Tomato Sauce Enriched with Olive Oil Exerts Greater Effects on Cardiovascular Disease Risk Factors than Raw Tomato and Tomato Sauce: A Randomized Trial
Abstract
:1. Introduction
2. Experimental Section
2.1. Participants
2.2. Study Design
2.3. Tomato Sauce Analysis
2.4. Dietary Assessment
2.5. Measure of Compliance
2.6. Clinical Measurements
2.7. Peripheral Blood Mononuclear Cells (PBMC) Immunophenotyping
2.8. Soluble Inflammatory Markers
2.9. Statistical Analyses
3. Results
3.1. Participants
3.2. Carotenoids and Phenolics of Tomatoes and Tomato Sauces
3.3. Energy and Nutrient Intake
3.4. Biochemical Parameters
3.5. Adhesion Molecules Expression on PBMCs
3.6. Circulating Inflammatory Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Libby, P. Vascular biology of atherosclerosis: Overview and state of the art. Am. J. Cardiol. 2003, 91, 3–6. [Google Scholar] [CrossRef]
- Ley, K.; Laudanna, C.; Cybulsky, M.I.; Nourshargh, S. Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nat. Rev. Immunol. 2007, 7, 678–689. [Google Scholar] [CrossRef] [PubMed]
- De Caterina, R.; Massaro, M. Omega-3 fatty acids and the regulation of expression of endothelial pro-atherogenic and pro-inflammatory genes. J. Membr. Biol. 2005, 206, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Stangl, V.; Kuhn, C.; Hentschel, S.; Jochmann, N.; Jacob, C.; Böhm, V.; Fröhlich, K.; Müller, L.; Gericke, C.; Lorenz, M. Lack of effects of tomato products on endothelial function in human subjects: Results of a randomised, placebo-controlled cross-over study. Br. J. Nutr. 2011, 105, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Upritchard, J.E.; Sutherland, W.H.F.; Mann, J.I. Effect of supplementation with tomato juice, vitamin E, and vitamin C on LDL oxidation and products of inflammatory activity in type 2 diabetes. Diabetes Care 2000, 23, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Hirai, S.; Kim, Y.-I.; Goto, T.; Kang, M.-S.; Yoshimura, M.; Obata, A.; Yu, R.; Kawada, T. Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sci. 2007, 81, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Bugianesi, R.; Salucci, M.; Leonardi, C.; Ferracane, R.; Catasta, G.; Azzini, E.; Maiani, G. Effect of domestic cooking on human bioavailability of naringenin, chlorogenic acid, lycopene and beta-carotene in cherry tomatoes. Eur. J. Nutr. 2004, 43, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Ortuño, J.; Covas, M.-I.; Farre, M.; Pujadas, M.; Fito, M.; Khymenets, O.; Andres-Lacueva, C.; Roset, P.; Joglar, J.; Lamuela-Raventós, R.M.; et al. Matrix effects on the bioavailability of resveratrol in humans. Food Chem. 2010, 120, 1123–1130. [Google Scholar] [CrossRef]
- Campbell, J.K.; Canene-Adams, K.; Lindshield, B.L.; Boileau, T.W.-M.; Clinton, S.K.; Erdman, J.W. Tomato Phytochemicals and Prostate Cancer Risk. J. Nutr. 2004, 134, 3486S–3492S. [Google Scholar] [PubMed]
- Shidfar, F.; Froghifar, N.; Vafa, M.; Rajab, A.; Hosseini, S.; Shidfar, S.; Gohari, M. The effects of tomato consumption on serum glucose, apolipoprotein B, apolipoprotein A-I, homocysteine and blood pressure in type 2 diabetic patients. Int. J. Food Sci. Nutr. 2011, 62, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Balestrieri, M.L.; de Prisco, R.; Nicolaus, B.; Pari, P.; Moriello, V.S.; Strazzullo, G.; Iorio, E.L.; Servillo, L.; Balestrieri, C. Lycopene in association with alpha-tocopherol or tomato lipophilic extracts enhances acyl-platelet-activating factor biosynthesis in endothelial cells during oxidative stress. Free Radic. Biol. Med. 2004, 36, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
- Mordente, A.; Guantario, B.; Meucci, E.; Silvestrini, A.; Lombardi, E.; Martorana, G.E.; Giardina, B.; Böhm, V. Lycopene and cardiovascular diseases: An update. Curr. Med. Chem. 2011, 18, 1146–1163. [Google Scholar] [CrossRef] [PubMed]
- Canene-Adams, K.; Campbell, J.K.; Zaripheh, S.; Jeffery, E.H.; Erdman, J.W. The Tomato as a Functional Food. J. Nutr. 2005, 135, 1226–1230. [Google Scholar] [PubMed]
- Martínez-Huélamo, M.; Vallverdú-Queralt, A.; Lecce, G.D.; Valderas-Martínez, P.; Tulipani, S.; Jáuregui, O.; Escribano-Ferrer, E.; Estruch, R.; Illan, M.; Lamuela-Raventós, R.M. Bioavailability of tomato polyphenols is enhanced by processing and fat addition: Evidence from a randomized feeding trial. Mol. Nutr. Food Res. 2016. [Google Scholar] [CrossRef] [PubMed]
- Vallverdú-Queralt, A.; Medina-Remón, A.; Casals-Ribes, I.; Andres-Lacueva, C.; Waterhouse, A.L.; Lamuela-Raventos, R.M. Effect of tomato industrial processing on phenolic profile and hydrophilic antioxidant capacity. LWT—Food Sci. Technol. 2012, 47, 154–160. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Medina-Remón, A.; Andres-Lacueva, C.; Lamuela-Raventos, R.M. Changes in phenolic profile and antioxidant activity during production of diced tomatoes. Food Chem. 2011, 126, 1700–1707. [Google Scholar] [CrossRef] [PubMed]
- Tulipani, S.; Huelamo, M.M.; Ribalta, M.R.; Estruch, R.; Ferrer, E.E.; Andres-Lacueva, C.; Illan, M.; Lamuela-Raventós, R.M. Oil matrix effects on plasma exposure and urinary excretion of phenolic compounds from tomato sauces: Evidence from a human pilot study. Food Chem. 2012, 130, 581–590. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Martínez-Huélamo, M.; Arranz-Martinez, S.; Miralles, E.; Lamuela-Raventós, R.M. Differences in the carotenoid content of ketchups and gazpachos through HPLC/ESI(Li+)-MS/MS correlated with their antioxidant capacity. J. Sci. Food Agric. 2012, 92, 2043–2049. [Google Scholar] [CrossRef] [PubMed]
- Vallverdú-Queralt, A.; Jáuregui, O.; Medina-Remón, A.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M. Improved characterization of tomato polyphenols using liquid chromatography/electrospray ionization linear ion trap quadrupole Orbitrap mass spectrometry and liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. RCM 2010, 24, 2986–2992. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Huélamo, M.; Tulipani, S.; Torrado, X.; Estruch, R.; Lamuela-Raventós, R.M. Validation of a new LC-MS/MS method for the detection and quantification of phenolic metabolites from tomato sauce in biological samples. J. Agric. Food Chem. 2012, 60, 4542–4549. [Google Scholar] [CrossRef] [PubMed]
- Tresserra-Rimbau, A.; Medina-Remón, A.; Pérez-Jiménez, J.; Martínez-González, M.A.; Covas, M.I.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; Arós, F.; et al. Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: The PREDIMED study. Nutr. Metab. Cardiovasc. Dis. NMCD 2013, 23, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N. Engl. J. Med. 2013, 368, 1279–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and Atherosclerosis. Circulation 2002, 105, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Jacques, P.F.; Lyass, A.; Massaro, J.M.; Vasan, R.S.; D’Agostino, R.B., Sr. Relationship of lycopene intake and consumption of tomato products to incident CVD. Br. J. Nutr. 2013, 110, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Thies, F.; Masson, L.F.; Rudd, A.; Vaughan, N.; Tsang, C.; Brittenden, J.; Simpson, W.G.; Duthie, S.; Horgan, G.W.; Duthie, G. Effect of a tomato-rich diet on markers of cardiovascular disease risk in moderately overweight, disease-free, middle-aged adults: A randomized controlled trial. Am. J. Clin. Nutr. 2012, 95, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Silaste, M.-L.; Alfthan, G.; Aro, A.; Kesäniemi, Y.A.; Hörkkö, S. Tomato juice decreases LDL cholesterol levels and increases LDL resistance to oxidation. Br. J. Nutr. 2007, 98, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Sesso, H.D.; Liu, S.; Gaziano, J.M.; Buring, J.E. Dietary lycopene, tomato-based food products and cardiovascular disease in women. J. Nutr. 2003, 133, 2336–2341. [Google Scholar] [PubMed]
- Sahlin, E.; Savage, G.; Lister, C. Investigation of the antioxidant properties of tomatoes after processing. J. Food Compos. Anal. 2004, 17, 635–647. [Google Scholar] [CrossRef]
- Gärtner, C.; Stahl, W.; Sies, H. Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Am. J. Clin. Nutr. 1997, 66, 116–122. [Google Scholar] [PubMed]
- Riso, P.; Visioli, F.; Grande, S.; Guarnieri, S.; Gardana, C.; Simonetti, P.; Porrini, M. Effect of a tomato-based drink on markers of inflammation, immunomodulation, and oxidative stress. J. Agric. Food Chem. 2006, 54, 2563–2566. [Google Scholar] [CrossRef] [PubMed]
- Van Het Hof, K.H.; West, C.E.; Weststrate, J.A.; Hautvast, J.G. Dietary factors that affect the bioavailability of carotenoids. J. Nutr. 2000, 130, 503–506. [Google Scholar] [PubMed]
- Fielding, J.M.; Rowley, K.G.; Cooper, P.; O’Dea, K. Increases in plasma lycopene concentration after consumption of tomatoes cooked with olive oil. Asia Pac. J. Clin. Nutr. 2005, 14, 131–136. [Google Scholar] [PubMed]
- Engelhard, Y.N.; Gazer, B.; Paran, E. Natural antioxidants from tomato extract reduce blood pressure in patients with grade-1 hypertension: A double-blind, placebo-controlled pilot study. Am. Heart J. 2006, 151, 100. [Google Scholar] [CrossRef] [PubMed]
- Hyson, D.; Rutledge, J.C.; Berglund, L. Postprandial lipemia and cardiovascular disease. Curr. Atheroscler. Rep. 2003, 5, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Hennekens, C.H.; Roitman-Johnson, B.; Stampfer, M.J.; Allen, J. Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet 1998, 351, 88–92. [Google Scholar] [CrossRef]
- García-Alonso, F.J.; Jorge-Vidal, V.; Ros, G.; Periago, M.J. Effect of consumption of tomato juice enriched with n-3 polyunsaturated fatty acids on the lipid profile, antioxidant biomarker status, and cardiovascular disease risk in healthy women. Eur. J. Nutr. 2012, 51, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Burton-Freeman, B.; Talbot, J.; Park, E.; Krishnankutty, S.; Edirisinghe, I. Protective activity of processed tomato products on postprandial oxidation and inflammation: A clinical trial in healthy weight men and women. Mol. Nutr. Food Res. 2012, 56, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, C.; Cano, M.P.; de Ancos, B.; Plaza, L.; Olmedilla, B.; Granado, F.; Martín, A. Mediterranean vegetable soup consumption increases plasma vitamin C and decreases F2-isoprostanes, prostaglandin E2 and monocyte chemotactic protein-1 in healthy humans. J. Nutr. Biochem. 2006, 17, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Rippe, J.M.; Angelopoulos, T.J. Sugar and health controversies: What does the science say? Adv. Nutr. 2015, 6, 493S–503S. [Google Scholar] [CrossRef]
Compounds | Mean ± SD OA * (µg/g) | |||
---|---|---|---|---|
RT | TS | TSOO | Control | |
Carotenoids | ||||
lutein | 0.20 ± 0.01 | 0.38 ± 0.02 | 0.45 ± 0.10 | ND |
alpha-carotene | 0.15 ± 0.04 | 0.73 ± 0.03 | 1.06 ± 0.07 | ND |
beta-carotene | 246 ± 142 | 323 ± 179 | 355 ± 194 | ND |
Z-lycopene isomers 1 | 5.53 ± 1.51 | 12.4 ± 3.6 | 27.1 ± 7.3 | ND |
E-lycopene | 36.7 ± 8.6 | 39.3 ± 5.2 | 77.5 ± 11.9 | ND |
Total carotenoids | 289 ± 106 | 376 ± 139 | 461± 150 | |
Total carotenoids OA (mg) 2 | 144 ± 26.7 | 94.2 ± 34.9 | 115 ± 37.5 | |
Polyphenols | ||||
Flavonoids | ||||
Flavanones | 103 ± 15.5 | 146 ± 26.4 | 135 ± 28.5 | ND |
Flavanols | 4.87 ± 0.29 | 6.91 ± 0.21 | 7.75 ± 0.31 | ND |
Non-flavonoids | ||||
Phenolic acids | 2.47 ± 0.12 | 5.66 ± 0.07 | 5.38 ± 0.13 | ND |
Total polyphenols | 110 ± 9.98 | 159 ± 19.1 | 148 ± 11.9 | ND |
Total polyphenols OA (mg) 2 | 55.4 ± 8.32 | 39.8 ± 5.17 | 37.2 ± 4.09 |
Parameters | Mean ± SD | p 1 | |||
---|---|---|---|---|---|
RT | TS | TSOO | Control | ||
Energy (Kcal) | 1789 ± 72 | 1936 ± 101 | 1865 ± 77 | 1891 ± 200 | 0.299 |
Protein (g) | 98.0 ± 5.3 | 103.0 ± 5.8 | 105.0 ± 5.3 | 95.0 ± 16.8 | 0.438 |
Carbohydrates (g) | 194 ± 11 | 215 ± 14 | 199 ± 12 | 200 ± 47 | 0.397 |
Dietary fiber (g) | 8.93 ± 0.97 | 9.33 ± 0.87 | 7.77 ± 0.95 | 10.6 ± 3.56 | 0.652 |
Total fat (g) | 66.2 ± 4.0 | 71.2 ± 5.4 | 70.0 ± 4.1 | 64.2 ± 11.5 | 0.508 |
SFA (g) | 27.7 ± 1.8 | 28.0 ± 2.3 | 27.3 ± 1.7 | 26.8 ± 5.4 | 0.619 |
MUFA (g) | 22.4 ± 1.6 | 25.0 ± 2.1 | 24.8 ± 1.6 | 24.7 ± 5.2 | 0.265 |
PUFA (g) | 10.1 ± 0.9 | 11.4 ± 1.2 | 11.6 ± 1.0 | 11.8 ± 1.7 | 0.431 |
Trans fatty acids (g) | 1.51 ± 0.27 | 1.4 ± 0.23 | 2.3 ± 0.48 | 1.3 ± 0.79 | 0.383 |
Cholesterol (mg) | 384 ± 32 | 351 ± 30 | 382 ± 30 | 328 ± 88 | 0.770 |
Vitamins | |||||
Pro-vitamin A (RE) | 36.8 ± 5.7 | 32.0 ± 4.3 | 36.3 ± 7.3 | 44.2 ± 8.9 | 0.412 |
Vitamin A (RE) | 448 ± 33 | 428 ± 41 | 434 ± 48 | 493 ± 93 | 0.803 |
Vitamin B1 (mg) | 1.83 ± 0.11 | 2.14 ± 0.17 | 2.00 ± 0.14 | 2.18 ± 0.60 | 0.136 |
Vitamin B2 (mg) | 2.06 ± 0.11 | 2.06 ± 0.14 | 2.10 ± 0.10 | 2.13 ± 0.40 | 0.482 |
Vitamin B3 (mg) | 20.6 ± 1.4 | 25.1 ± 1.5 | 23.9 ± 1.4 | 21.2 ± 6.1 | 0.148 |
Vitamin B6 (mg) | 1.31 ± 0.13 | 1.42 ± 0.15 | 1.39 ± 0.12 | 1.37 ± 0.28 | 0.440 |
Vitamin B12 (μg) | 5.54 ± 0.64 | 5.5 ± 0.68 | 6.44 ± 0.86 | 4.62 ± 2.28 | 0.590 |
Vitamin C (mg) | 8.30 ± 1.40 | 7.41 ± 1.66 | 8.81 ± 1.33 | 9.65 ± 2.14 | 0.455 |
Vitamin E (μg) | 6.65 ± 0.65 | 6.30 ± 0.92 | 6.60 ± 0.59 | 6.50 ± 0.83 | 0.968 |
Minerals | |||||
Folate (μg) | 350 ± 28 | 377 ± 43 | 358 ± 30 | 404 ± 141 | 0.730 |
Calcium (mg) | 1040 ± 72 | 893 ± 84 | 957 ± 57 | 837 ± 238 | 0.759 |
Magnesium (mg) | 211 ± 13 | 252 ± 37 | 208 ± 10 | 209 ± 72 | 0.467 |
Phosphorus (mg) | 1494 ± 75 | 1440 ± 95 | 1494 ± 63 | 1370 ± 261 | 0.960 |
Potassium (mg) | 1729 ± 101 | 1829 ± 106 | 1860 ± 96 | 1876 ± 283 | 0.385 |
Selenium (μg) | 129 ± 8 | 138 ± 9 | 139 ± 9 | 128 ± 37 | 0.559 |
Sodium (mg) | 2564 ± 207 | 2737 ± 269 | 2505 ± 199 | 2540 ± 1140 | 0.912 |
Zinc (mg) | 11.1 ± 0.8 | 11.4 ± 0.8 | 12.0 ± 0.8 | 11.1 ± 2.3 | 0.739 |
Total polyphenols (mg) | 27.2 ± 3.1 | 26.4 ± 3.7 | 26.1 ± 5.1 | 24.0 ± 7.7 | 0.766 |
RT | TS | TSOO | Control | p 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD 1 | Mean Differences (95% CI) 2 | Mean ± SD 1 | Mean Differences (95% CI) 2 | Mean ± SD 1 | Mean Differences (95% CI) 2 | Mean ± SD 1 | Mean Differences (95% CI) 2 | |||
SBP (mm Hg) | Before | 120 ± 13 | −5.67 (−8.90 to −2.43) | 117 ± 13 | −1.95 (−5.38 to 1.47) | 120 ± 12 | −5.57 (−8.49 to −2.64) | 118 ± 9 | −3.44 (−6.63 to −0.25) | 0.135 |
After | 115 ± 11 ** | 115 ± 10 | 115 ± 12 ** | 115 ± 9 ** | ||||||
DBP (mm Hg) | Before | 72.0 ± 9.5 | −2.21 (−4.51 to 0.10) | 73.0 ± 7.8 | −1.46 (−3.65 to 0.73) | 73.0 ± 8.1 | −2.92 (−5.18 to −0.66) | 71.0 ± 6.8 | −1.98 (−3.63 to −0.34) | 0.689 |
After | 70.0 ± 9.3 | 72.0 ± 9.6 | 70.0 ± 9.0 * | 69.0 ± 8.0 ** | ||||||
Total cholesterol (mg/dL) | Before | 167 ± 28 | −6.53 (−9.99 to −3.07) a | 170 ± 29 | −8.49 (−12.0 to −4.96) a | 167 ± 23 | −9.03 (−13.5 to −4.55) a | 168 ± 16 | −1.57 (−6.69 to 3.55) b | 0.005 |
After | 160 ± 28 ** | 162 ± 26 ** | 158 ± 22 ** | 167 ± 13 | ||||||
HDLc (mg/dL) | Before | 52.0 ± 11.2 | 0.42 (−1.28 to 2.12) | 52.0 ± 11.8 | 1.09 (−2.45 to 4.63) | 52.0 ± 11.3 | 2.36 (0.19 to 4.54) | 50.0 ± 12.7 | −0.03 (−4.19 to 4.14) | 0.404 |
After | 53.0 ± 11.1 | 53.0 ± 12.4 | 55.0 ± 13.3 * | 50.0 ± 11.9 | ||||||
LDLc (mg/dL) | Before | 95.0 ± 19.6 | −2.88 (−6.30 to 0.53) | 96.0 ± 22.6 | −4.31 (−7.80 to −0.83) | 95.0 ± 20.5 | −2.00 (−5.41 to 1.41) | 95.0 ± 13.9 | −0.37 (−3.48 to 2.74) | 0.184 |
After | 92.0 ± 19.0 | 92.0 ± 18.2 * | 93.0 ± 18.9 | 95.0 ± 11.8 | ||||||
Triglycerides (mg/dL) | Before | 84.0 ± 54.7 | −22.6 (−34.5 to −10.7) a,b | 86.0 ± 42.0 | −28.4 (−41.6 to −15.2) a | 83.0 ± 36.5 | −15.3 (−22.4 to −8.12) b | 86.0 ± 23.8 | −2.73 (−13.1 to 7.67) c | 0.002 |
After | 62.0 ± 34.8 ** | 57.0 ± 22.7 ** | 68.0 ± 31.7 ** | 83.0 ± 31.6 | ||||||
Ratio Total-c/HDL | Before | 3.30 ± 0.90 | −0.17 (−0.31 to −0.02) a | 3.40 ± 0.90 | −0.24 (−0.46 to −0.02) a | 3.30 ± 0.90 | −0.28 (−0.49 to −0.07) a | 3.60 ± 0.90 | −0.04 (−0.34 to 0.26) b | 0.034 |
After | 3.20 ± 0.90 * | 3.20 ± 0.80 * | 3.10 ± 0.90 ** | 3.50 ± 0.90 | ||||||
Folic acid (serum) | Before | 6.50 ± 3.00 | 1.91 (1.31 to 2.51) a | 6.00 ± 2.10 | 1.86 (1.26 to 2.46) a | 6.10 ± 2.30 | 1.94 (1.51 to 2.37) a | 6.50 ± 2.00 | 0.18 (−0.36 to 0.71) b | <0.001 |
(ng/mL) | After | 8.40 ± 2.80 ** | 7.90 ± 2.70 ** | 8.00 ± 2.00 ** | 6.70 ± 2.30 |
RT | TS | TSOO | Control | p 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD 1 | Mean Differences (95% CI)2 | Mean ± SD 1 | Mean Differences (95% CI) 2 | Mean ± SD 1 | Mean Differences (95% CI) 2 | Mean ± SD 1 | Mean Differences (95% CI) 2 | |||
T-lymphocytes (MFI) | AU | |||||||||
LFA-1 | Before | 143 ± 58 | 4.40 (−6.80 to 15.5) a | 146 ± 59 | 1.60 (−7.70 to 10.8) a | 144 ± 50 | −9.60 (−17.0 to −2.20) b | 141 ± 22 | 9.70 (2.70 to 16.60) c | 0.010 |
After | 147 ± 60 | 148 ± 54 | 135 ± 43* | 150 ± 27 * | ||||||
Mac-1 | Before | 141 ± 59 | −0.20 (−16.8 to 16.3) | 144 ± 51 | −6.40 (−21.9 to 9.10) | 143 ± 69 | −4.80 (−24.4 to 14.8) | 147 ± 73 | 0.30 (−30.2 to 30.7) | 0.814 |
After | 141 ± 55 | 137 ± 37 | 138 ± 45 | 147 ± 23 | ||||||
VLA-4 | Before | 60.0 ± 15.8 | 1.10 (−2.70 to 4.90) | 60.0 ± 11.4 | 2.20 (−1.20 to 5.50) | 62.0 ± 14.9 | 1.90 (−1.40 to 5.20) | 58.0 ± 14.9 | 1.70 (−14.1 to 17.6) | 0.983 |
After | 61.0± 18.3 | 62.0 ± 10.3 | 63.0 ± 14.7 | 60.0 ± 38.2 | ||||||
SLex | Before | 234 ± 104 | −2.50 (−24.4 to 19.4) | 237 ± 109 | −6.80 (−36.2 to 22.6) | 237 ± 137 | −1.70 (−41.3 to 37.8) | 242 ± 30.9 | −0.90 (−17.4 to 15.7) | 0.925 |
After | 231 ± 113 | 231 ± 108 | 235 ± 109 | 241 ± 14.6 | ||||||
CD40 | Before | 138 ± 36 | 7.00 (−10.1 to 24.0) | 139 ± 42 | 5.20 (−8.60 to 19.0) | 138 ± 36 | 1.10 (−12.5 to 14.8) | 141 ± 22 | 3.70 (−1.50 to 8.80) | 0.879 |
After | 145 ± 47 | 144 ± 36 | 139 ± 44 | 144 ± 19 | ||||||
Monocytes (MFI) | AU | |||||||||
LFA-1 | Before | 83.0 ± 27.5 | 2.20 (−6.30 to 10.7) | 80.0 ± 21.2 | 3.50 (−1.60 to 8.60) | 82.0 ± 15.6 | 2.10 (−2.80 to 6.90) | 83.0 ± 8.00 | 2.90 (−1.10 to 7.00) | 0.561 |
After | 85.0 ± 26.2 | 84.0 ± 16.5 | 84.0 ± 20.1 | 86.0 ± 14.1 | ||||||
Mac-1 | Before | 57.0 ± 11.0 | 0.50 (−2.90 to 3.80) | 57.0 ± 10.7 | 0.60 (−3.20 to 4.30) | 58.0 ± 11.7 | −0.20 (−3.20 to 2.80) | 58.0 ± 12.0 | 0.50 (−5.70 to 6.60) | 0.343 |
After | 57.0 ± 12.3 | 57.0 ± 11.9 | 57.0 ± 10.2 | 58.0 ± 21.1 | ||||||
VLA-4 | Before | 45.0 ± 12.9 | 1.00 (−2.30 to 4.20) a,b | 43.0 ± 7.90 | 2.20 (−0.30 to 4.80) a | 44.0 ± 9.40 | −0.90 (−3.00 to 1.30) b | 40.0 ± 29.3 | 3.00 (−9.70 to 15.7) a | 0.030 |
After | 46.0 ± 13.4 | 46.0 ± 8.20 | 43.0 ± 9.70 | 43.0 ± 9.20 | ||||||
SLex | Before | 84.0 ± 27.1 | −0.70 (−6.10 to 4.70) a | 84.0 ± 18.3 | 3.70 (−0.90 to 8.30) b | 87.0 ± 25.6 | 0.10 (−6.30 to 6.60) a | 85.0 ± 12.7 | 0.50 (−2.70 to 3.70) a | 0.007 |
After | 84.0 ± 24.9 | 87.0 ± 19.0 | 87.0 ± 21.6 | 86.0 ± 8.60 | ||||||
CD40 | Before | 51.0 ± 16.3 | −1.80 (−5.70 to 2.10) a | 47.0 ± 11.6 | 2.70 (−0.70 to 6.00) b | 48.0 ± 11.7 | −0.90 (−5.50 to 3.70) a | 49.0 ± 13.6 | 0.30 (−2.90 to 3.40) a | 0.001 |
After | 49.0 ± 17.3 | 50.0 ± 13.0 | 47.0 ± 15.2 | 49.0 ± 8.80 | ||||||
CD36 | Before | 52.0 ± 10.6 | 0.40 (−3.60 to 4.50) a | 51.0 ± 13.2 | −0.30 (−4.50 to 3.80) a | 54.0 ± 20.2 | −6.20 (−13.2 to −0.01) b | 51.0 ± 24.9 | −0.10 (−22.7 to 22.4) a | 0.042 |
After | 53.0 ± 12.3 | 51.0 ± 10.0 | 47.0 ± 18.0 * | 51.0 ± 25.6 | ||||||
CCR2 | Before | 435 ± 108 | −8.30 (−61.2 to 44.7) | 437 ± 149 | −10.6 (−53.0 to 31.7) | 439 ± 138 | −12.0 (−47.0 to 23.0) | 440 ± 295 | −13.9 (−171 to 143) | 0.998 |
After | 427 ± 141 | 427 ± 164 | 427 ± 115 | 426 ± 524 |
RT | TS | TSOO | Control | p 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD 1 | Mean Differences (95% CI)2 | Mean ± SD 1 | Mean Differences (95% CI) 2 | Mean ± SD 1 | Mean Differences (95% CI) 2 | Mean ± SD 1 | Mean Differences (95% CI) 2 | |||
IL-1α (pg/mL) | Before | 0.79 ± 0.46 | −0.02 (−0.13 to 0.08) | 0.76 ± 0.43 | −0.08 (−0.18 to 0.03) | 0.74 ± 0.38 | −0.04 (−0.14 to 0.05) | 0.79 ± 0.41 | −0.05 (−0.27 to 0.18) | 0.856 |
After | 0.76 ± 0.45 | 0.69 ± 0.32 | 0.69 ± 0.36 | 0.75 ± 0.25 | ||||||
IL-6 (pg/mL) | Before | 6.28 ± 2.45 | −0.30 (−0.92 to 0.32) a,b | 6.35 ± 2.81 | −0.55 (−1.31 to 0.22) a,b | 6.47 ± 3.16 | −1.09 (−1.84 to −0.34) a | 7.09 ± 1.31 | 0.76 (−0.11 to 1.63) b | 0.029 |
After | 5.99 ± 2.49 | 5.81 ± 2.83 | 5.38 ± 2.60 ** | 6.33 ± 2.28 | ||||||
IL-10 (pg/mL) | Before | 2.29 ± 0.60 | 0.20 (0.07 to 0.32) a | 2.18 ± 0.53 | 0.18 (0.07 to 0.28) a | 2.25 ± 0.54 | 0.15 (0.02 to 0.28) a | 2.33 ± 0.57 | −0.21 (−0.39 to −0.23) b | 0.014 |
After | 2.49 ± 0.61 * | 2.36 ± 0.62 ** | 2.40 ± 0.56 ** | 2.12 ± 0.49 * | ||||||
IL-18 (pg/mL) | Before | 120 ± 49 | −3.92 (−13.4 to 5.61) | 124 ± 45 | −9.42 (−15.9 to −2.90) | 129 ± 61 | −12.7 (−22.4 to −3.08) | 116 ± 37 | 3.42 (−8.91 to 15.7) | 0.456 |
After | 116 ± 49 | 115 ± 47 ** | 116 ± 55* | 120 ± 29 | ||||||
MCP-1 (pg/mL) | Before | 32.2 ± 19.1 | −6.12 (−9.71 to −2.53) a | 32.0 ± 17.6 | −5.27 (−9.37 to −1.17) a | 32.7 ± 18.7 | −6.82 (−10.0 to −3.60) a | 30.0 ± 8.8 | 3.20 (0.77 to 5.73) b | 0.001 |
After | 26.1 ± 14.7 ** | 26.8 ± 16.0 ** | 25.9 ± 13.6 ** | 33.3 ± 6.5 | ||||||
ICAM-1 (ng/mL) | Before | 202 ± 88 | 9.60 (−5.85 to 25.0) | 207 ± 89 | 4.52 (−13.1 to 22.1) | 204 ± 81 | −9.51 (−20.3 to 1.35) | 212 ± 52.6 | 0.41 (−10.3 to 11.1) | 0.244 |
After | 212 ± 92 | 211 ± 100 | 194 ± 100 | 212 ± 53.6 | ||||||
VCAM-1(ng/mL) | Before | 367 ± 144 | −17.8 (−45.5 to 9.98) a | 354 ± 125 | −14.4 (−47.1 to 18.1) a | 375 ± 135 | −38.8 (−71.3 to −6.47) b | 380 ± 89 | 2.62 (−42.1 to 47.4) a | 0.042 |
After | 349 ± 115 | 339 ± 136 | 336 ± 118 * | 382 ± 133 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valderas-Martinez, P.; Chiva-Blanch, G.; Casas, R.; Arranz, S.; Martínez-Huélamo, M.; Urpi-Sarda, M.; Torrado, X.; Corella, D.; Lamuela-Raventós, R.M.; Estruch, R. Tomato Sauce Enriched with Olive Oil Exerts Greater Effects on Cardiovascular Disease Risk Factors than Raw Tomato and Tomato Sauce: A Randomized Trial. Nutrients 2016, 8, 170. https://doi.org/10.3390/nu8030170
Valderas-Martinez P, Chiva-Blanch G, Casas R, Arranz S, Martínez-Huélamo M, Urpi-Sarda M, Torrado X, Corella D, Lamuela-Raventós RM, Estruch R. Tomato Sauce Enriched with Olive Oil Exerts Greater Effects on Cardiovascular Disease Risk Factors than Raw Tomato and Tomato Sauce: A Randomized Trial. Nutrients. 2016; 8(3):170. https://doi.org/10.3390/nu8030170
Chicago/Turabian StyleValderas-Martinez, Palmira, Gemma Chiva-Blanch, Rosa Casas, Sara Arranz, Miriam Martínez-Huélamo, Mireia Urpi-Sarda, Xavier Torrado, Dolores Corella, Rosa M. Lamuela-Raventós, and Ramon Estruch. 2016. "Tomato Sauce Enriched with Olive Oil Exerts Greater Effects on Cardiovascular Disease Risk Factors than Raw Tomato and Tomato Sauce: A Randomized Trial" Nutrients 8, no. 3: 170. https://doi.org/10.3390/nu8030170
APA StyleValderas-Martinez, P., Chiva-Blanch, G., Casas, R., Arranz, S., Martínez-Huélamo, M., Urpi-Sarda, M., Torrado, X., Corella, D., Lamuela-Raventós, R. M., & Estruch, R. (2016). Tomato Sauce Enriched with Olive Oil Exerts Greater Effects on Cardiovascular Disease Risk Factors than Raw Tomato and Tomato Sauce: A Randomized Trial. Nutrients, 8(3), 170. https://doi.org/10.3390/nu8030170