The Role of Avocados in Maternal Diets during the Periconceptional Period, Pregnancy, and Lactation
Abstract
:1. Introduction
- What is the influence of maternal dietary intake on micronutrients—including fat-soluble and water-soluble vitamins—and macronutrients—including total fat, n-3 polyunsaturated fatty acids (PUFA), n-6 PUFA, and trans fats—on human milk composition?
- What are the effects of dietary patterns—such as vegan, vegetarian, macrobiotic diets—on breast milk composition?
- What is the relationship between maternal dietary water-soluble vitamin intake and human milk water-soluble vitamin composition?
- What is the relationship between maternal dietary-fat intake and human milk-fat composition?
- What is the relationship between maternal dietary fat-soluble vitamin intake and human milk fat-soluble vitamin composition?
2. General Recommendations for Maternal Diet during the Preconceptional Period, Pregnancy, and Lactation
3. Adjusting and Improving the Federal Dietary Advice for Pregnancy and Lactation
4. Maternal Diet: Effects on Fertility, Fetal Growth, and Birth Outcomes
4.1. Mediterranean-Style Diet and Fertility
4.2. Low-Glycemic Diets: Effects on Fertility, Maternal Health, and Fetal Health Outcomes
4.3. Maternal Intake of Fruits and Vegetables
5. Maternal Intake of Key Avocado Compounds: Effects on Fertility, Fetal Health, and Birth Outcomes
5.1. MUFA—Oleic Acid
5.2. Fiber
5.3. Folate
5.4. Vitamin A and Carotenoids
5.5. Potassium
6. Maternal Intake of Fruits, Vegetables, and Key Avocado Compounds: Effects on Milk Production and Composition
6.1. MUFA—Oleic Acid
6.2. Carotenoids
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- U.S. Department of Health; Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. Available online: http://www.cnpp.usda.gov/2015-2020-dietary-guidelines-americans (accessed on 26 January 2016).
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Scientific Report of the 2015 Dietary Guidelines Advisory Committee—Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Available online: http://health.gov/dietaryguidelines/2015-scientific-report/pdfs/scientific-report-of-the-2015-dietary-guidelines-advisory-committee.pdf (accessed on 13 January 2016).
- WHO/FAO. Vitamin and Mineral Requirements in Human Nutrition: Report of a Joint FAO/WHO Expert Consultation, 2nd ed.; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Otten, J.J.; Hellwig, J.P.; Meyers, L.D. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Christian, P.; Mullany, L.C.; Hurley, K.M.; Katz, J.; Black, R.E. Nutrition and maternal, neonatal, and child health. Semin. Perinatol. 2015, 39, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Raiten, D.J.; Raghavan, R.; Porter, A.; Obbagy, J.E.; Spahn, J.M. Executive summary: Evaluating the evidence base to support the inclusion of infants and children from birth to 24 months of age in the Dietary Guidelines for Americans—“The B-24 Project”. Am. J. Clin. Nutr. 2014, 99, 663S–691S. [Google Scholar] [CrossRef] [PubMed]
- USDA. National Nutrient Database for Standard Reference Release 27, Basic Report: 09038, Avocados, Raw, California. Available online: http://www.ars.usda.gov/Services/docs.htm?docid=25706 (accessed on 23 August 2015).
- Chavarro, J.E.; Rich-Edwards, J.W.; Rosner, B.A.; Willett, W.C. Dietary fatty acid intakes and the risk of ovulatory infertility. Am. J. Clin. Nutr. 2007, 85, 231–237. [Google Scholar] [PubMed]
- Champ, M.; Hoebler, C. Functional food for pregnant, lactating women and in perinatal nutrition: A role for dietary fibres? Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Vanhees, K.; Vonhogen, I.G.; van Schooten, F.J.; Godschalk, R.W. You are what you eat, and so are your children: The impact of micronutrients on the epigenetic programming of offspring. Cell. Mol. Life Sci. 2014, 71, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Twigt, J.M.; Bolhuis, M.E.; Steegers, E.A.; Hammiche, F.; van Inzen, W.G.; Laven, J.S.; Steegers-Theunissen, R.P. The preconception diet is associated with the chance of ongoing pregnancy in women undergoing IVF/ICSI treatment. Hum. Reprod. 2012, 27, 2526–2531. [Google Scholar] [CrossRef] [PubMed]
- Abu-Saad, K.; Fraser, D. Maternal nutrition and birth outcomes. Epidemiol. Rev. 2010, 32, 5–25. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.B.; Saldanha, L.S.; Martorell, R. The importance of maternal undernutrition for maternal, neonatal, and child health outcomes: An editorial. Food Nutr. Bull. 2012, 33, S3–S5. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, U.; Grant, F.; Goldenberg, T.; Zongrone, A.; Martorell, R. Effect of women’s nutrition before and during early pregnancy on maternal and infant outcomes: A systematic review. Paediatr. Perinat. Epidemiol. 2012, 26, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Cetin, I.; Berti, C.; Calabrese, S. Role of micronutrients in the periconceptional period. Hum. Reprod. Update 2010, 16, 80–95. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.T.; Phelan, S.T. Prenatal nutrition: Special considerations. Minerva Ginecol. 2009, 61, 373–400. [Google Scholar] [PubMed]
- Fowler, J.K.; Evers, S.E.; Campbell, M.K. Inadequate dietary intakes among pregnant women. Can. J. Diet Pract. Res. 2012, 73, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Schatzer, M.; Rust, P.; Elmadfa, I. Fruit and vegetable intake in Austrian adults: Intake frequency, serving sizes, reasons for and barriers to consumption, and potential for increasing consumption. Public Health Nutr. 2010, 13, 480–487. [Google Scholar] [CrossRef] [PubMed]
- De Weerd, S.; Steegers, E.A.; Heinen, M.M.; van den Eertwegh, S.; Vehof, R.M.; Steegers-Theunissen, R.P. Preconception nutritional intake and lifestyle factors: First results of an explorative study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 111, 167–172. [Google Scholar] [CrossRef]
- American Dietetic Association; American Society of Nutrition; Siega-Riz, A.M.; King, J.C. Position of the American Dietetic Association and American Society for Nutrition: Obesity, reproduction, and pregnancy outcomes. J. Am. Diet Assoc. 2009, 109, 918–927. [Google Scholar]
- Heslehurst, N.; Ells, L.J.; Simpson, H.; Batterham, A.; Wilkinson, J.; Summerbell, C.D. Trends in maternal obesity incidence rates, demographic predictors, and health inequalities in 36,821 women over a 15-year period. BJOG 2007, 114, 187–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, A. Increasing prevalence of gestational diabetes mellitus: A public health perspective. Diabetes Care 2007, 30, S141–S146. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.E.; Werler, M.M.; Shaw, G.M.; Anderka, M.; Yazdy, M.M.; National Birth Defects Prevention Study. Dietary Glycemic Index and the risk of birth defects. Am. J. Epidemiol. 2012, 176, 1110–1120. [Google Scholar] [CrossRef] [PubMed]
- Matias, S.L.; Dewey, K.G.; Quesenberry, C.P., Jr.; Gunderson, E.P. Maternal prepregnancy obesity and insulin treatment during pregnancy are independently associated with delayed lactogenesis in women with recent gestational diabetes mellitus. Am. J. Clin. Nutr. 2014, 99, 115–121. [Google Scholar] [CrossRef] [PubMed]
- ChooseMyPlate.gov. Health and Nutrition Information for Pregnant and Breastfeeding Women: Making Healthy Choices in Each Food Group. Available online: http://www.choosemyplate.gov/pregnancy-breastfeeding/making-healthy-food-choices.html (accessed on 17 November 2014).
- Lundqvist, A.; Johansson, I.; Wennberg, A.; Hultdin, J.; Hogberg, U.; Hamberg, K.; Sandstrom, H. Reported dietary intake in early pregnant compared to non-pregnant women inverted question mark a cross-sectional study. BMC Pregnancy Childbirth 2014, 14, 373. [Google Scholar] [CrossRef] [PubMed]
- Picciano, M.F.; McGuire, M.K. Use of dietary supplements by pregnant and lactating women in North America. Am. J. Clin. Nutr. 2009, 89, 663S–667S. [Google Scholar] [CrossRef] [PubMed]
- ChooseMyPlate.gov. Health and Nutrition Information for Pregnant and Breastfeeding Women: Nutritional Needs during Pregnancy. Available online: http://www.choosemyplate.gov/pregnancy-breastfeeding/pregnancy-nutritional-needs.html (accessed on 17 November 2014).
- Verger, E.O.; Holmes, B.A.; Huneau, J.F.; Mariotti, F. Simple changes within dietary subgroups can rapidly improve the nutrient adequacy of the diet of French adults. J. Nutr. 2014, 144, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Kelly, T.N.; Gu, D.; Rao, D.C.; Chen, J.; Chen, J.; Cao, J.; Li, J.; Lu, F.; Ma, J.; Mu, J.; et al. Maternal history of hypertension and blood pressure response to potassium intake: The gensalt study. Am. J. Epidemiol. 2012, 176, S55–S63. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Coughlin, K.B.; Frederick, I.O.; Sorensen, T.K.; Williams, M.A. Dietary fiber intake in early pregnancy and risk of subsequent preeclampsia. Am. J. Hypertens. 2008, 21, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, T.L.; Anderson, M.A.; Chartier-Logan, C.; Friedman, J.E.; Barbour, L.A. Strategies in the nutritional management of gestational diabetes. Clin. Obstet. Gynecol. 2013, 56, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Frederick, I.O.; Williams, M.A.; Dashow, E.; Kestin, M.; Zhang, C.; Leisenring, W.M. Dietary fiber, potassium, magnesium and calcium in relation to the risk of preeclampsia. J. Reprod. Med. 2005, 50, 332–344. [Google Scholar] [PubMed]
- Centers for Disease Control and Prevention (CDC). Faststats: Infertility. Available online: http://www.cdc.gov/nchs/fastats/infertility.htm25706 (accessed on 17 November 2014).
- Chavarro, J.; Willett, W.; Skerrett, P.J. The Fertility Diet: Groundbreaking Research Reveals Natural Ways to Boost Ovulation & Improve Your Chances of Getting Pregnant; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Kulak, D.; Polotsky, A.J. Should the ketogenic diet be considered for enhancing fertility? Maturitas 2013, 74, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Crosignani, P.G.; Vegetti, W.; Colombo, M.; Ragni, G. Resumption of fertility with diet in overweight women. Reprod. Biomed. Online 2002, 5, 60–64. [Google Scholar] [CrossRef]
- Santangelo, C.; Vari, R.; Scazzocchio, B.; Filesi, C.; Masella, R. Management of reproduction and pregnancy complications in maternal obesity: Which role for dietary polyphenols? Biofactors 2014, 40, 79–102. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.; Henriksen, T.; Christophersen, B.; Tonstad, S. Effect of a cholesterol-lowering diet on maternal, cord, and neonatal lipids, and pregnancy outcome: A randomized clinical trial. Am. J. Obstet. Gynecol. 2005, 193, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Mediterranean Diet Pyramid Poster. Available online: http://www.californiaavocado.com/mediterranean-diet/ (accessed on 7 January 2015).
- Timmermans, S.; Steegers-Theunissen, R.P.; Vujkovic, M.; Bakker, R.; den Breeijen, H.; Raat, H.; Russcher, H.; Lindemans, J.; Hofman, A.; Jaddoe, V.W.; et al. Major dietary patterns and blood pressure patterns during pregnancy: The generation R study. Am. J. Obstet. Gynecol. 2011, 205. [Google Scholar] [CrossRef] [PubMed]
- Toledo, E.; Lopez-del Burgo, C.; Ruiz-Zambrana, A.; Donazar, M.; Navarro-Blasco, I.; Martinez-Gonzalez, M.A.; de Irala, J. Dietary patterns and difficulty conceiving: A nested case-control study. Fertil. Steril. 2011, 96, 1149–1153. [Google Scholar] [CrossRef] [PubMed]
- Hirai, S.; Takahashi, N.; Goto, T.; Lin, S.; Uemura, T.; Yu, R.; Kawada, T. Functional food targeting the regulation of obesity-induced inflammatory responses and pathologies. Mediat. Inflamm. 2010, 2010, 367838. [Google Scholar] [CrossRef] [PubMed]
- Sinska, B.; Kucharska, A.; Dmoch-Gajzlerska, E. The Diet in improving fertility in women. Pol. Merkur. Lekarski. 2014, 36, 400–402. [Google Scholar] [PubMed]
- Becker, G.F.; Passos, E.P.; Moulin, C.C. Short-term effects of a hypocaloric diet with low glycemic index and low glycemic load on body adiposity, metabolic variables, ghrelin, leptin, and pregnancy rate in overweight and obese infertile women: A randomized controlled trial. Am. J. Clin. Nutr. 2015, 102, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- De Lorgeril, M.; Salen, P.; Paillard, F.; Laporte, F.; Boucher, F.; de Leiris, J. Mediterranean diet and the French paradox: Two distinct biogeographic concepts for one consolidated scientific theory on the role of nutrition in coronary heart disease. Cardiovasc. Res. 2002, 54, 503–515. [Google Scholar] [CrossRef]
- USDA. National Nutrient Database for Standard Reference Release 27: Sugars, Total (G): “Compared to Fruits and Fruit Juices”. Available online: https://ndb.nal.usda.gov/ (accessed on 23 August 2015).
- USDA. National Nutrient Database for Standard Reference Release 27: Fiber, Total Dietary (G): “Compared to Fruits and Fruit Juices”. Available online: https://ndb.nal.usda.gov/ (accessed on 23 August 2015).
- Foster-Powell, K.; Holt, S.H.; Brand-Miller, J.C. International table of glycemic index and glycemic load values: 2002. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [PubMed]
- Moses, R.G.; Barker, M.; Winter, M.; Petocz, P.; Brand-Miller, J.C. Can a low-glycemic index diet reduce the need for insulin in gestational diabetes mellitus? A randomized trial. Diabetes Care 2009, 32, 996–1000. [Google Scholar] [CrossRef] [PubMed]
- McGowan, C.A.; Walsh, J.M.; Byrne, J.; Curran, S.; McAuliffe, F.M. The influence of a low glycemic index dietary intervention on maternal dietary intake, glycemic index and gestational weight gain during pregnancy: A randomized controlled trial. Nutr. J. 2013, 12, 140. [Google Scholar] [CrossRef] [PubMed]
- Kizirian, N.V.; Kong, Y.; Muirhead, R.; Brodie, S.; Garnett, S.P.; Petocz, P.; Sim, K.A.; Celermajer, D.S.; Louie, J.C.; Markovic, T.P.; et al. Effects of a low-glycemic index diet during pregnancy on offspring growth, body composition, and vascular health: A pilot randomized controlled trial. Am. J. Clin. Nutr. 2016, 103, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Horan, M.K.; McGowan, C.A.; Gibney, E.R.; Byrne, J.; Donnelly, J.M.; McAuliffe, F.M. Maternal nutrition and glycaemic index during pregnancy impacts on offspring adiposity at 6 months of age-analysis from the rolo randomised controlled trial. Nutrients 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, I.; Granstrom, C.; Haldorsson, T.; Rytter, D.; Hammer Bech, B.; Henriksen, T.B.; Vaag, A.A.; Olsen, S.F. Dietary glycemic index during pregnancy is associated with biomarkers of the metabolic syndrome in offspring at age 20 years. PLoS ONE 2013, 8, e64887. [Google Scholar] [CrossRef]
- Hung, H.C.; Joshipura, K.J.; Jiang, R.; Hu, F.B.; Hunter, D.; Smith-Warner, S.A.; Colditz, G.A.; Rosner, B.; Spiegelman, D.; Willett, W.C. Fruit and vegetable intake and risk of major chronic disease. J. Natl. Cancer Inst. 2004, 96, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Tobias, M.; Turley, M.; Stefanogiannis, N.; Vander Hoorn, S.; Lawes, C.; Mhurchu, C.N.; Rodgers, A. Vegetable and fruit intake and mortality from chronic disease in New Zealand. Aust. N. Z. J. Public Health 2006, 30, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.M.; Stettler, N.; Smith, K.M.; Reiss, R. Associations of consumption of fruits and vegetables during pregnancy with infant birth weight or small for gestational age births: A systematic review of the literature. Int. J. Womens Health 2014, 6, 899–912. [Google Scholar] [CrossRef] [PubMed]
- Wojdylo, A.; Oszmianski, J. Bioactive compounds of selected fruit juices. Nat. Prod. Commun. 2009, 4, 671–676. [Google Scholar] [PubMed]
- Stoewsand, G.S. Bioactive organosulfur phytochemicals in Brassica oleracea vegetables—A review. Food Chem. Toxicol. 1995, 33, 537–543. [Google Scholar] [CrossRef]
- Grieger, J.A.; Clifton, V.L. A review of the impact of dietary intakes in human pregnancy on infant birthweight. Nutrients 2015, 7, 153–178. [Google Scholar] [CrossRef] [PubMed]
- Loy, S.L.; Marhazlina, M.; Azwany, Y.N.; Hamid Jan, J.M. Higher intake of fruits and vegetables in pregnancy is associated with birth size. Southeast Asian J. Trop. Med. Public Health 2011, 42, 1214–1223. [Google Scholar] [PubMed]
- Procter, S.B.; Campbell, C.G. Position of the academy of nutrition and dietetics: Nutrition and lifestyle for a healthy pregnancy outcome. J. Acad. Nutr. Diet 2014, 114, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, V.K.; Orozova-Bekkevold, I.M.; Mikkelsen, T.B.; Wolff, S.; Olsen, S.F. Major dietary patterns in pregnancy and fetal growth. Eur. J. Clin. Nutr. 2008, 62, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Hanley, B.; Dijane, J.; Fewtrell, M.; Grynberg, A.; Hummel, S.; Junien, C.; Koletzko, B.; Lewis, S.; Renz, H.; Symonds, M.; et al. Metabolic imprinting, programming and epigenetics—A review of present priorities and future opportunities. Br. J. Nutr. 2010, 104, S1–S25. [Google Scholar] [CrossRef] [PubMed]
- Organization, W.H. Promoting Optimal Fetal Development: Report of a Technical Consultation; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Gesteiro, E.; Rodriguez Bernal, B.; Bastida, S.; Sanchez-Muniz, F.J. Maternal diets with low healthy eating index or mediterranean diet adherence scores are associated with high cord-blood insulin levels and insulin resistance markers at birth. Eur. J. Clin. Nutr. 2012, 66, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Krapels, I.P.; van Rooij, I.A.; Ocke, M.C.; West, C.E.; van der Horst, C.M.; Steegers-Theunissen, R.P. Maternal nutritional status and the risk for orofacial cleft offspring in humans. J. Nutr. 2004, 134, 3106–3113. [Google Scholar] [PubMed]
- Groenen, P.M.; van Rooij, I.A.; Peer, P.G.; Ocke, M.C.; Zielhuis, G.A.; Steegers-Theunissen, R.P. Low maternal dietary intakes of iron, magnesium, and niacin are associated with spina bifida in the offspring. J. Nutr. 2004, 134, 1516–1522. [Google Scholar] [PubMed]
- Brantsaeter, A.L.; Haugen, M.; Samuelsen, S.O.; Torjusen, H.; Trogstad, L.; Alexander, J.; Magnus, P.; Meltzer, H.M. A dietary pattern characterized by high intake of vegetables, fruits, and vegetable oils is associated with reduced risk of preeclampsia in nulliparous pregnant norwegian women. J. Nutr. 2009, 139, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- Ley, S.H.; Hanley, A.J.; Retnakaran, R.; Sermer, M.; Zinman, B.; O’Connor, D.L. Effect of macronutrient intake during the second trimester on glucose metabolism later in pregnancy. Am. J. Clin. Nutr. 2011, 94, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Yajnik, C.S.; Kanade, A.; Fall, C.H.; Margetts, B.M.; Jackson, A.A.; Shier, R.; Joshi, S.; Rege, S.; Lubree, H.; et al. Intake of micronutrient-rich foods in rural indian mothers is associated with the size of their babies at birth: Pune maternal nutrition study. J. Nutr. 2001, 131, 1217–1224. [Google Scholar] [PubMed]
- Schisterman, E.F.; Mumford, S.L.; Browne, R.W.; Barr, D.B.; Chen, Z.; Louis, G.M. Lipid concentrations and couple fecundity: The life study. J. Clin. Endocrinol. Metab. 2014, 99, 2786–2794. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Galli, C.; Riva, E.; Rise, P.; Colombo, C.; Giovannini, M.; Marangoni, F. Whole blood fatty acid composition at birth: From the maternal compartment to the infant. Clin. Nutr. 2011, 30, 503–505. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Marangoni, F.; Stival, G.; Gatelli, I.; Pinto, F.; Rise, P.; Giovannini, M.; Galli, C.; Riva, E. Whole blood fatty acid composition differs in term versus mildly preterm infants: Small versus matched appropriate for gestational age. Pediatr. Res. 2008, 64, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Canovas-Conesa, A.; Gomariz-Penalver, V.; Sanchez-Sauco, M.F.; Jaimes Vega, D.C.; Ortega-Garcia, J.A.; Aranda Garcia, M.J.; Delgado Marin, J.L.; Trujillo Ascanio, A.; Lopez Hernandez, F.; Ruiz Jimenez, J.I.; et al. The Association of adherence to a mediterranean diet during early pregnancy and the risk of gastroschisis in the offspring. Cir. Pediatr. 2013, 26, 37–43. [Google Scholar] [PubMed]
- Yamashita, D.; Shimizu, M.; Osumi, T. Mechanism for the action of PPARs. Nihon Rinsho 2005, 63, 536–537. [Google Scholar] [PubMed]
- Chavarro, J.E.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Wright, D.; Toth, T.L.; Hauser, R. Dietary Fat Intake and in-vitro Fertilization Outcomes: Saturated Fat Intake is Associated with Fewer Metaphase 2 Oocytes. Available online: http://humrep.oxfordjournals.org/content/27/suppl_2/ii78.abstract (accessed on 17 August 2015).
- Dreher, M.L.; Davenport, A.J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 2013, 53, 738–750. [Google Scholar] [CrossRef] [PubMed]
- Blumfield, M.L.; Hure, A.J.; Macdonald-Wicks, L.; Smith, R.; Collins, C.E. Systematic review and meta-analysis of energy and macronutrient intakes during pregnancy in developed countries. Nutr. Rev. 2012, 70, 322–336. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S.; Ferguson, E.L.; Lehrfeld, J. Complementary foods for infant feeding in developing countries: Their nutrient adequacy and improvement. Eur. J. Clin. Nutr. 1998, 52, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Quinn, M. Sustained constipation and subsequent reproductive outcomes: Is there a link? J. Obstet. Gynaecol. 2006, 26, 366–367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, S.; Solomon, C.G.; Hu, F.B. Dietary fiber intake, dietary glycemic load, and the risk for gestational diabetes mellitus. Diabetes Care 2006, 29, 2223–2230. [Google Scholar] [CrossRef] [PubMed]
- Marlett, J.A.; Cheung, T.F. Database and quick methods of assessing typical dietary fiber intakes using data for 228 commonly consumed foods. J. Am. Diet Assoc. 1997, 97, 1139–1151. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 7th ed.U.S. Government Printing Office: Washington, DC, USA, 2010.
- Ionescu-Ittu, R.; Marelli, A.J.; Mackie, A.S.; Pilote, L. Prevalence of severe congenital heart disease after folic acid fortification of grain products: Time trend analysis in Quebec, Canada. BMJ 2009, 338. [Google Scholar] [CrossRef] [PubMed]
- Scholl, T.O.; Hediger, M.L.; Schall, J.I.; Khoo, C.S.; Fischer, R.L. Dietary and serum folate: Their influence on the outcome of pregnancy. Am. J. Clin. Nutr. 1996, 63, 520–525. [Google Scholar] [PubMed]
- USDA. National Nutrient Database for Standard Reference Release 27: Folate, Food (µg): “Compared to Fruits and Fruit Juices, and Vegetables and Vegetable Products”. Available online: https://ndb.nal.usda.gov/ (accessed on 23 August 2015).
- Fulgoni, V.L., III; Dreher, M.; Davenport, A.J. Avocado consumption is associated with better diet quality and nutrient intake, and lower metabolic syndrome risk in US adults: Results from the National Health and Nutrition Examination Survey (NHANES) 2001–2008. Nutr. J. 2013, 12. [Google Scholar] [CrossRef] [PubMed]
- Azais-Braesco, V.; Pascal, G. Vitamin a in pregnancy: Requirements and safety limits. Am. J. Clin Nutr. 2000, 71, 1325S–1333S. [Google Scholar] [PubMed]
- Elmadfa, I.; Meyer, A.L. Vitamins for the first 1000 days: Preparing for life. Int. J. Vitam. Nutr. Res. 2012, 82, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, R. Non-pro-vitamin a and pro-vitamin a carotenoids in atopy development. Int. Arch. Allergy Immunol. 2013, 161, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, R. Effects of dietary retinoids and carotenoids on immune development. Proc. Nutr. Soc. 2007, 66, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, B.S.; Chan, G.M. Importance of carotenoids in optimizing eye and brain development. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 552. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, B.S.; Chan, G.; Hoffman, R.O.; Sharifzadeh, M.; Ermakov, I.V.; Gellermann, W.; Bernstein, P.S. Interrelationships between maternal carotenoid status and newborn infant macular pigment optical density and carotenoid status. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5568–5578. [Google Scholar] [CrossRef] [PubMed]
- Unlu, N.Z.; Bohn, T.; Clinton, S.K.; Schwartz, S.J. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J. Nutr. 2005, 135, 431–436. [Google Scholar] [PubMed]
- Sommerburg, O.; Keunen, J.E.; Bird, A.C.; van Kuijk, F.J. Fruits and vegetables that are sources for lutein and zeaxanthin: The macular pigment in human eyes. Br. J. Ophthalmol. 1998, 82, 907–910. [Google Scholar] [CrossRef] [PubMed]
- Lima, N.K.; Abbasi, F.; Lamendola, C.; Reaven, G.M. Prevalence of insulin resistance and related risk factors for cardiovascular disease in patients with essential hypertension. Am. J. Hypertens. 2009, 22, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Maillot, M.; Monsivais, P.; Drewnowski, A. Food pattern modeling shows that the 2010 dietary guidelines for sodium and potassium cannot be met simultaneously. Nutr. Res. 2013, 33, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Seely, E.W.; Ecker, J. Chronic hypertension in pregnancy. Circulation 2014, 129, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Bateman, B.T.; Huybrechts, K.F.; Fischer, M.A.; Seely, E.W.; Ecker, J.L.; Oberg, A.S.; Franklin, J.M.; Mogun, H.; Hernandez-Diaz, S. Chronic hypertension in pregnancy and the risk of congenital malformations: A cohort study. Am. J. Obstet. Gynecol. 2015, 212, 337.e1–337.e14. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.L.; Baldo, M.P.; Machado, R.C.; Forechi, L.; Molina Mdel, C.; Mill, J.G. High potassium intake blunts the effect of elevated sodium intake on blood pressure levels. J. Am. Soc. Hypertens. 2014, 8, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Kazemian, E.; Dorosty-Motlagh, A.R.; Sotoudeh, G.; Eshraghian, M.R.; Ansary, S.; Omidian, M. Nutritional status of women with gestational hypertension compared with normal pregnant women. Hypertens. Pregnancy 2013, 32, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Buendia, J.R.; Bradlee, M.L.; Daniels, S.R.; Singer, M.R.; Moore, L.L. Longitudinal effects of dietary sodium and potassium on blood pressure in adolescent girls. JAMA Pediatr. 2015, 169, 560–568. [Google Scholar] [CrossRef] [PubMed]
- USDA. National Nutrient Database for Standard Reference Release 27: Potassium, Food (Mg): “Compared to Fruits and Fruit Juices, and Vegetables and Vegetable Products”. Available online: https://ndb.nal.usda.gov/ (accessed on 23 August 2015).
- Rocquelin, G.; Tapsoba, S.; Dop, M.C.; Mbemba, F.; Traissac, P.; Martin-Prevel, Y. Lipid content and essential fatty acid (EFA) composition of mature congolese breast milk are influenced by mothers’ nutritional status: Impact on infants’ EFA supply. Eur. J. Clin. Nutr. 1998, 52, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Mennella, J.A.; Beauchamp, G.K. Maternal diet alters the sensory qualities of human milk and the nursling’s behavior. Pediatrics 1991, 88, 737–744. [Google Scholar] [PubMed]
- Mennella, J.A. The Chemical Senses and the Development of Flavor Preferences in Humans; Hale Publishing: Amarillo, TX, USA, 2007. [Google Scholar]
- Nicklaus, S.; Boggio, V.; Chabanet, C.; Issanchou, S. A prospective study of food variety seeking in childhood, adolescence and early adult life. Appetite 2005, 44, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Cooke, L.J.; Wardle, J.; Gibson, E.L.; Sapochnik, M.; Sheiham, A.; Lawson, M. Demographic, familial and trait predictors of fruit and vegetable consumption by pre-school children. Public Health Nutr. 2004, 7, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Skinner, J.D.; Carruth, B.R.; Bounds, W.; Ziegler, P.; Reidy, K. Do food-related experiences in the first 2 years of life predict dietary variety in school-aged children? J. Nutr. Educ. Behav. 2002, 34, 310–315. [Google Scholar] [CrossRef]
- Innis, S.M. Impact of maternal diet on human milk composition and neurological development of infants. Am. J. Clin. Nutr. 2014, 99, 734S–741S. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.H. B vitamins in breast milk: Relative importance of maternal status and intake, and effects on infant status and function. Adv. Nutr. 2012, 3, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Innis, S.M. Human milk: Maternal dietary lipids and infant development. Proc. Nutr. Soc. 2007, 66, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.G. The lipids in human milk. Prog. Lipid Res. 1996, 35, 53–92. [Google Scholar] [CrossRef]
- Da Cunha, J.; Macedo da Costa, T.H.; Ito, M.K. Influences of maternal dietary intake and suckling on breast milk lipid and fatty acid composition in low-income women from Brasilia, Brazil. Early Hum. Dev. 2005, 81, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Saphier, O.; Blumenfeld, J.; Silberstein, T.; Tzor, T.; Burg, A. Fatty acid composition of breastmilk of Israeli mothers. Indian Pediatr. 2013, 50, 1044–1046. [Google Scholar] [CrossRef] [PubMed]
- Martysiak-Zurowska, D.; Zoralska, K.; Zagierski, M.; Szlagtys-Sidorkiewicz, A. Fatty acid composition in breast milk of women from Gdansk and the surrounding district in the course of lactation. Med. Wieku Rozwoj. 2011, 15, 167–177. [Google Scholar] [PubMed]
- Del Prado, M.; Villalpando, S.; Elizondo, A.; Rodriguez, M.; Demmelmair, H.; Koletzko, B. Contribution of dietary and newly formed arachidonic acid to human milk lipids in women eating a low-fat diet. Am. J. Clin. Nutr. 2001, 74, 242–247. [Google Scholar] [PubMed]
- Insull, W., Jr.; Hirsch, J.; James, T.; Ahrens, E.H., Jr. The fatty acids of human milk. II. Alterations produced by manipulation of caloric balance and exchange of dietary fats. J. Clin. Investig. 1959, 38, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Lopez, A.; Lopez-Sabater, M.C.; Campoy-Folgoso, C.; Rivero-Urgell, M.; Castellote-Bargallo, A.I. Fatty acid and sn-2 fatty acid composition in human milk from Granada (Spain) and in infant formulas. Eur. J. Clin. Nutr. 2002, 56, 1242–1254. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.G. Lipids in human milk. Lipids 1999, 34, 1243–1271. [Google Scholar] [CrossRef] [PubMed]
- Ascherio, A.; Willett, W.C. Health effects of trans fatty acids. Am. J. Clin. Nutr. 1997, 66, 1006S–1010S. [Google Scholar] [PubMed]
- Nicklas, T.A.; Hampl, J.S.; Taylor, C.A.; Thompson, V.J.; Heird, W.C. Monounsaturated fatty acid intake by children and adults: Temporal trends and demographic differences. Nutr. Rev. 2004, 62, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Root, M.M.; Dawson, H.R. Dash-like diets high in protein or monounsaturated fats improve metabolic syndrome and calculated vascular risk. Int. J. Vitam. Nutr. Res. 2013, 83, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Gillingham, L.G.; Harris-Janz, S.; Jones, P.J. Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids 2011, 46, 209–228. [Google Scholar] [CrossRef] [PubMed]
- Cena, H.; Castellazzi, A.M.; Pietri, A.; Roggi, C.; Turconi, G. Lutein concentration in human milk during early lactation and its relationship with dietary lutein intake. Public Health Nutr. 2009, 12, 1878–1884. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.J. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr. Rev. 2014, 72, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, Y.; Sasaki, M.; Takahashi, N.; Kamoshita, M.; Miyake, S.; Tsubota, K. Neuroprotective effects of lutein in the retina. Curr. Pharm. Des. 2012, 18, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, R.; Kuchan, M.J.; Sen, S.; Johnson, E.J. Lutein and preterm infants with decreased concentrations of brain carotenoids. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Haegele, A.D.; Gillette, C.; O’Neill, C.; Wolfe, P.; Heimendinger, J.; Sedlacek, S.; Thompson, H.J. Plasma xanthophyll carotenoids correlate inversely with indices of oxidative dna damage and lipid peroxidation. Cancer Epidemiol. Biomark. Prev. 2000, 9, 421–425. [Google Scholar]
- Ashton, O.B.; Wong, M.; McGhie, T.K.; Vather, R.; Wang, Y.; Requejo-Jackman, C.; Ramankutty, P.; Woolf, A.B. Pigments in avocado tissue and oil. J. Agric. Food Chem. 2006, 54, 10151–10158. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.H. Multiple micronutrients in pregnancy and lactation: An overview. Am. J. Clin. Nutr. 2005, 81, 1206S–1212S. [Google Scholar] [PubMed]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef] [PubMed]
1 Serving, 30 g (1 Ounce) | ½ Fruit, 68 g (2.27 Ounces) | Per 100 g (3.33 Ounces) | 1 Fruit, 136 g (4.53 Ounces) | |
---|---|---|---|---|
Water (g) | 22 | 49 | 72 | 98 |
Energy (kcal) | 50 | 114 | 167 | 227 |
Protein (g) | 0.6 | 1.3 | 2.0 | 2.7 |
Total Lipids (g) | 4.6 | 10.5 | 15.4 | 21 |
Saturated Fat (g) | 0.6 | 1.5 | 2.1 | 2.9 |
Monounsaturated Fat (g) | 2.9 | 6.7 | 9.8 | 13.3 |
Polyunsaturated Fat (g) | 0.5 | 1.2 | 1.8 | 2.5 |
Cholesterol (mg) | 0 | 0 | 0 | 0 |
Stigmasterol (mg) | 1.0 | 1.5 | 2.0 | 3 |
Campesterol (mg) | 2.0 | 3.5 | 5.0 | 7 |
Beta-Sitosterol (mg) | 23 | 51.5 | 76 | 103 |
Total Carbohydrate (g) | 2.6 | 5.9 | 8.6 | 11.8 |
Insoluble Fiber (g) | 1.4 | 3.2 | 4.8 | 6.4 |
Soluble Fiber (g) | 0.6 | 1.4 | 2.0 | 2.8 |
Sugars (g) | 0.1 | 0.2 | 0.3 | 0.4 |
Water-Soluble Vitamins | ||||
Vitamin C (mg) | 2.6 | 6.0 | 8.8 | 12 |
Thiamin (mg) | 0 | 0.1 | 0.1 | 0.1 |
Riboflavin (mg) | 0 | 0.1 | 0.1 | 0.2 |
Niacin (mg) | 0.6 | 1.3 | 1.9 | 2.6 |
Pantothenic acid (mg) | 0.4 | 1.0 | 1.5 | 2.0 |
Vitamin B-6 (mg) | 0.1 | 0.2 | 0.3 | 0.4 |
Folate (μg) | 27 | 60.5 | 89 | 121 |
Choline (mg) | 4.3 | 9.7 | 14 | 19.3 |
Vitamin B-12 (μg) | 0 | 0 | 0 | 0 |
Fat-Soluble Vitamins and Carotenoids | ||||
Vitamin A (μg RAE) | 2.0 | 5.0 | 7.0 | 10 |
Carotene, beta (μg) | 19 | 43 | 63 | 86 |
Carotene, alpha (μg) | 7 | 16.5 | 24 | 33 |
Cryptoxanthin, beta (μg) | 8 | 18.5 | 27 | 37 |
Lutein + zeaxanthin (μg) | 81 | 185 | 271 | 369 |
Vitamin E (α-tocopherol) (mg) | 0.6 | 1.3 | 2.0 | 2.7 |
Vitamin D (μg) | 0 | 0 | 0 | 0 |
Vitamin K1 (phylloquinone) (μg) | 6.3 | 14.3 | 21 | 28.6 |
Minerals | ||||
Calcium (mg) | 4.0 | 9.0 | 13 | 18 |
Magnesium (mg) | 9.0 | 19.5 | 29 | 39 |
Phosphorus (mg) | 16 | 36.5 | 54 | 73 |
Potassium (mg) | 152 | 345 | 507 | 690 |
Sodium (mg) | 2 | 5.5 | 8 | 11 |
Iron (mg) | 0.2 | 0.4 | 0.6 | 0.8 |
Zinc (mg) | 0.2 | 0.5 | 0.7 | 0.9 |
Copper (mg) | 0.1 | 0.1 | 0.2 | 0.2 |
Manganese (mg) | 0.1 | 0.1 | 0.1 | 0.2 |
Selenium (ug) | 0.1 | 0.3 | 0.4 | 0.5 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comerford, K.B.; Ayoob, K.T.; Murray, R.D.; Atkinson, S.A. The Role of Avocados in Maternal Diets during the Periconceptional Period, Pregnancy, and Lactation. Nutrients 2016, 8, 313. https://doi.org/10.3390/nu8050313
Comerford KB, Ayoob KT, Murray RD, Atkinson SA. The Role of Avocados in Maternal Diets during the Periconceptional Period, Pregnancy, and Lactation. Nutrients. 2016; 8(5):313. https://doi.org/10.3390/nu8050313
Chicago/Turabian StyleComerford, Kevin B., Keith T. Ayoob, Robert D. Murray, and Stephanie A. Atkinson. 2016. "The Role of Avocados in Maternal Diets during the Periconceptional Period, Pregnancy, and Lactation" Nutrients 8, no. 5: 313. https://doi.org/10.3390/nu8050313
APA StyleComerford, K. B., Ayoob, K. T., Murray, R. D., & Atkinson, S. A. (2016). The Role of Avocados in Maternal Diets during the Periconceptional Period, Pregnancy, and Lactation. Nutrients, 8(5), 313. https://doi.org/10.3390/nu8050313