Healthy Dietary Patterns and Oxidative Stress as Measured by Fluorescent Oxidation Products in Nurses’ Health Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Nurses’ Health Study Blood Subcohort
2.2. Study Population
2.3. Assessment of Dietary Intake and Healthy Eating Diet Score
2.4. Laboratory Assays
2.5. Assessment of Non-Dietary Data
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AHEI | Alternative Healthy Eating Index |
aMED | the Alternate Mediterranean Diet |
BMI | body mass index |
CI | confidence interval |
CV | coefficients of variation |
DASH | the Dietary Approach to Stop Hypertension |
FFQ | food frequency questionnaire |
FlOP | fluorescent oxidation products |
FI | fluorescent intensity units |
MDA | malondialdehyde |
NHS | Nurses’ Health Study |
References
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Boil. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Roubal, W.T.; Tappel, A.L. Polymerization of proteins induced by free-radical lipid peroxidation. Arch. Biochem. Biophys. 1966, 113, 150–155. [Google Scholar] [CrossRef]
- Holt, E.M.; Steffen, L.M.; Moran, A.; Basu, S.; Steinberger, J.; Ross, J.A.; Hong, C.P.; Sinaiko, A.R. Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents. J. Am. Diet. Assoc. 2009, 109, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Patel, A.K.; Shah, N.; Chaudhary, A.K.; Jha, U.K.; Yadav, U.C.; Gupta, P.K.; Pakuwal, U. Oxidative stress and antioxidants in disease and cancer: A review. Asian Pac. J. Cancer Prev. 2014, 15, 4405–4409. [Google Scholar] [CrossRef] [PubMed]
- Mariani, E.; Polidori, M.C.; Cherubini, A.; Mecocci, P. Oxidative stress in brain aging, neurodegenerative and vascular diseases: An overview. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 827, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition 2002, 18, 872–879. [Google Scholar] [CrossRef]
- Chiuve, S.E.; Fung, T.T.; Rexrode, K.M.; Spiegelman, D.; Manson, J.E.; Stampfer, M.J.; Albert, C.M. Adherence to a low-risk, healthy lifestyle and risk of sudden cardiac death among women. J. Am. Med. Assoc. 2011, 306, 62–69. [Google Scholar] [CrossRef] [PubMed]
- De Koning, L.; Chiuve, S.E.; Fung, T.T.; Willett, W.C.; Rimm, E.B.; Hu, F.B. Diet-quality scores and the risk of type 2 diabetes in men. Diabetes Care 2011, 34, 1150–1156. [Google Scholar] [CrossRef] [PubMed]
- Tyrovolas, S.; Panagiotakos, D.B. The role of mediterranean type of diet on the development of cancer and cardiovascular disease, in the elderly: A systematic review. Maturitas 2010, 65, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, X.; Lin, S.; Yuan, J.; Yu, I.T. Dietary patterns and oesophageal squamous cell carcinoma: A systematic review and meta-analysis. Br. J. Cancer 2014, 110, 2785–2795. [Google Scholar] [CrossRef] [PubMed]
- Psaltopoulou, T.; Sergentanis, T.N.; Panagiotakos, D.B.; Sergentanis, I.N.; Kosti, R.; Scarmeas, N. Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis. Ann. Neurol. 2013, 74, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.A.; Sijtsma, F.P.; Nettleton, J.A.; Steffen, L.M.; Van Horn, L.; Shikany, J.M.; Gross, M.D.; Mursu, J.; Traber, M.G.; Jacobs, D.R., Jr. Dietary patterns are associated with plasma f(2)-isoprostanes in an observational cohort study of adults. Free Radic. Biol. Med. 2013, 57, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Mariscal, F.M.; Perez-Martinez, P.; Delgado-Lista, J.; Yubero-Serrano, E.M.; Camargo, A.; Delgado-Casado, N.; Cruz-Teno, C.; Santos-Gonzalez, M.; Rodriguez-Cantalejo, F.; Castano, J.P.; et al. Mediterranean diet supplemented with coenzyme q10 induces postprandial changes in p53 in response to oxidative DNA damage in elderly subjects. Age (Dordr.) 2011, 34, 389–403. [Google Scholar] [CrossRef] [PubMed]
- Leighton, F.; Cuevas, A.; Guasch, V.; Perez, D.D.; Strobel, P.; San Martin, A.; Urzua, U.; Diez, M.S.; Foncea, R.; Castillo, O.; et al. Plasma polyphenols and antioxidants, oxidative DNA damage and endothelial function in a diet and wine intervention study in humans. Drugs Exp. Clin. Res. 1999, 25, 133–141. [Google Scholar] [PubMed]
- Barona, J.; Jones, J.J.; Kopec, R.E.; Comperatore, M.; Andersen, C.; Schwartz, S.J.; Lerman, R.H.; Fernandez, M.L. A mediterranean-style low-glycemic-load diet increases plasma carotenoids and decreases ldl oxidation in women with metabolic syndrome. J. Nutr. Biochem. 2012, 23, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Fito, M.; Guxens, M.; Corella, D.; Saez, G.; Estruch, R.; de la Torre, R.; Frances, F.; Cabezas, C.; Lopez-Sabater Mdel, C.; Marrugat, J.; et al. Effect of a traditional mediterranean diet on lipoprotein oxidation: A randomized controlled trial. Arch. Intern. Med. 2007, 167, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Di Palo, C.; Maiorino, M.I.; Petrizzo, M.; Bellastella, G.; Siniscalchi, I.; Giugliano, D. Long-term effect of mediterranean-style diet and calorie restriction on biomarkers of longevity and oxidative stress in overweight men. Cardiol. Res. Pract. 2011, 2011, 293916. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Comperatore, M.; Barona, J.; Calle, M.C.; Andersen, C.; McIntosh, M.; Najm, W.; Lerman, R.H.; Fernandez, M.L. A mediterranean-style, low-glycemic-load diet decreases atherogenic lipoproteins and reduces lipoprotein (a) and oxidized low-density lipoprotein in women with metabolic syndrome. Metabolism 2012, 61, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.R.; Erlinger, T.P.; Sacks, F.M.; Svetkey, L.P.; Charleston, J.; Lin, P.H.; Appel, L.J. A dietary pattern that lowers oxidative stress increases antibodies to oxidized ldl: Results from a randomized controlled feeding study. Atherosclerosis 2005, 183, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.R.; Appel, L.J.; Risby, T.H. Effect of dietary patterns on measures of lipid peroxidation: Results from a randomized clinical trial. Circulation 1998, 98, 2390–2395. [Google Scholar] [CrossRef] [PubMed]
- Lopes, H.F.; Martin, K.L.; Nashar, K.; Morrow, J.D.; Goodfriend, T.L.; Egan, B.M. Dash diet lowers blood pressure and lipid-induced oxidative stress in obesity. Hypertension 2003, 41, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Ivica, J.; Wilhelm, J. Lipophilic fluorescent products of free radicals. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2014, 158, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Frankel, E.N.; Neff, W.E.; Brooks, D.D.; Fujimoto, K. Fluorescence formation from the interaction of DNA with lipid oxidation degradation products. Biochim. Biophys. Acta 1987, 919, 239–244. [Google Scholar] [CrossRef]
- Fujimoto, K.; Neff, W.E.; Frankel, E.N. The reaction of DNA with lipid oxidation products, metals and reducing agents. Biochim. Biophys. Acta 1984, 795, 100–107. [Google Scholar] [CrossRef]
- Fletcher, B.L.; Dillard, C.J.; Tappel, A.L. Measurement of fluorescent lipid peroxidation products in biological systems and tissues. Anal. Biochem. 1973, 52, 1–9. [Google Scholar] [CrossRef]
- Wu, T.; Willett, W.C.; Rifai, N.; Rimm, E.B. Plasma fluorescent oxidation products as potential markers of oxidative stress for epidemiologic studies. Am. J. Epidemiol. 2007, 166, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Rifai, N.; Willett, W.C.; Rimm, E.B. Plasma fluorescent oxidation products: Independent predictors of coronary heart disease in men. Am. J. Epidemiol. 2007, 166, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.K.; Wang, Y.; Rimm, E.B.; Townsend, M.K.; Willett, W.; Wu, T. Fluorescent oxidation products and risk of coronary heart disease: A prospective study in women. J. Am. Heart Assoc. 2013, 2, e000195. [Google Scholar] [CrossRef] [PubMed]
- Skoumalova, A.; Ivica, J.; Santorova, P.; Topinkova, E.; Wilhelm, J. The lipid peroxidation products as possible markers of Alzheimer’s disease in blood. Exp. Gerontol. 2011, 46, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Rifai, N.; Roberts, L.J.; Willett, W.C.; Rimm, E.B. Stability of measurements of biomarkers of oxidative stress in blood over 36 hours. Cancer Epidemiol. Biomark. Prev. 2004, 13, 1399–1402. [Google Scholar]
- Rein, D.; Tappel, A.L. Fluorescent lipid oxidation products and heme spectra index antioxidant efficacy in kidney tissue of hamsters. Free Radic. Biol. Med. 1998, 24, 1278–1284. [Google Scholar] [CrossRef]
- Colditz, G.A.; Hankinson, S.E. The nurses’ health study: Lifestyle and health among women. Nat. Rev. Cancer 2005, 5, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Hankinson, S.E.; Willett, W.C.; Manson, J.E.; Hunter, D.J.; Colditz, G.A.; Stampfer, M.J.; Longcope, C.; Speizer, F.E. Alcohol, height, and adiposity in relation to estrogen and prolactin levels in postmenopausal women. J. Natl. Cancer Inst. 1995, 87, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Hankinson, S.E.; Willett, W.C.; Manson, J.E.; Colditz, G.A.; Hunter, D.J.; Spiegelman, D.; Barbieri, R.L.; Speizer, F.E. Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. J. Natl. Cancer Inst. 1998, 90, 1292–1299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tworoger, S.S.; Eliassen, A.H.; Hankinson, S.E. Postmenopausal plasma sex hormone levels and breast cancer risk over 20 years of follow-up. Breast Cancer Res. Treat. 2013, 137, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Fortner, R.T.; Tworoger, S.S.; Wu, T.; Eliassen, A.H. Plasma florescent oxidation products and breast cancer risk: Repeated measures in the nurses’ health study. Breast Cancer Res. Treat. 2013, 141, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Rosner, B. Percentage points for a generalized esd many-outlier procedure. Technometrics 1983, 25, 165–172. [Google Scholar] [CrossRef]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [PubMed]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S; discussion 1229S–1231S. [Google Scholar] [PubMed]
- McCullough, M.L.; Feskanich, D.; Stampfer, M.J.; Giovannucci, E.L.; Rimm, E.B.; Hu, F.B.; Spiegelman, D.; Hunter, D.J.; Colditz, G.A.; Willett, W.C. Diet quality and major chronic disease risk in men and women: Moving toward improved dietary guidance. Am. J. Clin. Nutr. 2002, 76, 1261–1271. [Google Scholar] [PubMed]
- Fung, T.T.; McCullough, M.L.; Newby, P.K.; Manson, J.E.; Meigs, J.B.; Rifai, N.; Willett, W.C.; Hu, F.B. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr 2005, 82, 163–173. [Google Scholar] [PubMed]
- Fung, T.T.; Hu, F.B.; McCullough, M.L.; Newby, P.K.; Willett, W.C.; Holmes, M.D. Diet quality is associated with the risk of estrogen receptor-negative breast cancer in postmenopausal women. J. Nutr. 2006, 136, 466–472. [Google Scholar] [PubMed]
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a dash-style diet and risk of coronary heart disease and stroke in women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Obarzanek, E.; Windhauser, M.M.; Svetkey, L.P.; Vollmer, W.M.; McCullough, M.; Karanja, N.; Lin, P.H.; Steele, P.; Proschan, M.A.; et al. Rationale and design of the dietary approaches to stop hypertension trial (dash). A multicenter controlled-feeding study of dietary patterns to lower blood pressure. Ann. Epidemiol. 1995, 5, 108–118. [Google Scholar] [CrossRef]
- Flynn, T.P.; Allen, D.W.; Johnson, G.J.; White, J.G. Oxidant damage of the lipids and proteins of the erythrocyte membranes in unstable hemoglobin disease. Evidence for the role of lipid peroxidation. J. Clin. Investig. 1983, 71, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Rosner, B.; Cook, N.; Portman, R.; Daniels, S.; Falkner, B. Determination of blood pressure percentiles in normal-weight children: Some methodological issues. Am. J. Epidemiol. 2008, 167, 653–666. [Google Scholar] [CrossRef] [PubMed]
- Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [PubMed]
- El-Sohemy, A.; Baylin, A.; Kabagambe, E.; Ascherio, A.; Spiegelman, D.; Campos, H. Individual carotenoid concentrations in adipose tissue and plasma as biomarkers of dietary intake. Am. J. Clin. Nutr. 2002, 76, 172–179. [Google Scholar] [PubMed]
- Littell, R.C. Sas for Mixed Models, 2nd ed.; SAS Institute: Cary, NC, USA, 2006. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Giustarini, D.; Dalle-Donne, I.; Tsikas, D.; Rossi, R. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit. Rev. Clin. Lab. Sci. 2009, 46, 241–281. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Seet, R.C.; Huang, S.H.; Long, L.H.; Halliwell, B. Different patterns of oxidized lipid products in plasma and urine of dengue fever, stroke, and Parkinson’s disease patients: Cautions in the use of biomarkers of oxidative stress. Antioxid. Redox Signal. 2009, 11, 407–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.Y.; Isaac, H.B.; Wang, H.; Huang, S.H.; Long, L.H.; Jenner, A.M.; Kelly, R.P.; Halliwell, B. Cautions in the use of biomarkers of oxidative damage; the vascular and antioxidant effects of dark soy sauce in humans. Biochem. Biophys. Res. Commun. 2006, 344, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Hagfors, L.; Leanderson, P.; Skoldstam, L.; Andersson, J.; Johansson, G. Antioxidant intake, plasma antioxidants and oxidative stress in a randomized, controlled, parallel, mediterranean dietary intervention study on patients with rheumatoid arthritis. Nutr. J. 2003, 2, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambring, A.; Friberg, P.; Axelsen, M.; Laffrenzen, M.; Taskinen, M.R.; Basu, S.; Johansson, M. Effects of a mediterranean-inspired diet on blood lipids, vascular function and oxidative stress in healthy subjects. Clin. Sci. 2004, 106, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Alleva, R.; Di Donato, F.; Strafella, E.; Staffolani, S.; Nocchi, L.; Borghi, B.; Pignotti, E.; Santarelli, L.; Tomasetti, M. Effect of ascorbic acid-rich diet on in vivo-induced oxidative stress. Br. J. Nutr. 2011, 107, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Briviba, K.; Bub, A.; Moseneder, J.; Schwerdtle, T.; Hartwig, A.; Kulling, S.; Watzl, B. No differences in DNA damage and antioxidant capacity between intervention groups of healthy, nonsmoking men receiving 2, 5, or 8 servings/day of vegetables and fruit. Nutr. Cancer 2008, 60, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Crujeiras, A.B.; Parra, M.D.; Rodriguez, M.C.; Martinez de Morentin, B.E.; Martinez, J.A. A role for fruit content in energy-restricted diets in improving antioxidant status in obese women during weight loss. Nutrition 2006, 22, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Thompson, H.J.; Heimendinger, J.; Sedlacek, S.; Haegele, A.; Diker, A.; O'Neill, C.; Meinecke, B.; Wolfe, P.; Zhu, Z.; Jiang, W. 8-isoprostane f2alpha excretion is reduced in women by increased vegetable and fruit intake. Am. J. Clin. Nutr. 2005, 82, 768–776. [Google Scholar] [PubMed]
- Ko, S.H.; Choi, S.W.; Ye, S.K.; Cho, B.L.; Kim, H.S.; Chung, M.H. Comparison of the antioxidant activities of nine different fruits in human plasma. J. Med. Food 2005, 8, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Dragsted, L.O.; Pedersen, A.; Hermetter, A.; Basu, S.; Hansen, M.; Haren, G.R.; Kall, M.; Breinholt, V.; Castenmiller, J.J.; Stagsted, J.; et al. The 6-a-day study: Effects of fruit and vegetables on markers of oxidative stress and antioxidative defense in healthy nonsmokers. Am. J. Clin. Nutr. 2004, 79, 1060–1072. [Google Scholar] [PubMed]
- Roberts, W.G.; Gordon, M.H.; Walker, A.F. Effects of enhanced consumption of fruit and vegetables on plasma antioxidant status and oxidative resistance of ldl in smokers supplemented with fish oil. Eur. J. Clin. Nutr. 2003, 57, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Freese, R.; Alfthan, G.; Jauhiainen, M.; Basu, S.; Erlund, I.; Salminen, I.; Aro, A.; Mutanen, M. High intakes of vegetables, berries, and apples combined with a high intake of linoleic or oleic acid only slightly affect markers of lipid peroxidation and lipoprotein metabolism in healthy subjects. Am. J. Clin. Nutr. 2002, 76, 950–960. [Google Scholar] [PubMed]
- Pool-Zobel, B.L.; Bub, A.; Muller, H.; Wollowski, I.; Rechkemmer, G. Consumption of vegetables reduces genetic damage in humans: First results of a human intervention trial with carotenoid-rich foods. Carcinogenesis 1997, 18, 1847–1850. [Google Scholar] [CrossRef] [PubMed]
- Bub, A.; Watzl, B.; Abrahamse, L.; Delincee, H.; Adam, S.; Wever, J.; Muller, H.; Rechkemmer, G. Moderate intervention with carotenoid-rich vegetable products reduces lipid peroxidation in men. J. Nutr. 2000, 130, 2200–2206. [Google Scholar] [PubMed]
- Ames, B.N.; Profet, M.; Gold, L.S. Dietary pesticides (99.99% all natural). Proc. Natl. Acad. Sci. USA 1990, 87, 7777–7781. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, J.L. Mixtures in the real world: The importance of plant self-defense toxicants, mycotoxins, and the human diet. Toxicol. Appl. Pharm. 2007, 223, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Schenck, F.J.; Pearson, M.A.; Wong, J.W. Assessing children’s dietary pesticide exposure: Direct measurement of pesticide residues in 24-hr duplicate food samples. Environ. Health Perspect. 2010, 118, 1625–1630. [Google Scholar] [CrossRef] [PubMed]
- Hord, N.G. Dietary nitrates, nitrites, and cardiovascular disease. Curr. Atheroscler. Rep. 2011, 13, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Albanes, D.; Heinonen, O.P.; Taylor, P.R.; Virtamo, J.; Edwards, B.K.; Rautalahti, M.; Hartman, A.M.; Palmgren, J.; Freedman, L.S.; Haapakoski, J.; et al. Alpha-tocopherol and beta-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: Effects of base-line characteristics and study compliance. J. Natl. Cancer Inst. 1996, 88, 1560–1570. [Google Scholar] [CrossRef] [PubMed]
- Gray, J. Measurement of lipid oxidation: A review. J. Am. Oil Chem. Soc. 1978, 55, 539–546. [Google Scholar] [CrossRef]
- Kikugawa, K.; Beppu, M. Involvement of lipid oxidation products in the formation of fluorescent and cross-linked proteins. Chem. Phys. Lipids 1987, 44, 277–296. [Google Scholar] [CrossRef]
- Simeonov, A.; Davis, M.I. Interference with fluorescence and absorbance. In Assay Guidance Manual; Sittampalam, G.S., Coussens, N.P., Nelson, H., Arkin, M., Auld, D., Austin, C., Bejcek, B., Glicksman, M., Inglese, J., Iversen, P.W., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. [Google Scholar]
- Berlman, I.B. Handbook of Fluorescence Spectra of Aromatic Molecules; Academic Press: New York, NY, USA, 1965. [Google Scholar]
- Zipfel, W.R.; Williams, R.M.; Christie, R.; Nikitin, A.Y.; Hyman, B.T.; Webb, W.W. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl. Acad. Sci. USA 2003, 100, 7075–7080. [Google Scholar] [CrossRef] [PubMed]
- Salvini, S.; Hunter, D.J.; Sampson, L.; Stampfer, M.J.; Colditz, G.A.; Rosner, B.; Willett, W.C. Food-based validation of a dietary questionnaire: The effects of week-to-week variation in food consumption. Int. J. Epidemiol. 1989, 18, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Dierckx, N.; Horvath, G.; van Gils, C.; Vertommen, J.; van de Vliet, J.; De Leeuw, I.; Manuel-y-Keenoy, B. Oxidative stress status in patients with diabetes mellitus: Relationship to diet. Eur. J. Clin. Nutr. 2003, 57, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Rimm, E.B.; Stampfer, M.J.; Colditz, G.A.; Chute, C.G.; Litin, L.B.; Willett, W.C. Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1990, 1, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.M.; Hunter, D.J.; Colditz, G.A.; Manson, J.E.; Stampfer, M.J.; Corsano, K.A.; Rosner, B.; Kriska, A.; Willett, W.C. Reproducibility and validity of a self-administered physical activity questionnaire. Int. J. Epidemiol. 1994, 23, 991–999. [Google Scholar] [CrossRef] [PubMed]
AHEI | DASH | aMED | |||||||
---|---|---|---|---|---|---|---|---|---|
Q1 | Q3 | Q5 | Q1 | Q3 | Q5 | Q1 | Q3 | Q5 | |
N | 405 | 404 | 404 | 304 | 470 | 492 | 366 | 381 | 566 |
Age at blood draw, year † | 58.2 ± 8.2 | 59.6 ± 7.4 | 61.1 ± 7.1 | 57.7 ± 8.4 | 59.7 ± 7.4 | 61.0 ± 6.8 | 57.6 ± 7.7 | 60.0 ± 8.0 | 60.9 ± 7.0 |
Premenopausal, % | 13 | 14 | 13 | 14 | 16 | 13 | 15 | 14 | 13 |
Nonfasting at blood collection, % | 27 | 25 | 26 | 27 | 24 | 25 | 28 | 27 | 24 |
Current smoker, % | 23 | 15 | 10 | 23 | 17 | 12 | 27 | 16 | 9 |
Pack years of smoking, year | 15.4 ± 21.8 | 14.7 ± 18.9 | 13.5 ± 18.6 | 17.4 ± 22.3 | 13.5 ± 19.3 | 11.9 ± 17.0 | 16.1 ± 22.5 | 15.4 ± 20.4 | 10.5 ± 16.0 |
Nondrinker, % | 49 | 33 | 28 | 39 | 36 | 34 | 42 | 35 | 30 |
BMI at blood draw, kg/m2 | 26.0 ± 5.1 | 25.2 ± 4.2 | 24.9 ± 3.9 | 26.0 ± 5.1 | 25.5 ± 4.4 | 24.8 ± 4.0 | 25.9 ± 4.7 | 25.4 ± 4.7 | 25.0 ± 4.1 |
Physical activity, MET-h/week ‡ | 13.1 ± 17.2 | 16.3 ± 19.1 | 24.1 ± 32.7 | 10.9 ± 14.0 | 16.8 ± 19.6 | 21.7 ± 22.0 | 13.4 ± 16.9 | 16.7 ± 20.0 | 22.2 ± 28.7 |
Multivitamin usage, % | 36 | 46 | 47 | 38 | 39 | 48 | 36 | 43 | 47 |
Energy intake, kcal/d | 1713 ± 480 | 1773 ± 475 | 1866 ± 522 | 1748 ± 478 | 1766 ± 514 | 1870 ± 478 | 1555 ± 434 | 1741 ± 485 | 2021 ± 489 |
Alcohol consumption among drinkers, g/day | 12.4 ± 14.3 | 8.0 ± 9.4 | 7.4 ± 7.1 | 10.1 ± 12.2 | 10.2 ± 10.5 | 8.1 ± 9.6 | 9.7 ± 12.3 | 8.9 ± 9.9 | 8.3 ± 8.1 |
Vegetables, servings/day | 2.3 ± 1.1 | 3.4 ± 1.7 | 4.9 ± 2.1 | 2.2 ± 1.1 | 3.4 ± 1.6 | 4.8 ± 1.9 | 2.1 ± 0.9 | 3.3 ± 1.6 | 4.8 ± 1.9 |
Fruits, servings/day | 1.1 ± 0.7 | 1.7 ± 1.0 | 2.6 ± 1.3 | 0.9 ± 0.6 | 1.6 ± 0.9 | 2.5 ± 1.2 | 1.0 ± 0.6 | 1.6 ± 1.0 | 2.4 ± 1.2 |
Quintiles of Dietary Scores | ||||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | p-Trend † | |
AHEI | ||||||
N | 405 | 403 | 404 | 405 | 404 | |
Median value of AHEI score | 35 | 43 | 49 | 55 | 64 | |
FlOP_360 ‡ (95% CI) | 224 (215, 233) | 226 (216, 235) | 234 (224, 244) | 240 (230, 250) | 240 (229, 250) | 0.006 |
FlOP_320 ‡ (95% CI) | 501 (458, 549) | 519 (471, 571) | 546 (493, 604) | 600 (541, 665) | 610 (544, 684) | 0.003 |
FlOP_400 ‡ (95% CI) | 64 (62, 66) | 64 (61, 67) | 64 (62, 67) | 66 (64, 68) | 63 (61, 66) | 0.90 |
DASH | ||||||
N | 304 | 431 | 470 | 324 | 492 | |
Median value of DASH score | 2 | 3 | 4 | 5 | 6 | |
FlOP_360 (95% CI) | 222 (212, 233) | 232 (224, 241) | 231 (223, 240) | 230 (220, 242) | 241 (231, 251) | 0.03 |
FlOP_320 (95% CI) | 515 (462, 574) | 528 (482, 579) | 545 (496, 598) | 559 (499, 627) | 607 (549, 672) | 0.02 |
FlOP_400 (95% CI) | 64 (61, 66) | 66 (63, 68) | 65 (63, 68) | 62 (60, 64) | 64 (62, 66) | 0.41 |
aMED | ||||||
N | 366 | 327 | 381 | 381 | 566 | |
Median value of aMED score | 20 | 23 | 26 | 28 | 32 | |
FlOP_360 (95% CI) | 224 (215, 233) | 227 (217, 238) | 225 (217, 233) | 237 (226, 249) | 243 (234, 252) | 0.002 |
FlOP_320 (95% CI) | 507 (460, 559) | 539 (482, 602) | 542 (491, 598) | 584 (523, 653) | 581 (529, 639) | 0.04 |
FlOP_400 (95% CI) | 65 (62, 67) | 64 (61, 67) | 62 (60, 64) | 65 (62, 68) | 65 (63, 68) | 0.54 |
Food Group/Individual Food ‡ | Quintiles of Dietary Intake | p-Trend † | ||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | ||
Total vegetables | 226 (217, 236) | 225 (216, 234) | 231 (221, 240) | 232 (222, 241) | 249 (237, 261) | 0.002 |
Yellow/orange vegetables | 234 (222, 246) | 229 (221, 238) | 232 (223, 242) | 235 (225, 247) | 232 (224, 241) | 0.70 |
Leafy vegetables | 241 (227, 255) | 230 (220, 240) | 229 (222, 237) | 235 (226, 245) | 230 (221, 240) | 0.76 |
Cruciferous vegetables | 230 (221, 239) | 224 (215, 234) | 237 (228, 247) | 227 (219, 236) | 243 (232, 254) | 0.08 |
Other vegetables | 230 (220, 241) | 230 (221, 239) | 230 (220, 240) | 228 (221, 236) | 243 (231, 255) | 0.11 |
Total fruits | 230 (221, 239) | 224 (215, 234) | 237 (228, 247) | 227 (219, 236) | 243 (232, 255) | 0.07 |
Nut | 245 (233, 256) | 232 (223, 241) | 231 (221, 241) | 234 (225, 243) | 222 (213, 231) | 0.01 |
Legume | 216 (205, 228) | 226 (218, 233) | 228 (218, 238) | 241 (232, 251) | 243 (233, 253) | <0.001 |
Whole grains | 233 (221, 246) | 233 (223, 244) | 236 (222, 250) | 227 (219, 236) | 233 (226, 241) | 0.65 |
Red/processed meat | 228 (219, 238) | 231 (221, 241) | 235 (226, 245) | 240 (229, 251) | 226 (217, 236) | 0.72 |
Poultry | 246 (231, 262) | 224 (215, 234) | 224 (216, 234) | 229 (222, 236) | 243 (233, 254) | 0.15 |
Fish | 227 (216, 239) | 236 (226, 246) | 226 (219, 234) | 240 (230, 250) | 230 (221, 240) | 0.74 |
Alcohol | 229 (221, 237) | 228 (221, 234) | 244 (234, 255) | 231 (219, 245) | 241 (221, 264) | 0.07 |
Sugar-sweetened beverages | 228 (219, 238) | 231 (221, 241) | 235 (226, 245) | 240 (229, 250) | 226 (217, 236) | 0.71 |
Sweets/desserts | 246 (235, 258) | 238 (228, 247) | 231 (222, 240) | 225 (216, 234) | 224 (215, 233) | 0.002 |
Olive oil | 238(225, 252) | 235(225, 245) | 236(228, 245) | 231(205, 261) | 226(220, 233) | 0.03 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.; Smith-Warner, S.A.; Willett, W.C.; Wang, M.; Wu, T.; Jensen, M.; Hankinson, S.E.; Eliassen, A.H. Healthy Dietary Patterns and Oxidative Stress as Measured by Fluorescent Oxidation Products in Nurses’ Health Study. Nutrients 2016, 8, 587. https://doi.org/10.3390/nu8090587
Jung S, Smith-Warner SA, Willett WC, Wang M, Wu T, Jensen M, Hankinson SE, Eliassen AH. Healthy Dietary Patterns and Oxidative Stress as Measured by Fluorescent Oxidation Products in Nurses’ Health Study. Nutrients. 2016; 8(9):587. https://doi.org/10.3390/nu8090587
Chicago/Turabian StyleJung, Seungyoun, Stephanie A. Smith-Warner, Walter C. Willett, Molin Wang, Tianying Wu, Majken Jensen, Susan E. Hankinson, and A. Heather Eliassen. 2016. "Healthy Dietary Patterns and Oxidative Stress as Measured by Fluorescent Oxidation Products in Nurses’ Health Study" Nutrients 8, no. 9: 587. https://doi.org/10.3390/nu8090587
APA StyleJung, S., Smith-Warner, S. A., Willett, W. C., Wang, M., Wu, T., Jensen, M., Hankinson, S. E., & Eliassen, A. H. (2016). Healthy Dietary Patterns and Oxidative Stress as Measured by Fluorescent Oxidation Products in Nurses’ Health Study. Nutrients, 8(9), 587. https://doi.org/10.3390/nu8090587