowles, T.A. Effect of feather meal as a source of valine for lactating sows. J. Anim. Sci. 2000, 78, 120–123. [Google Scholar] [PubMed]
- Atmaca, G. Antioxidant effects of sulfur-containing amino acids. Yonsei Med. J. 2004, 45, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Rajakumar, D.; Jeraud, M.; Felix, A.J.; Balasubramanian, T. Effects of taurine on glutathione peroxidase, glutathione reductase and reduced glutathione levels in rats. Pak. J. Biol. Sci. 2011, 14, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Sikalidis, A.K.; Stipanuk, M.H. Growing rats respond to a sulfur amino acid-deficient diet by phosphorylation of the alpha subunit of eukaryotic initiation factor 2 heterotrimeric complex and induction of adaptive components of the integrated stress response. J. Nutr. 2010, 140, 1080–1085. [Google Scholar] [CrossRef] [PubMed]
- Stipanuk, M.H.; Londono, M.; Lee, J.I.; Hu, M.; Yu, A.F. Enzymes and metabolites of cysteine metabolism in nonhepatic tissues of rats show little response to changes in dietary protein or sulfur amino acid levels. J. Nutr. 2002, 132, 3369–3378. [Google Scholar] [PubMed]
- Keohane, P.P.; Grimble, G.K.; Brown, B.; Spiller, R.C.; Silk, D.B. Influence of protein composition and hydrolysis method on intestinal absorption of protein in man. Gut 1985, 26, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Pieniazek, D.; Rakowska, M.; Kunachowicz, H. The participation of methionine and cysteine in the formation of bonds resistant to the action of proteolytic enzymes in heated casein. Br. J. Nutr. 1975, 34, 163–173. [Google Scholar] [PubMed]
- Sarwar, G. The protein digestibility-corrected amino acid score method overestimates quality of proteins containing antinutritional factors and of poorly digestible proteins supplemented with limiting amino acids in rats. J. Nutr. 1997, 127, 758–764. [Google Scholar] [PubMed]
- Rutherfurd, S.M.; Moughan, P.J. Available versus digestible dietary amino acids. Br. J. Nutr. 2012, 108 (Suppl. 2), S298–S305. [Google Scholar] [CrossRef] [PubMed]
- Combe, E.; Achi, T.; Pion, R. Comparative digestive and metabolic utilization of beans, lentils and chick peas in the rat. Reprod. Nutr. Dev. 1991, 31, 631–646. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, G.; Peace, R.W. Comparisons between true digestibility of total nitrogen and limiting amino acids in vegetable proteins fed to rats. J. Nutr. 1986, 116, 1172–1184. [Google Scholar] [PubMed]
- Sarwar, G.; Peace, R.W.; Botting, H.G.; Brule, D. Digestibility of protein and amino acids in selected foods as determined by a rat balance method. Plant Foods Hum. Nutr. 1989, 39, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Suberville, C.; Higueret, P.; Taruoura, D.; Garcin, H.; Higueret, D. Relative contribution of cysteine and methionine to glutathione content and thyroid hormone levels in the rat. Br. J. Nutr. 1987, 58, 105–111. [Google Scholar] [CrossRef] [PubMed]
- van Dael, P.; Kastenmayer, P.; Clough, J.; Jarret, A.R.; Barclay, D.V.; Maire, J.C. Substitution of casein by beta-casein or of whey protein isolate by alpha-lactalbumin does not affect mineral balance in growing rats. J. Nutr. 2005, 135, 1438–1443. [Google Scholar] [PubMed]
- Marsh, C.; Keraplast Technologies LLC., Christchurch, New Zealand. Personal communication, 2014.
- Pfeffer, E.; Wiesmann, D.; Henrichfreise, B. Hydrolyzed feather meal as feed component in diets for rainbow trout (Oncorhynchus mykiss) and effects of dietary protein/energy ratio on the efficiency of utilization of digestible energy and protein. Arch. Tierernahr. 1994, 46, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.H. Comparative species utilization and toxicity of sulfur amino acids. J. Nutr. 2006, 136, 1670S–1675S. [Google Scholar] [PubMed]
- Neil, M.W. The absorption of cystine and cysteine from rat small intestine. Biochem. J. 1959, 71, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Stipanuk, M.H.; Dominy, J.E., Jr.; Lee, J.I.; Coloso, R.M. Mammalian cysteine metabolism: New insights into regulation of cysteine metabolism. J. Nutr. 2006, 136, 1652S–1659S. [Google Scholar] [PubMed]
- Janaky, R.; Varga, V.; Hermann, A.; Saransaari, P.; Oja, S.S. Mechanisms of l-cysteine neurotoxicity. Neurochem. Res. 2000, 25, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, O.O.; Karlsen, R.L. The toxic effect of l-cysteine on the rat retina. A morphological and biochemical study. Invest. Ophthalmol. Vis. Sci. 1980, 19, 886–892. [Google Scholar] [PubMed]
- Pisano, J.J.; Paine, C.M.; Taylor, M.W. The effect of methionine deficiency on nitrogen absorption from the intestinal tract of chickens. J. Nutr. 1959, 67, 213–222. [Google Scholar] [PubMed]
- Bannai, S.; Tateishi, N. Role of membrane transport in metabolism and function of glutathione in mammals. J. Membrane Biol. 1986, 89, 1–8. [Google Scholar] [CrossRef]
- Tateishi, N.; Sakamoto, Y. Nutritional significance of glutathione in rat liver. In Glutathione: Storage, Transport and Turnover in Mammals; Sakamoto, Y., Higashi, T., Tateishi, N., Eds.; Japan Scientific Societies Press: Tokyo, Japan, 1983; pp. 13–35. [Google Scholar]
- Fujii, T.; Ito, Y.; Watanabe, T.; Kawasoe, T. Effects of oxidative treatments on human hair keratin films. J. Cosmet. Sci. 2012, 63, 15–25. [Google Scholar] [PubMed]
- Anderson, G.H.; Ashley, D.V.; Jones, J.D. Utilization of l-methionine sulfoxide, l-methionine sulfone and cysteic acid by the weanling rat. J. Nutr. 1976, 106, 1108–1114. [Google Scholar] [PubMed]
- Vaziri, N.D.; Wang, X.Q.; Oveisi, F.; Rad, B. Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension 2000, 36, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Pasantes-Morales, H.; Chatagner, F.; Mandel, P. Synthesis of taurine in rat liver and brain in vivo. Neurochem. Res. 1980, 5, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, J.T.; Brosnan, M.E. The sulfur-containing amino acids: An overview. J. Nutr. 2006, 136, 1636S–1640S. [Google Scholar] [PubMed]
- Boelens, P.G.; Houdijk, A.P.; de Thouars, H.N.; Teerlink, T.; van Engeland, M.I.; Haarman, H.J.; van Leeuwen, P.A. Plasma taurine concentrations increase after enteral glutamine supplementation in trauma patients and stressed rats. Am. J. Clin. Nutr. 2003, 77, 250–256. [Google Scholar] [PubMed]
- Awapara, J. The taurine concentration of organs from fed and fasted rats. J. Biol. Chem. 1956, 218, 571–576. [Google Scholar] [PubMed]
- Lin, C.C.; Yin, M.C. Effects of cysteine-containing compounds on biosynthesis of triacylglycerol and cholesterol and anti-oxidative protection in liver from mice consuming a high-fat diet. Br. J. Nutr. 2008, 99, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Maksimchik, Y.Z.; Lapshina, E.A.; Sudnikovich, E.Y.; Zabrodskaya, S.V.; Zavodnik, I.B. Protective effects of N-acetyl-l-cysteine against acute carbon tetrachloride hepatotoxicity in rats. Cell Biochem. Funct. 2008, 26, 11–18. [Google Scholar] [CrossRef] [PubMed]
- You, J.S.; Chang, K.J. Taurine protects the liver against lipid peroxidation and membrane disintegration during rat hepatocarcinogenesis. Adv. Exp. Med. Biol. 1998, 442, 105–112. [Google Scholar] [PubMed]
- Lillie, L.E.; Temple, N.J.; Florence, L.Z. Reference values for young normal Sprague-Dawley rats: Weight gain, hematology and clinical chemistry. Hum. Exp. Toxicol. 1996, 15, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Zembron-Lacny, A.; Slowinska-Lisowska, M.; Szygula, Z.; Witkowski, Z.; Szyszka, K. Modulatory effect of N-acetylcysteine on pro-antioxidant status and haematological response in healthy men. J. Physiol. Biochem. 2010, 66, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Knapp, B.K.; Bauer, L.L.; Swanson, K.S.; Tappenden, K.A.; Fahey, G.C.; de Godoy, M.R. Soluble fiber dextrin and soluble corn fiber supplementation modify indices of health in cecum and colon of sprague-dawley rats. Nutrients 2013, 5, 396–410. [Google Scholar] [CrossRef] [PubMed]
- Ruvini, L.; Hashimoto, N.; Han, K.H.; Kajiura, T.; Watanabe, S.; Shimada, K.; Sekikawa, M.; Ohba, K.; Fukushima, M. Some bovine proteins behave as dietary fibres and reduce serum lipids in rats. Br. J. Nutr. 2007, 97, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.M.; Fahey, G.C., Jr.; Wolf, B.W. Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J. Nutr. 1997, 127, 130–136. [Google Scholar] [PubMed]
- Kim, M.; Shin, H.K. The water-soluble extract of chicory influences serum and liver lipid concentrations, cecal short-chain fatty acid concentrations and fecal lipid excretion in rats. J. Nutr. 1998, 128, 1731–1736. [Google Scholar] [PubMed]
CAS | KER | PEA | |
---|---|---|---|
Energy (kJ/g) | 22.10 | 21.40 | 16.70 |
Nitrogen | 14.43 | 14.57 | 3.69 |
Protein | 92.06 | 91.03 | 23.05 |
Fat | 0.10 | 0.55 | 1.80 |
Moisture | 5.70 | 1.90 | 11.10 |
Ash | 3.40 | 6.35 | 2.60 |
Carbohydrate | 0.60 | 0.20 | 61.50 |
Sodium | 1.23 | 2.40 | 0.00 |
Alanine | 2.69 | 3.64 | 0.92 |
Arginine | 3.48 | 5.51 | 2.00 |
Aspartic acid | 6.41 | 6.46 | 2.72 |
Cysteic acid | (0.00) | (7.35) | (0.00) |
Cysteine | (0.25) | (0.19) | (0.31) |
Total cys | 0.25 | 5.46 | 0.31 |
Glutamic acid | 19.03 | 9.97 | 3.83 |
Glycine | 1.77 | 6.38 | 1.04 |
Histidine | 2.88 | 0.47 | 0.66 |
Isoleucine | 4.95 | 4.62 | 1.07 |
Leucine | 8.36 | 6.83 | 1.70 |
Lysine | 6.91 | 1.07 | 1.65 |
Methionine | 2.34 | 0.41 | 0.23 |
Phenylalanine | 4.76 | 3.83 | 1.18 |
Proline | 9.38 | 8.69 | 1.01 |
Serine | 4.44 | 9.41 | 1.02 |
Threonine | 3.64 | 4.21 | 0.85 |
Tryptophan | 1.19 | 0.00 | 0.20 |
Tyrosine | 5.10 | 1.35 | 0.82 |
Valine | 6.44 | 8.23 | 1.23 |
CAS | KER + CAS | PEA | |
---|---|---|---|
Sodium caseinate | 185.0 | 92.0 | 0.0 |
Keratin | 0.0 | 93.0 | 0.0 |
Yellow pea flour | 0.0 | 0.0 | 736.0 |
Vitamin mix | 10.0 | 10.0 | 10.0 |
Na-free mineral mix | 50.0 | 50.0 | 50.0 |
NaCl | 2.8 | 0.0 | 8.7 |
Soy oil | 70.0 | 69.0 | 57.0 |
Sucrose | 50.0 | 50.0 | 31.0 |
CaCO3 | 12.5 | 12.5 | 12.5 |
Cysteine | 2.8 | 0.0 | 1.0 |
Methionine | 2.2 | 3.9 | 0.0 |
glutamic acid | 4.7 | 13.0 | 11.8 |
Glycine | 2.7 | 0.0 | 0.0 |
Tryptophan | 0.0 | 0.9 | 0.0 |
Lysine | 0.0 | 1.8 | 0.0 |
Cellulose | 96.5 | 96.5 | 0.0 |
Cornstarch | 510.8 | 507.4 | 82.0 |
CAS | KER + CAS | PEA | |
---|---|---|---|
28 days food intake (g) | 661 (15) | 672 (11) | 623 (12) |
28 days energy intake (MJ) | 11.8 a (0.3) | 12.0 a (0.2) | 10.5 b (0.2) |
28 days protein intake (g) | 120 (3) | 128 (2) | 118 (2) |
28 days BW gain (g) | 196 a (6) | 207 a (6) | 169 b (5) |
DEXA: Total mass (g) | 412 (9) | 423 (8) | 394 (9) |
DEXA: Fat mass (g) | 67 (3) | 62 (5) | 56 (3) |
Fat (% of total mass) | 16.3 (0.7) | 14.6 (1.0) | 14.3 (0.6) |
Whole-body BMD (mg/cm) | 142 (2) | 145 (1) | 139 (1) |
Whole-body BMC (g) | 9.68 (0.16) | 9.90 (0.15) | 9.23 (0.15) |
CAS | KER + CAS | PEA | |
---|---|---|---|
WBC (109/L) | 7.13 (0.68) | 8.60 (0.89) | 9.09 (0.64) |
RBC (1012/L) | 7.12 (0.09) | 7.42 (0.10) | 7.24 (0.11) |
Hemoglobin (g/L) | 139 a (2) | 146 b (1) | 140 a (1) |
Hematocrit (mL/L) | 405 a (5) | 424 b (5) | 412 a (4) |
MCV (fL) | 56.8 (0.8) | 57.3 (0.8) | 57.3 (0.7) |
MCH (pg) | 19.7 (0.3) | 19.8 (0.3) | 19.4 (0.3) |
CAS | KER + CAS | PEA | |
---|---|---|---|
Ingested | |||
diet (g) | 106 a (2) | 108 a (2) | 97 b (2) |
fat (g) | 7.76 (0.15) | 7.89 (0.13) | 7.50 (0.15) |
protein (g) | 19.4 (0.4) | 20.7 (0.3) | 18.4 (0.4) |
cys (mg) | 350.9 a (6.6) | 573.1 b (9.6) | 321.3 c (6.6) |
met (mg) | 691.1 a (13.0) | 702.8 a (11.8) | 164.8 b (3.4) |
Excreted | |||
faeces, dried (g) | 17.4 a (0.3) | 17.3 a (0.5) | 11.8 b (0.3) |
fat (g) | 0.18 a (0.01) | 0.29 b (0.02) | 0.41 c (0.01) |
protein (g) | 1.17 a (0.05) | 2.87 b (0.08) | 2.98 b (0.11) |
cys (mg) | 49.0 a (4.1) | 236.7 b (5.7) | 53.2 a (2.2) |
met (mg) | 17.6 a (1.1) | 29.2 b (0.9) | 63.7 c (3.0) |
taurine (mg) | 5.8 (0.7) | 7.6 (0.5) | 6.3 (0.6) |
Absorbed | |||
fat (g) | 7.58 (0.14) | 7.60 (0.14) | 7.08 (0.15) |
protein (g) | 18.19 a (0.34) | 17.78 a (0.36) | 15.42 b (0.28) |
cys (mg) | 301.9 a (9.0) | 336.4 b (10.7) | 268.1 c (7.7) |
met (mg) | 673.6 a (12.4) | 673.7 a (11.8) | 10.11 b (1.6) |
Excreted (% of ingested) | |||
protein | 6.0 a (0.2) | 13.9 b (0.4) | 16.2 c (0.3) |
Fat | 2.37 a (0.12) | 3.70 b (0.24) | 5.50 c (0.13) |
cys | 14.1 a (1.3) | 41.4 b (1.1) | 16.6 a (0.8) |
met | 2.5 a (0.1) | 4.2 a (0.1) | 38.5 b (1.1) |
Digestibility (%) | |||
protein | 94.0 a (0.2) | 86.1 b (0.4) | 83.8 c (0.3) |
fat | 97.6 a (0.1) | 96.3 b (0.2) | 94.5 c (0.1) |
cys | 85.9 a (1.3) | 58.6 (1.1) | 83.4 a (0.8) |
met | 97.5 a (0.1) | 95.8 a (0.1) | 61.5 b (1.1) |
CAS | KER + CAS | PEA | |
---|---|---|---|
Liver | |||
glutathione | 15.56 a (0.81) | 16.67 a (1.00) | 12.14 b (0.83) |
GSSG | 2.14 (0.24) | 2.26 (0.28) | 2.09 (0.24) |
GSH | 11.28 a (0.89) | 12.16 a (0.96) | 7.95 b (0.86) |
cys | 3.23 a (0.04) | 3.16 a (0.03) | 3.05 b (0.05) |
met | 3.64 (0.08) | 3.63 (0.04) | 3.72 (0.06) |
taurine | 1.14 a (0.06) | 1.44 b (0.03) | 0.18 c (0.05) |
RBC | |||
glutathione | 1.06 (0.11) | 1.28 (0.12) | 1.26 (0.09) |
GSSG | 0.23 (0.04) | 0.30 (0.07) | 0.27 (0.04) |
GSH | 0.60 (0.09) | 0.80 (0.10) | 0.71 (0.10) |
cys | 2.62 (0.04) | 2.65 (0.05) | 2.65 (0.06) |
met | 1.89 (0.04) | 1.91 (0.06) | 1.86 (0.06) |
taurine | 0.05 (0.00) | 0.05 (0.00) | 0.05 (0.01) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolber, F.M.; McGrath, M.; Jackson, F.; Wylie, K.; Broomfield, A. Cysteic Acid in Dietary Keratin is Metabolized to Glutathione and Liver Taurine in a Rat Model of Human Digestion. Nutrients 2016, 8, 104. https://doi.org/10.3390/nu8020104
Wolber FM, McGrath M, Jackson F, Wylie K, Broomfield A. Cysteic Acid in Dietary Keratin is Metabolized to Glutathione and Liver Taurine in a Rat Model of Human Digestion. Nutrients. 2016; 8(2):104. https://doi.org/10.3390/nu8020104
Chicago/Turabian StyleWolber, Frances M., Michelle McGrath, Felicity Jackson, Kim Wylie, and Anne Broomfield. 2016. "Cysteic Acid in Dietary Keratin is Metabolized to Glutathione and Liver Taurine in a Rat Model of Human Digestion" Nutrients 8, no. 2: 104. https://doi.org/10.3390/nu8020104
APA StyleWolber, F. M., McGrath, M., Jackson, F., Wylie, K., & Broomfield, A. (2016). Cysteic Acid in Dietary Keratin is Metabolized to Glutathione and Liver Taurine in a Rat Model of Human Digestion. Nutrients, 8(2), 104. https://doi.org/10.3390/nu8020104