Associations between Vitamin B-12 Status and Oxidative Stress and Inflammation in Diabetic Vegetarians and Omnivores
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Anthropometric and Dietary Measurements
2.3. Blood Collection and Biochemical Measurement
2.4. Serum Vitamin B-12, Oxidative Stress, and Inflammatory Markers Measurements
2.5. Statistical Analysis
3. Results
3.1. Characteristics and Dietary Intake of Subjects
3.2. Levels of Vitamin B-12 in the Diabetic Vegetarians and Omnivores
3.3. Levels of Metabolic Biomarkers after Stratifying by Serum Vitamin B-12
3.4. Levels of Oxidative Stress and Inflammatory Markers after Stratifying by Serum Vitamin B-12
3.5. Correlations between Serum Vitamin B-12 Status and Blood Glucose, Oxidative Stress, and Inflammatory Markers
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of interest
Abbreviations
HbA1c | glycohemoglobin |
Apo | apolipoprotein |
CAT | catalase |
FG | fasting glucose |
GPx | glutathione peroxidase |
HDL-C | high density lipoprotein-cholesterol |
hs-CRP | high sensitivity C-reactive protein |
IL-6 | high sensitivity interleukin-6 |
LDL-C | low density lipoprotein-cholesterol |
MDA | malondialdehyde |
SOD | superoxide dismutase |
TC | total cholesterol |
TG | triglycerol |
Ox-LDL-C | oxidized low density lipoprotein-cholesterol |
References
- Evatt, M.; Terry, P.D.; Ziegler, T.R.; Oakley, G.P. Association between vitamin B12-containing supplement consumption and prevalence of biochemically defined B12 deficiency in adults in NHANES III (third national health and nutrition examination survey). Public Health Nutr. 2010, 13, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, R. Is vitamin B12 deficiency a risk factor for cardiovascular disease in vegetarians? Am. J. Prev. Med. 2015, 48, e11–e26. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Goodman, A.M. The Multicenter Metformin Study Group. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 1995, 333, 541–549. [Google Scholar] [CrossRef] [PubMed]
- De Jager, J.; Kooy, A.; Lehert, P.; Wulffelé, M.G.; van der Kolk, J.; Bets, D.; Verburg, J.; Donker, A.J.; Stehouwer, C.D. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: Randomised placebo controlled trial. BMJ 2010, 340, c2181. [Google Scholar] [CrossRef] [PubMed]
- Reinstatler, L.; Qi, Y.P.; Williamson, R.S.; Garn, J.V.; Oakley, G.P., Jr. Association of biochemical B12 deficiency with metformin therapy and vitamin B12 supplements: The National Health and Nutrition Examination Survey, 1999–2006. Diabetes Care 2012, 35, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Rains, J.L.; Jain, S.K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med. 2011, 50, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Al-Maskari, M.Y.; Waly, M.I.; Ali, A.; Al-Shuaibi, Y.S.; Ouhtit, A. Folate and vitamin B12 deficiency and hyperhomocysteinemia promote oxidative stress in adult type 2 diabetes. Nutrition 2012, 28, e23–e26. [Google Scholar] [CrossRef] [PubMed]
- Birch, C.S.; Brasch, N.E.; McCaddon, A.; Williams, J.H. A novel role for vitamin B (12): Cobalamins are intracellular antioxidants in vitro. Free Radic. Biol. Med. 2009, 47, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Solomon, L.R. Functional cobalamin (vitamin B12) deficiency: Role of advanced age and disorders associated with increased oxidative stress. Eur. J. Clin. Nutr. 2015, 69, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Kräutler, B. Vitamin B12: Chemistry and biochemistry. Biochem. Soc. Trans. 2005, 33, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.T.; Chow, B.F. Effect of vitamin B12 on the levels of soluble sulfhydryl compounds in blood. J. Biol. Chem. 1953, 202, 445–446. [Google Scholar] [PubMed]
- McCaddon, A.; Regland, B.; Hudson, P.; Davies, G. Functional vitamin B12 deficiency and Alzheimer disease. Neurology 2002, 58, 1395–1399. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.; Mutti, E.; Tacchini, L.; Gammella, E.; Tredici, G.; Scalabrino, G. Indirect down-regulation of nuclear NF-kappaB levels by cobalamin in the spinal cord and liver of the rat. J. Neurosci. Res. 2008, 86, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Botsoglou, N.A. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food and feedstuff samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [PubMed]
- Marklund, S.; Marklund, G. Involvement of superoxide anion radical in autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Paglia, D.; Valentine, W. Studies on the qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 159–169. [Google Scholar]
- Barnard, N.D.; Katcher, H.I.; Jenkins, D.J.; Cohen, J.; Turner-McGrievy, G. Vegetarian and vegan diets in type 2 diabetes management. Nutr. Rev. 2009, 67, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Kendall, C.W.; Marchie, A.; Jenkins, A.L.; Augustin, L.S.; Ludwig, D.S.; Barnard, N.D.; Anderson, J.W. Type 2 diabetes and the vegetarian diet. Am. J. Clin. Nutr. 2003, 78, 610S–616S. [Google Scholar] [PubMed]
- Kahleova, H.; Pelikanova, T. Vegetarian diets in the prevention and treatment of type 2 diabetes. J. Am. Coll. Nutr. 2015, 27, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sabaté, J.; Wien, M. A perspective on vegetarian dietary patterns and risk of metabolic syndrome. Br. J. Nutr. 2015, 113, S136–S143. [Google Scholar] [CrossRef] [PubMed]
- Tonstad, S.; Butler, T.; Yan, R.; Fraser, G.E. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care 2009, 32, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Manzanares, W.; Hardy, G. Vitamin B12: The forgotten micronutrient for critical care. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, C. A scarlet pimpernel for the resolution of inflammation? The role of supra-therapeutic doses of cobalamin, in the treatment of systemic inflammatory response syndrome (SIRS), sepsis, severe sepsis, and septic or traumatic shock. Med. Hypotheses 2006, 67, 124–142. [Google Scholar] [CrossRef] [PubMed]
- Dagnelie, P.C.; van Staveren, W.A.; van den Berg, H. Vitamin B-12 from algae appears not to be bioavailable. Am. J. Clin. Nutr. 1991, 53, 695–697. [Google Scholar] [PubMed]
- Wheatley, C. The return of the Scarlet Pimpernel: Cobalamin in inflammation II—Cobalamins can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, and, as needed, selectively inhibit iNOS and nNOS. J. Nutr. Environ. Med. 2007, 16, 181–211. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, F. Vitamin B12 sources and bioavailability. Exp. Biol. Med. 2007, 232, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Ramos, R.; Guadarrama-López, A.L.; Martínez-Carrillo, B.E.; Benítez-Arciniega, A.D. Vitamins and type 2 diabetes mellitus. Endocr. Metab. Immune Disord. Drug Targets 2015, 15, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Chow, B.F.; Stone, H.H. The relationship of vitamin B12 to carbohydrate metabolism and diabetes mellitus. Am. J. Clin. Nutr. 1957, 5, 431–439. [Google Scholar] [PubMed]
- Krishnaveni, G.V.; Hill, J.C.; Veena, S.R.; Bhat, D.S.; Wills, A.K.; Karat, C.L.; Yajnik, C.S.; Fall, C.H. Low plasma vitamin B12 in pregnancy is associated with gestational “diabesity” and later diabetes. Diabetologia 2009, 52, 2350–2358. [Google Scholar] [CrossRef] [PubMed]
- Knight, B.A.; Shields, B.M.; Brook, A.; Hill, A.; Bhat, D.S.; Hattersley, A.T.; Yajnik, C.S. Lower Circulating B12 is associated with higher obesity and insulin resistance during pregnancy in a non-diabetic white British population. PLoS ONE 2015, 10, e0135268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yajnik, C.S.; Deshpande, S.S.; Jackson, A.A.; Refsum, H.; Rao, S.; Fisher, D.J.; Bhat, D.S.; Naik, S.S.; Coyaji, K.J.; Joglekar, C.V.; et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: The Pune Maternal Nutrition Study. Diabetologia 2008, 51, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.P.; Christian, P.; Schulze, K.J.; Arguello, M.; LeClerq, S.C.; Khatry, S.K.; West, K.P., Jr. Low maternal vitamin B-12 status is associated with offspring insulin resistance regardless of antenatal micronutrient supplementation in rural Nepal. J. Nutr. 2011, 141, 1912–1917. [Google Scholar] [CrossRef] [PubMed]
- Adaikalakoteswari, A.; Jayashri, R.; Sukumar, N.; Venkataraman, H.; Pradeepa, R.; Gokulakrishnan, K.; Anjana, R.M.; McTernan, P.G.; Tripathi, G.; Patel, V.; et al. Vitamin B12 deficiency is associated with adverse lipid profile in Europeans and Indians with type 2 diabetes. Cardiovasc. Diabetol. 2014, 13, 129. [Google Scholar] [CrossRef] [PubMed]
Vegetarians (n = 54) | Omnivores (n = 100) | p Values | |
---|---|---|---|
females (n, %) | 38 (70%) | 55 (55%) | 0.09 |
age (years) | 65.1 ± 11.3 (63.5) 1 | 57.7 ± 10.5 (60.0) | <0.01 |
duration of diabetes (years) | 12.0 ± 8.8 (9.5) | 9.4 ± 6.1 (8.0) | 0.16 |
body weight (kg) | 62.0 ± 12.6 (59.8) | 67.6 ± 14.7 (65.5) | 0.05 |
body mass index (kg/m2) | 24.9 ± 6.2 (25.5) | 26.5 ± 5.7 (25.5) | 0.31 |
waist circumference (cm) | 88.0 ± 9.9 (89.3) | 88.1 ± 11.7 (86.5) | 0.63 |
hip circumference (cm) | 95.1 ± 8.0 (94.5) | 97.3 ± 10.3 (96.0) | 0.32 |
waist to hip ratio | 0.95 ± 0.15 (0.90) | 0.92 ± 0.13 (0.90) | 0.45 |
physical activity 2 | 34 (63%) | 67 (67%) | 0.23 |
Metformin therapy (n, %) | 39 (72%) | 89 (89%) | 0.02 |
Statin therapy (n, %) | 26 (48%) | 71 (71%) | <0.01 |
Metformin + Statin (n, %) | 21 (39%) | 64 (64%) | <0.01 |
fasting glucose (mmol/L) | 7.3 ± 0.9 (6.7) | 7.7 ± 2.1 (7.4) | 0.06 |
HbA1c (%) | 7.4 ± 1.2 (7.2) | 7.7 ± 1.3 (7.6) | 0.30 |
TC (mmol/L) | 4.4 ± 0.8 (4.3) | 4.6 ± 0.8 (4.6) | 0.07 |
TG (mmol/L) | 1.6 ± 1.3 (1.3) | 1.4 ± 1.4 (1.1) | 0.03 |
LDL-C (mmol/L) | 2.3 ± 0.6 (2.3) | 2.4 ± 0.6 (2.3) | 0.26 |
HDL-C (mmol/L) | 1.3 ± 1.2 (1.2) | 1.4 ± 0.3 (1.4) | 0.01 |
TC/HDL-C | 3.6 ± 1.1 (3.4) | 3.4 ± 1.0 (3.1) | 0.13 |
Apo-A1 (g/L) | 1.3 ± 0.3 (1.3) | 1.2 ± 0.3 (1.2) | 0.36 |
Apo-B (g/L) | 0.8 ± 0.2 (0.8) | 0.8 ± 0.2 (0.8) | 0.77 |
hs-CRP (mg/L) | 2.1 ± 2.6 (1.1) | 1.5 ± 1.9 (0.8) | 0.01 |
IL-6 (pg/mL) | 2.5 ± 1.9 (1.8) | 2.0 ± 1.7 (1.5) | 0.04 |
Dietary intake | |||
energy (kcal/day) | 1410.0 ± 355.7 (1380.6) | 1678.1 ± 478.4 (1621.9) | <0.01 |
protein (g/day) | 45.6 ± 16.7 (43.1) | 64.4 ± 23.2 (60.0) | <0.01 |
protein (g/kcal) | 1.98 ± 3.25 (1.57) | 1.47 ± 0.17 (1.46) | 0.04 |
% of total calories | 12.7% ± 3.1% (12.8%) | 15.4% ± 3.5% (14.9%) | <0.01 |
fat (g/day) | 38.0 ± 16.1 (36.5) | 58.7 ± 26.3 (55.0) | <0.01 |
fat (g/kcal) | 0.79 ± 1.20 (0.60) | 0.89 ± 0.38 (0.86) | <0.01 |
% of total calories | 24.0% ± 8.1% (23.1%) | 31.0% ± 10.1% (33.0%) | <0.01 |
carbohydrate (g/day) | 226.1 ± 68.2 (205.7) | 225.0 ± 74.0 (217.6) | 0.97 |
carbohydrate (g/kcal) | 4.53 ± 6.26 (3.59) | 3.43 ± 1.21 (3.37) | 0.13 |
% of total calories | 63.3% ± 9.4% (62.1%) | 53.9% ± 10.5% (52.9%) | <0.01 |
cholesterol (mg/day) | 50.9 ± 96.0 (1.7) | 208.5 ± 158.0 (155.3) | <0.01 |
cholesterol (mg/kcal) | 2.57 ± 13.99 (0.02) | 3.19 ± 2.48 (2.42) | <0.01 |
vitamin B-12 (μg/day) | 0.4 ± 0.6 (0.2) | 5.5 ± 9.3 (2.9) | <0.01 |
vitamin B-12 (μg/kcal) | 0.02 ± 0.07 (0.003) | 0.08 ± 0.14 (0.049) | <0.01 |
Vegetarians (n = 54) | Omnivores (n = 100) | p Values 2 | |
---|---|---|---|
Serum vitamin B-12 (pmol/L) | 379.4 ± 333.0 (266.1) 1 | 497.9 ± 292.7 (416.9) | <0.01 |
Males | (n = 16) 342.8 ± 339.3 (265.7) | (n = 45) 456.4 ± 294.9 (356.6) | 0.02 |
Females | (n = 38) 394.8 ± 333.7 (271.3) | (n = 55) 531.9 ± 289.1 (480.1) | <0.01 |
p values 3 | 0.58 | 0.10 | |
Age ≥ 65 years | (n = 26) 333.4 ± 197.9 (283.4) | (n = 20) 469.2 ± 309.1 (362.2) | <0.05 |
Age < 65 years | (n = 28) 340.6 ± 302.9 (235.1) | (n = 80) 505.1 ± 290.0 (421.4) | <0.01 |
p values 3 | 0.55 | 0.42 | |
Vitamin B-12 deficiency 4 (n, %) | 10 (18.5%) | 5 (5.0%) | 0.02 |
Vitamin B-12 borderline deficiency 4 (n, %) | 18 (33.3%) | 7 (7.0%) | <0.01 |
Metformin therapy | |||
Yes | (n = 39) 319.5 ± 194.1 (266.1) | (n = 89) 493.2 ± 296.1 (410.0) | <0.01 |
No | (n = 15) 312.9 ± 272.1 (222.0) | (n = 11) 535.9 ± 273.6 (480.1) | 0.03 |
p values 5 | 0.44 | 0.55 | |
Statin therapy | |||
Yes | (n = 26) 358.2 ± 289.6 (251.0) | (n = 71) 516.5 ± 303.1 (440.7) | <0.01 |
No | (n = 28) 321.5 ± 249.6 (275.0) | (n = 29) 452.4 ± 264.9 (349.0) | 0.02 |
p values 5 | 0.54 | 0.15 | |
Metformin + Statin therapy | |||
Yes | (n = 21) 331.9 ± 179.5 (252.6) | (n = 64) 506.3 ± 307.8 (437.8) | 0.01 |
No | (n = 33) 307.9 ± 244.7 (243.1) | (n = 36) 483.0 ± 267.3 (367.3) | <0.01 |
p values 5 | 0.26 | 0.60 |
Vegetarians (n = 54) | Omnivores (n = 100) | |||
---|---|---|---|---|
≤250 pmol/L (n = 25) | >250 pmol/L (n = 29) | ≤250 pmol/L (n = 15) | >250 pmol/L (n = 85) | |
Blood glucose | ||||
fasting glucose (mmol/L) | 7.3 ± 1.8 (6.8) | 6.5 ± 1.5 (6.3) *,† | 7.6 ± 1.5 (8.1) | 7.1 ± 1.5 (7.1) |
HbA1c (%) | 7.5 ± 1.1 (7.2) | 6.8 ± 0.8 (6.8) *,† | 7.3 ± 0.8 (7.5) | 7.2 ± 0.8 (7.2) |
Lipid profiles | ||||
TC (mmol/L) | 4.2 ± 0.8 (4.1) | 4.6 ± 0.9 (4.6) | 4.2 ± 0.7 (4.2) | 4.7 ± 0.8 (4.7) * |
TG (mmol/L) | 1.4 ± 0.7 (1.3) | 1.8 ± 1.7 (1.3) | 1.0 ± 0.4 (1.0) | 1.5 ± 1.4 (1.1) |
LDL-C (mmol/L) | 2.1 ± 0.5 (2.2) | 2.4 ± 0.6 (2.3) | 2.1 ± 0.6 (2.0) | 2.4 ± 0.6 (2.4) * |
HDL-C (mmol/L) | 1.3 ± 0.4 (1.2) | 1.3 ± 0.4 (1.2) † | 1.5 ± 0.4 (1.4) | 1.4 ± 0.3 (1.4) |
TC/HDL-C | 3.4 ± 0.8 (3.1) | 3.8 ± 1.3 (3.6) | 2.9 ± 0.7 (2.6) | 3.5 ± 1.0 (3.3) |
Apo-A1 (g/L) | 1.2 ± 0.3 (1.3) | 1.3 ± 0.4 (1.3) | 1.2 ± 0.3 (1.2) | 1.2 ± 0.3 (1.2) |
Apo-B (g/L) | 0.8 ± 0.2 (0.8) | 0.9 ± 0.3 (0.9) | 0.7 ± 0.2 (0.7) | 0.8 ± 0.3 (0.8) |
Vegetarians (n = 54) | Omnivores (n = 100) | |||
---|---|---|---|---|
≤250 pmol/L (n = 25) | >250 pmol/L (n = 29) | ≤250 pmol/L (n = 15) | >250 pmol/L (n = 85) | |
Oxidative stress | ||||
MDA (μmol/L) | 1.6 ± 0.6 (1.3) | 1.6 ± 0.3 (1.6) | 1.5 ± 0.3 (1.5) | 1.4 ± 0.3 (1.4) *,† |
Ox-LDL-C (U/L) | 33.7 ± 8.2 (31.1) | 31.0 ± 4.7 (31.7) | 31.8 ± 10.9 (28.1) | 33.57 ± 7.2 (33.1) |
Antioxidant enzymes | ||||
CAT (U/mg protein) | 19.2 ± 6.8 (19.1) | 24.6 ± 10.8 (22.0) * | 19.3 ± 5.9 (18.0) | 25.5 ± 12.4 (22.4) * |
SOD (U/mg protein) | 18.4 ± 8.1 (17.0) | 14.5 ± 5.7 (14.9) | 19.6 ± 7.8 (23.1) | 19.6 ± 7.9 (18.6) † |
GPx (U/mg protein) | 20.0 ± 4.3 (19.5) | 20.5 ± 4.9 (20.5) | 21.2 ± 4.1 (21.6) | 20.1 ± 5.1 (19.8) |
Inflammatory markers | ||||
hs-CRP (mg/L) | 1.5 ± 1.5 (0.9) | 2.7 ± 3.2 (1.5) | 1.4 ± 1.6 (0.8) | 1.2 ± 1.2 (0.8) † |
IL-6 (pg/mL) | 2.2 ± 1.7 (1.7) | 2.7 ± 2.2 (1.8) | 2.4 ± 1.7 (2.0) | 1.5 ± 0.8 (1.3) *,† |
Vegetarians (n = 54) | Omnivores (n = 100) | Pooled (n = 154) | |
---|---|---|---|
r 2 (p Values) | |||
Blood glucose | |||
fasting glucose (mmol/L) | −0.17 (0.03) | −0.12 (0.05) | −0.10 (0.03) |
HbA1c (%) | −0.33 (0.02) | −0.06 (0.35) | −0.17 (<0.01) |
Oxidative stress | |||
MDA (μmol/L) | 0.07 (0.63) | −0.11 (0.06) | −0.07 (0.17) |
Ox-LDL-C (U/L) | −0.19 (0.03) | 0.09 (0.42) | 0.00 (0.98) |
Antioxidant enzymes | |||
CAT (U/mg protein) | 0.28 (0.01) | 0.17 (0.03) | 0.23 (<0.01) |
SOD (U/mg protein) | −0.21 (0.12) | 0.00 (0.98) | −0.03 (0.70) |
GPx (U/mg protein) | 0.06 (0.68) | −0.08 (0.43) | −0.02 (0.78) |
Inflammation | |||
hs-CRP (mg/L) | 0.19 (0.17) | −0.05 (0.41) | 0.03 (0.69) |
IL-6 (pg/mL) | 0.13 (0.37) | −0.33 (<0.01) | −0.14 (0.02) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-J.; Wang, M.-Y.; Lin, M.-C.; Lin, P.-T. Associations between Vitamin B-12 Status and Oxidative Stress and Inflammation in Diabetic Vegetarians and Omnivores. Nutrients 2016, 8, 118. https://doi.org/10.3390/nu8030118
Lee Y-J, Wang M-Y, Lin M-C, Lin P-T. Associations between Vitamin B-12 Status and Oxidative Stress and Inflammation in Diabetic Vegetarians and Omnivores. Nutrients. 2016; 8(3):118. https://doi.org/10.3390/nu8030118
Chicago/Turabian StyleLee, Yau-Jiunn, Ming-Yang Wang, Mon-Chiou Lin, and Ping-Ting Lin. 2016. "Associations between Vitamin B-12 Status and Oxidative Stress and Inflammation in Diabetic Vegetarians and Omnivores" Nutrients 8, no. 3: 118. https://doi.org/10.3390/nu8030118
APA StyleLee, Y. -J., Wang, M. -Y., Lin, M. -C., & Lin, P. -T. (2016). Associations between Vitamin B-12 Status and Oxidative Stress and Inflammation in Diabetic Vegetarians and Omnivores. Nutrients, 8(3), 118. https://doi.org/10.3390/nu8030118