The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Considerations for Salt Intake Assessments
3.1.1. Classification of Salt Intake
3.1.2. Measuring Salt Consumption
3.1.3. Estimating Population Salt Intakes
3.1.4. Variability of Urinary Sodium Excretion
3.2. Use and Interpretation of Casual Urinary Sodium Concentrations
3.2.1. Estimating UNaE from UNaC
3.2.2. UNaC and UNaE Individual and Population Level Correlations
3.2.3. Categorizing with UNaC and UNaE
3.3. Use of Urinary Iodine and Sodium Concentrations for Partitioning of Iodine Intake Sources
3.3.1. Minimum Sodium Intake
3.3.2. UIC and UNaC Diurnal Variation
3.3.3. UIC and UNaC Within-Person Variability
4. Discussion
4.1. Repeated UNaC
4.2. Partitioning Iodine
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Salt Reduction and Iodine Fortification Strategies in Public Health; Report of a Joint Technical Meeting Convened by the World Health Organization and the George Institute for Global Health in Collaboration with the International Council for the Control of Iodine Deficiency Disorders Global Network; WHO: Sydney, Australia, 2013. [Google Scholar]
- Haldimann, M.; Bochud, M.; Burnier, M.; Paccaud, F.; Dudler, V. Prevalence of iodine inadequacy in Switzerland assessed by the estimated average requirement cut-point method in relation to the impact of iodized salt. Public Health Nutr. 2015, 18, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.R.; Correa-Rotter, R.; Cappuccio, F.P.; Webster, J.; Lackland, D.T.; Neal, B.; MacGregor, G.A. Proposed nomenclature for salt intake and for reductions in dietary salt. J. Clin. Hypertens. (Greenwich) 2015, 17, 247–251. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guideline: Sodium Intake for Adults and Children; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- U.S. Department of Agriculture, U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 7th ed.Department of Health and Human Services, Ed.; USG Printing Office: Washington, DC, USA, 2010.
- Institute of Medicine of the National Academies. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate; National Academies Press: Washington, DC, USA, 2005; pp. 269–395. [Google Scholar]
- World Health Organization. Reducing Salt Intake in Populations: Report of a WHO Forum and Technical Meeting, 5–7 October 2006, Paris, France; World Health Organization: Geneva, Switzerland, 2007; pp. 23–50. [Google Scholar]
- World Health Organization. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; World Health Organization: Geneva, Switzerland, 2013; pp. 3–15. [Google Scholar]
- Mercado, C.I.; Cogswell, M.E.; Valderrama, A.L.; Wang, C.Y.; Loria, C.M.; Moshfegh, A.J.; Rhodes, D.G.; Carriquiry, A.L. Difference between 24-h diet recall and urine excretion for assessing population sodium and potassium intake in adults aged 18–39 years. Am. J. Clin. Nutr. 2015, 101, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Freedman, L.S.; Commins, J.M.; Moler, J.E.; Willett, W.; Tinker, L.F.; Subar, A.F.; Spiegelman, D.; Rhodes, D.; Potischman, N.; Neuhouser, M.L.; et al. Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for potassium and sodium intake. Am. J. Epidemiol. 2015, 181, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Spohrer, R.; Garrett, G.S.; Timmer, A.; Sankar, R.; Kar, B.; Rasool, F.; Locatelli-Rossi, L. Processed foods as an integral part of universal salt iodization programs: A review of global experience and analyses of Bangladesh and Pakistan. Food Nutr. Bull. 2012, 33, S272–S280. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.J.; Mossholder, S. Sodium and potassium intake measurements: Dietary methodology problems. Am. J. Clin. Nutr. 1986, 43, 470–476. [Google Scholar] [PubMed]
- McLean, R.M. Measuring population sodium intake: A review of methods. Nutrients 2014, 6, 4651–4662. [Google Scholar] [CrossRef] [PubMed]
- Espeland, M.A.; Kumanyika, S.; Wilson, A.C.; Reboussin, D.M.; Easter, L.; Self, M.; Robertson, J.; Brown, W.M.; McFarlane, M.; TONE Cooperative Research Group. Statistical issues in analyzing 24-h dietary recall and 24-h urine collection data for sodium and potassium intakes. Am. J. Epidemiol. 2001, 153, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Strategies to Monitor and Evaluate Population Sodium Consumption and Sources of Sodium in the Diet; Report of a Joint Technical Meeting Convened by WHO and the Government of Canada; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- World Health Organization. Protocol for Population Level Sodium Determination in 24-h Urine Samples; Prepared by WHO/PAHO Regional Expert Group for Cardiovascular Disease Prevention through Population-Wide Dietary Salt Reduction: Sub-Group for Research and Surveillance; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- The Centers for Disease Control and Prevention (CDC). The Use of Urine Biomarkers to Estimate Population Sodium Intake; CDC: Atlanta, GA, USA, 2014.
- McGuire, S.; Institute of Medicine. Strategies to reduce sodium intake in the United States; The National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Cogswell, M.E.; Maalouf, J.; Elliott, P.; Loria, C.M.; Patel, S.; Bowman, B.A. Use of urine biomarkers to assess sodium intake: Challenges and opportunities. Annu. Rev. Nutr. 2015, 35, 349–387. [Google Scholar] [CrossRef] [PubMed]
- Strom, B.L.; Yaktine, A.L.; Oria, M. (Eds.) Sodium Intake in Populations: Assessment of Evidence (2013); Institute of Medicine, Food and Nutrition Board, Board on Population Health and Public Health Practice Committee on the Consequences of Sodium Reduction in Populations: Washington, DC, USA, 2013.
- Hawkes, C.; Webster, J. National approaches to monitoring population salt intake: A trade-off between accuracy and practicality? PLoS ONE 2012, 7, e46727. [Google Scholar] [CrossRef] [PubMed]
- Johner, S.A.; Thamm, M.; Schmitz, R.; Remer, T. Current daily salt intake in Germany: Biomarker-based analysis of the representative DEGS study. Eur. J. Nutr. 2015, 54, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Bromley, C.; Dowling, S.; Gray, L.; Hughes, T.; Leyland, A.; McNeill, G.; Marcinkiewicz, A. The Scottish Health Survey; The Scottish Government: Scotland, UK, 2013.
- Australian Bureau of Statistics. Australian Health Survey: User's Guide 2011–2013; Australian Bureau of Statistics: Canberra, Australia, 2014.
- Joint Health Surveys Unit. Health Survey for England 2007; The NHS Information Centre: London, UK, 2008. [Google Scholar]
- Robert Koch Institute. The German Health Interview and Examination Survey for Adults—Results of the First Wave (DEGS1); Robert Koch Institute: Berlin, Germany, 2013. [Google Scholar]
- Walton, J. (Ed.) National Adult Nutrition Survey; Irish Universities Nutrition Alliance: Dublin, Ireland, 2011.
- University of Otago and Ministry of Health. Methodology Report for the 2008/09 New Zealand Adult Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2011.
- Kim, H.J.; Oh, K. Methodological issues in estimating sodium intake in the Korea National Health and Nutrition Examination Survey. Epidemiol. Health 2014, 36, e2014033. [Google Scholar] [CrossRef] [PubMed]
- Millett, C.; Laverty, A.A.; Stylianou, N.; Bibbins-Domingo, K.; Pape, U.J. Impacts of a national strategy to reduce population salt intake in England: Serial cross sectional study. PLoS ONE 2012, 7, e29836. [Google Scholar] [CrossRef] [PubMed]
- Giltinan, M.; Walton, J.; Flynn, A.; McNulty, B.; Nugent, A. Report on Salt Intakes in Irish Adults; Irish Universities Nutrition Alliance: Dublin, Ireland, 2011. [Google Scholar]
- Oh, J.; Lee, J.; Koo, H.S.; Kim, S.; Chin, H.J. Estimated 24-h urine sodium excretion is correlated with blood pressure in Korean population: 2009–2011 Korean National Health and Nutritional Examination Survey. J. Korean Med. Sci. 2014, 29 (Suppl. 2), S109–S116. [Google Scholar] [CrossRef] [PubMed]
- McLean, R. Sodium in New Zealand: Intake, Consumer Perceptions, and Implications for Chronic Disease, Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2013. [Google Scholar]
- Pfeiffer, C.M.; Hughes, J.P.; Cogswell, M.E.; Burt, V.L.; Lacher, D.A.; Lavoie, D.J.; Rabinowitz, D.J.; Johnson, C.L.; Pirkle, J.L. Urine sodium excretion increased slightly among U.S. Adults between 1988 and 2010. J. Nutr. 2014, 144, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P. A Survey of Salt Intake, Blood Pressure, and Non-Communicable Disease Risk Factors in Vietnam, Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2014. [Google Scholar]
- McLean, R.; Williams, S.; Mann, J. Monitoring population sodium intake using spot urine samples: Validation in a New Zealand population. J. Hum. Hypertens. 2014, 28, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Sun, N.; Chen, Y.; Wang, H.; Xi, Y.; Ma, Z. Validation of the spot urine in evaluating 24-h sodium excretion in Chinese hypertension patients. Am. J. Hypertens. 2015, 28, 1368–1375. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.S.; Kim, Y.C.; Ahn, S.Y.; Oh, S.W.; Kim, S.; Chin, H.J.; Park, J.H. Estimating 24-h urine sodium level with spot urine sodium and creatinine. J. Korean Med. Sci. 2014, 29 (Suppl. 2), S97–S102. [Google Scholar] [CrossRef] [PubMed]
- Stipanuk, M.H. Biochemical, Physiological and Molecular Basis of Human Nutrition, 2nd ed.; Elsevier Saunders: Philadelphia, PA, USA; Edinburgh, UK, 2006; pp. 759–774. [Google Scholar]
- Sanchez-Castillo, C.P.; Warrender, S.; Whitehead, T.P.; James, W.P. An assessment of the sources of dietary salt in a British population. Clin. Sci. (Lond.) 1987, 72, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.A.; Appel, L.J.; Okuda, N.; Brown, I.J.; Chan, Q.; Zhao, L.; Ueshima, H.; Kesteloot, H.; Miura, K.; Curb, J.D.; et al. Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: The INTERMAP study. J. Am. Diet. Assoc. 2010, 110, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Eaton, S.B.; Konner, M.J. Paleolithic nutrition revisited: A twelve-year retrospective on its nature and implications. Eur. J. Clin. Nutr. 1997, 51, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Ueno, M.; Uezono, K.; Kawazoe, N.; Nakamuta, S.; Ueda, K.; Omae, T. Average urinary excretion of sodium in 24-h can be estimated from a spot-urine specimen. Jpn. Circ. J. 1982, 46, 948–953. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S. Principles of Nutritional Assessment, 2nd ed.; Oxford University Press: Oxford, UK, 2005; pp. 1–908. [Google Scholar]
- Shahar, D.R.; Froom, P.; Harari, G.; Yerushalmi, N.; Lubin, F.; Kristal-Boneh, E. Changes in dietary intake account for seasonal changes in cardiovascular disease risk factors. Eur. J. Clin. Nutr. 1999, 53, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, J.T.; Patterson, K.Y.; Bodner, J.E.; Douglas, L.W.; Veillon, C.; Kelsay, J.L.; Mertz, W.; Smith, J.C. Sodium and potassium intake and balance in adults consuming self-selected diets. Am. J. Clin. Nutr. 1984, 40, 786–793. [Google Scholar] [PubMed]
- Allsopp, A.J.; Sutherland, R.; Wood, P.; Wootton, S.A. The effect of sodium balance on sweat sodium secretion and plasma aldosterone concentration. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Scottish Centre for Social Research. A Survey of 24-h Urinary Sodium Excretion in a Representative Sample of the Scottish Population as a Measure of Salt Intake; Scottish Centre for Social Research: Edinburgh, UK, 2011. [Google Scholar]
- Tam, R.K.; Wong, H.; Plint, A.; Lepage, N.; Filler, G. Comparison of clinical and biochemical markers of dehydration with the clinical dehydration scale in children: A case comparison trial. BMC Pediatr. 2014, 14, 149. [Google Scholar] [CrossRef] [PubMed]
- Kimura, G.; Dohi, Y.; Fukuda, M. Salt sensitivity and circadian rhythm of blood pressure: The keys to connect CKD with cardiovascular events. Hypertens. Res. 2010, 33, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Stanbury, S.W.; Thomson, A.E. Diurnal variation in electrolyte excretion. Clin. Sci. (Lond.) 1951, 10, 267–293. [Google Scholar]
- Sachdeva, A.; Weder, A.B. Nocturnal sodium excretion, blood pressure dipping, and sodium sensitivity. Hypertension 2006, 48, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Uzu, T.; Nishimura, M.; Takeji, M.; Kuroda, S.; Nakamura, S.; Inenaga, T.; Kimura, G. Circadian rhythm of natriuresis is disturbed in nondipper type of essential hypertension. Am. J. Kidney Dis. 1999, 33, 29–35. [Google Scholar] [CrossRef]
- Qavi, A.H.; Kamal, R.; Schrier, R.W. Clinical use of diuretics in heart failure, cirrhosis, and nephrotic syndrome. Int. J. Nephrol. 2015, 2015, 975934. [Google Scholar] [CrossRef] [PubMed]
- Doshi, A.; Miller, E. Statistical Brief # 120: Trends in the Use of Diuretics to Treat Hypertension, 1997 and 2003; U.S. Department of Health and Human Services: Washington, DC, USA, 2006.
- Gu, Q.; Burt, V.L.; Dillon, C.F.; Yoon, S. Trends in antihypertensive medication use and blood pressure control among united states adults with hypertension: The National Health and Nutrition Examination Survey, 2001 to 2010. Circulation 2012, 126, 2105–2114. [Google Scholar] [CrossRef] [PubMed]
- Johner, S.A.; Boeing, H.; Thamm, M.; Remer, T. Urinary 24-h creatinine excretion in adults and its use as a simple tool for the estimation of daily urinary analyte excretion from analyte/creatinine ratios in populations. Eur. J. Clin. Nutr. 2015, 69, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Remer, T.; Neubert, A.; Maser-Gluth, C. Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am. J. Clin. Nutr. 2002, 75, 561–569. [Google Scholar] [PubMed]
- Bourdoux, P. Evaluation of the iodine intake: Problems of the iodine/creatinine ratio—Comparison with iodine excretion and daily fluctuations of iodine concentration. Exp. Clin. Endocrinol. Diabetes 1998, 106 (Suppl. 3), S17–S20. [Google Scholar] [CrossRef] [PubMed]
- Furnée, C.A.; van der Haar, F.; West, C.E.; Hautvast, J.G. A critical appraisal of goiter assessment and the ratio of urinary iodine to creatinine for evaluating iodine status. Am. J. Clin. Nutr. 1994, 59, 1415–1417. [Google Scholar] [PubMed]
- Tanaka, T.; Okamura, T.; Miura, K.; Kadowaki, T.; Ueshima, H.; Nakagawa, H.; Hashimoto, T. A simple method to estimate populational 24-h urinary sodium and potassium excretion using a casual urine specimen. J. Hum. Hypertens. 2002, 16, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Brown, I.J.; Dyer, A.R.; Chan, Q.; Cogswell, M.E.; Ueshima, H.; Stamler, J.; Elliott, P. Estimating 24-h urinary sodium excretion from casual urinary sodium concentrations in Western populations: The INTERSALT Study. Am. J. Epidemiol. 2013, 177, 1180–1192. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Sykes, L.; Paul, C.; Dary, O.; Legetic, B.; Campbell, N.R.; Cappuccio, F.P. Systematic review of studies comparing 24-h and spot urine collections for estimating population salt intake. Rev. Panam. Salud Publica 2012, 32, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Mente, A.; O’Donnell, M.J.; Dagenais, G.; Wielgosz, A.; Lear, S.A.; McQueen, M.J.; Jiang, Y.; Xingyu, W.; Jian, B.; Calik, K.B.; et al. Validation and comparison of three formulae to estimate sodium and potassium excretion from a single morning fasting urine compared to 24-h measures in 11 countries. J. Hypertens. 2014, 32, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Cooper, R.; McKeever, J.; McKeever, P.; Byington, R.; Soltero, I.; Stamler, R.; Gosch, F.; Stevens, E.; Stamler, J. Assessment of the association between habitual salt intake and high blood pressure: Methodological problems. Am. J. Epidemiol. 1979, 110, 219–226. [Google Scholar] [PubMed]
- Lerchl, K.; Rakova, N.; Dahlmann, A.; Rauh, M.; Goller, U.; Basner, M.; Dinges, D.F.; Beck, L.; Agureev, A.; Larina, I.; et al. Agreement between 24-h salt ingestion and sodium excretion in a controlled environment. Hypertension 2015, 66, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Luft, F.C.; Fineberg, N.S.; Sloan, R.S. Estimating dietary sodium intake in individuals receiving a randomly fluctuating intake. Hypertension 1982, 4, 805–808. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Carriquiry, A.L.; Chen, T.C.; Loria, C.M.; Pfeiffer, C.M.; Liu, K.; Sempos, C.T.; Perrine, C.G.; Cogswell, M.E. Estimating the population distribution of usual 24-h sodium excretion from timed urine void specimens using a statistical approach accounting for correlated measurement errors. J. Nutr. 2015, 145, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Dahl, L.K. Possible role of salt intake in the development of essential hypertension. Int. J. Epidemiol. 2005, 34, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Powles, J.; Fahimi, S.; Micha, R.; Khatibzadeh, S.; Shi, P.; Ezzati, M.; Engell, R.E.; Lim, S.S.; Danaei, G.; Mozaffarian, D.; et al. Global, regional and national sodium intakes in 1990 and 2010: A systematic analysis of 24-h urinary sodium excretion and dietary surveys worldwide. BMJ Open 2013, 3, e003733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattes, R.D.; Donnelly, D. Relative contributions of dietary sodium sources. J. Am. Coll. Nutr. 1991, 10, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.G.; Kaye, A.E.; Druce, E. Sources and intakes of sodium in the United Kingdom diet. Eur. J. Clin. Nutr. 1989, 43, 855–861. [Google Scholar] [PubMed]
- Mahler, B.; Kamperis, K.; Ankarberg-Lindgren, C.; Djurhuus, J.C.; Rittig, S. The effect of puberty on diurnal sodium regulation. Am. J. Physiol. Ren. Physiol. 2015, 309, F873–F879. [Google Scholar] [CrossRef] [PubMed]
- Als, C.; Helbling, A.; Peter, K.; Haldimann, M.; Zimmerli, B.; Gerber, H. Urinary iodine concentration follows a circadian rhythm: A study with 3023 spot urine samples in adults and children. J. Clin. Endocrinol. Metab. 2000, 85, 1367–1369. [Google Scholar] [CrossRef] [PubMed]
- Vanacor, R.; Soares, R.; Manica, D.; Furlanetto, T.W. Urinary iodine in 24-h is associated with natriuresis and is better reflected by an afternoon sample. Ann. Nutr. Metab. 2008, 53, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Cogswell, M.E.; Loria, C.M.; Chen, T.C.; Pfeiffer, C.M.; Swanson, C.A.; Caldwell, K.L.; Perrine, C.G.; Carriquiry, A.L.; Liu, K.; et al. Urinary excretion of sodium, potassium, and chloride, but not iodine, varies by timing of collection in a 24-h calibration study. J. Nutr. 2013, 143, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Gowans, E.M.; Fraser, C.G. Biological variation in analyte concentrations in urine of apparently healthy men and women. Clin. Chem. 1987, 33, 847–850. [Google Scholar] [PubMed]
- Zimmermann, M.B.; Andersson, M. Assessment of iodine nutrition in populations: Past, present, and future. Nutr. Rev. 2012, 70, 553–570. [Google Scholar] [CrossRef] [PubMed]
- Dyer, A.R.; Elliott, P.; Shipley, M. Urinary electrolyte excretion in 24-h and blood pressure in the INTERSALT Study. II. Estimates of electrolyte-blood pressure associations corrected for regression dilution bias. The intersalt cooperative research group. Am. J. Epidemiol. 1994, 139, 940–951. [Google Scholar] [PubMed]
Survey | Method for Salt Intake Estimate in Main Report | Year Published | Age Group | Intake Estimates (g Salt) If Converted from UNaC Values (g Na). Arithmetic Means Unless Noted in the Methods Column | Methods |
---|---|---|---|---|---|
2011–2012 Australian Health Survey | Dietary | Not identified | - | - | - |
2003–2007 Health Survey for England [30] | None | 2012 | 16+ years | All adults (n = 1775): 2007—4.6, 2006—4.7, 2005—4.8, 2004—6.0, 2003—5.3 | Not adjusted to urinary sodium excretion (UNaE), geometric mean |
2008–2011 German Health Interview and Examination Survey for Adults (DGES study) [22] | None | 2014 | 18–79 years | 2008–2011—(m) 10.0 (n = 3900), (f) 8.4 (n = 3276) | Adjusted to UNaE with estimated 24-h creatinine, median |
2011 Ireland National Adult Nutrition Survey [31] | Dietary | 2011 | 18–64 years | 2008–2010—(m) 11.1 (n = 4329), (f) 8.5 (n = 3315) | * Methodology not identified; appears adjusted to UNaE |
2009–2011 Korea National Health and Nutrition Examination Survey [32] | Dietary | 2014 | 18+ years | 2009–2011 (normotensives) 9.7 (n = 3801), (hypertensives) 10.2 (n = 3967) | Adjusted to UNaE with Korean equation |
2008/9 New Zealand Adult Nutrition Survey [33] | None | * Unpublished | 15+ years | All adults (n = 3544): 2008/9—9.1 | Adjusted to UNaE with WHO equation |
2013 Scottish Health Survey [23] | UNaC | 2014 | 16+ years | 2012/13: 6.1 (n = 2394), 2010/11: 6.2, 2008/09: 6.4, 2003: 6.8 | Not adjusted to UNaE |
2010 US National Health and Nutrition Examination Survey [34] | Dietary | 2014 | 20–59 years | 2010: 8.4 (n = 3290), 2003–2006: 8.4, 1988–1994: 8.1 | Adjusted to UNaE with International Cooperative Study on Salt, Other Factors, and Blood Pressure North America/Europe equation |
2009 Vietnam STEPwise Approach to Surveillance Survey [35] | Not identified | * Unpublished | 25–64 years | 2009: (m) 10.2 (n = 3978), (w) 9.5 (n = 3705) | Adjusted to UNaE with Tanaka equation |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conkle, J.; Van der Haar, F. The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources. Nutrients 2017, 9, 7. https://doi.org/10.3390/nu9010007
Conkle J, Van der Haar F. The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources. Nutrients. 2017; 9(1):7. https://doi.org/10.3390/nu9010007
Chicago/Turabian StyleConkle, Joel, and Frits Van der Haar. 2017. "The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources" Nutrients 9, no. 1: 7. https://doi.org/10.3390/nu9010007
APA StyleConkle, J., & Van der Haar, F. (2017). The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources. Nutrients, 9(1), 7. https://doi.org/10.3390/nu9010007