Folate and Vitamin B12-Related Biomarkers in Relation to Brain Volumes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Descriptive Measures
2.3. MRI Scans
2.4. Blood Measurements
2.5. Statistics
3. Results
3.1. Participants
3.2. B-Vitamin Status and Brain MRI Volumes
3.3. Differences between Supplementation Groups
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Smith, A.D. The worldwide challenge of the dementias: A role for B vitamins and homocysteine? Food Nutr. Bull. 2008, 29, S143–S172. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, P.S.; Valenzuela, M.; Wang, X.L.; Looi, J.C.; Brodaty, H. Relationship between plasma homocysteine levels and brain atrophy in healthy elderly individuals. Neurology 2002, 58, 1539–1541. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.S. The role of B vitamins in preventing and treating cognitive impairment and decline. Adv. Nutr. 2012, 3, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Refsum, H. Vitamin B-12 and cognition in the elderly. Am. J. Clin. Nutr. 2009, 89, 707S–711S. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, O.; Mungas, D.; Beckett, L.; Harvey, D.; Tomaszewski Farias, S.; Reed, B.; Olichney, J.; Miller, J.; Decarli, C. MRI predictors of cognitive change in a diverse and carefully characterized elderly population. Neurobiol. Aging. 2012, 33, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Sizonenko, S.V.; Babiloni, C.; De Bruin, E.A.; Isaacs, E.B.; Jonsson, L.S.; Kennedy, D.O.; Latulippe, M.E.; Mohajeri, M.H.; Moreines, J.; Pietrini, P.; et al. Brain imaging and human nutrition: Which measures to use in intervention studies? Br. J. Nutr. 2013, 110 (Suppl 1), S1–S30. [Google Scholar] [CrossRef] [PubMed]
- Vermeer, S.E.; Van Dijk, E.J.; Koudstaal, P.J.; Oudkerk, M.; Hofman, A.; Clarke, R.; Breteler, M.M. Homocysteine, silent brain infarcts, and white matter lesions: The Rotterdam Scan Study. Ann. Neurol. 2002, 51, 285–289. [Google Scholar] [CrossRef] [PubMed]
- De Lau, L.M.; Smith, A.D.; Refsum, H.; Johnston, C.; Breteler, M.M. Plasma vitamin B12 status and cerebral white-matter lesions. J. Neurol. Neurosurg. Psychiatry 2009, 80, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Tangney, C.C.; Aggarwal, N.T.; Li, H.; Wilson, R.S.; Decarli, C.; Evans, D.A.; Morris, M.C. Vitamin B12, cognition, and brain MRI measures: A cross-sectional examination. Neurology 2011, 77, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Vogiatzoglou, A.; Refsum, H.; Johnston, C.; Smith, S.M.; Bradley, K.M.; De Jager, C.; Budge, M.M.; Smith, A.D. Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology 2008, 71, 826–832. [Google Scholar] [CrossRef] [PubMed]
- De Lau, L.M.; Refsum, H.; Smith, A.D.; Johnston, C.; Breteler, M.M. Plasma folate concentration and cognitive performance: Rotterdam Scan Study. Am. J. Clin. Nutr. 2007, 86, 728–734. [Google Scholar] [PubMed]
- Van Wijngaarden, J.P.; Dhonukshe-Rutten, R.A.; Van Schoor, N.M.; Van Der Velde, N.; Swart, K.M.; Enneman, A.W.; Van Dijk, S.C.; Brouwer-Brolsma, E.M.; Zillikens, M.C.; Van Meurs, J.B.; et al. Rationale and design of the B-PROOF study, a randomized controlled trial on the effect of supplemental intake of vitamin B12 and folic acid on fracture incidence. BMC Geriatr. 2011, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Van Wijngaarden, J.P.; Swart, K.M.; Enneman, A.W.; Dhonukshe-Rutten, R.A.; Van Dijk, S.C.; Ham, A.C.; Brouwer-Brolsma, E.M.; Van Der Zwaluw, N.L.; Sohl, E.; Van Meurs, J.B.; et al. Effect of daily vitamin B-12 and folic acid supplementation on fracture incidence in elderly individuals with an elevated plasma homocysteine concentration: B-PROOF, a randomized controlled trial. Am. J. Clin. Nutr. 2014, 100, 1578–1586. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; Mchugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Almeida, O.P.; Almeida, S.A. Short versions of the geriatric depression scale: A study of their validity for the diagnosis of a major depressive episode according to ICD-10 and DSM-IV. Int. J. Geriatr. Psychiatry 1999, 14, 858–865. [Google Scholar] [CrossRef]
- Garretsen, H. Probleemdrinken, Prevalentiebepaling, Beinvloedende Factoren en Preventiemogelijkheden, Theoretische Overwegingen en Onderzoek in Rotterdam (Dissertation in Dutch); Swets & Zeitlinger: Lisse, The Netherlands, 1983. [Google Scholar]
- Stel, V.S.; Smit, J.H.; Pluijm, S.M.; Visser, M.; Deeg, D.J.; Lips, P. Comparison of the LASA Physical Activity Questionnaire with a 7-day diary and pedometer. J. Clin. Epidemiol. 2004, 57, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, M.; Beckmann, C.F.; Behrens, T.E.; Woolrich, M.W.; Smith, S.M. FSL. Neuroimage 2012, 62, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J.; Friston, K.J. Unified segmentation. Neuroimage 2005, 26, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Van Wijngaarden, J.P. Bones, Brains and B-Vitamins. Ph.D. Thesis, Wagenigen University, Wageningen, The Netherlands, 2013. [Google Scholar]
- Van Der Zwaluw, N.L.; Dhonukshe-Rutten, R.A.; Van Wijngaarden, J.P.; Brouwer-Brolsma, E.M.; Van De Rest, O.; In ’T Veld, P.H.; Enneman, A.W.; Van Dijk, S.C.; Ham, A.C.; Swart, K.M.; et al. Results of 2-year vitamin B treatment on cognitive performance: Secondary data from an RCT. Neurology 2014, 83, 2158–2166. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.H.; Almeida, O.P. Effect of Homocysteine Lowering Treatment on Cognitive Function: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Alzheimers Disease 2012, 29, 133–149. [Google Scholar]
- Doets, E.L.; Van Wijngaarden, J.P.; Szczecinska, A.; Dullemeijer, C.; Souverein, O.W.; Dhonukshe-Rutten, R.A.; Cavelaars, A.E.; Van ’T Veer, P.; Brzozowska, A.; De Groot, L.C. Vitamin B12 Intake and Status and Cognitive Function in Elderly People. Epidemiol. Rev. 2013, 35, 2–21. [Google Scholar] [CrossRef] [PubMed]
- Douaud, G.; Refsum, H.; De Jager, C.A.; Jacoby, R.; Nichols, T.E.; Smith, S.M.; Smith, A.D. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc. Natl. Acad. Sci. USA 2013, 110, 9523–9528. [Google Scholar] [CrossRef] [PubMed]
- Fox, N.C.; Crum, W.R.; Scahill, R.I.; Stevens, J.M.; Janssen, J.C.; Rossor, M.N. Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 2001, 358, 201–205. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Shiung, M.M.; Gunter, J.L.; O’brien, P.C.; Weigand, S.D.; Knopman, D.S.; Boeve, B.F.; Ivnik, R.J.; Smith, G.E.; Cha, R.H.; et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 2004, 62, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Sluimer, J.D.; Van Der Flier, W.M.; Karas, G.B.; Fox, N.C.; Scheltens, P.; Barkhof, F.; Vrenken, H. Whole-brain atrophy rate and cognitive decline: Longitudinal MR study of memory clinic patients. Radiology 2008, 248, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Brouwer-Brolsma, E.M.; Van Der Zwaluw, N.L.; Van Wijngaarden, J.P.; Dhonukshe-Rutten, R.A.; In ’T Veld, P.H.; Feskens, E.J.; Smeets, P.A.; Kessels, R.P.; Van De Rest, O.; De Groot, L.C. Higher Serum 25-Hydroxyvitamin D and Lower Plasma Glucose Are Associated with Larger Gray Matter Volume but Not with White Matter or Total Brain Volume in Dutch Community-Dwelling Older Adults. J. Nutr. 2015, 145, 1817–1823. [Google Scholar] [CrossRef] [PubMed]
- Brouwer-Brolsma, E.M.; Dhonukshe-Rutten, R.A.; Van Wijngaarden, J.P.; Van De Zwaluw, N.L.; In ’T Veld, P.H.; Wins, S.; Swart, K.M.; Enneman, A.W.; Ham, A.C.; Van Dijk, S.C.; et al. Cognitive performance: A cross-sectional study on serum vitamin d and its interplay with glucose homeostasis in Dutch older adults. J. Am. Med. Dir. Assoc. 2015, 16, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Selhub, J.; Morris, M.S.; Jacques, P.F.; Rosenberg, I.H. Folate-vitamin B-12 interaction in relation to cognitive impairment, anemia, and biochemical indicators of vitamin B-12 deficiency. Am. J. Clin. Nutr. 2009, 89, 702S–706S. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.M.; Ames, D.; Mander, A.G.; Carne, R.P.; Brodaty, H.; Woodward, M.C.; Boundy, K.; Ellis, K.A.; Bush, A.I.; Faux, N.G.; et al. Among vitamin B12 deficient older people, high folate levels are associated with worse cognitive function: Combined data from three cohorts. J. Alzheimers Disease 2014, 39, 661–668. [Google Scholar]
- Morris, M.S.; Selhub, J.; Jacques, P.F. Vitamin B-12 and folate status in relation to decline in scores on the mini-mental state examination in the framingham heart study. J. Am. Geriatr. Soc. 2012, 60, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Evans, D.A.; Bienias, J.L.; Tangney, C.C.; Hebert, L.E.; Scherr, P.A.; Schneider, J.A. Dietary folate and vitamin B12 intake and cognitive decline among community-dwelling older persons. Arch. Neurol. 2005, 62, 641–645. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.K.; Wong, K.C.; Wu, M.Y.; Liao, S.L.; Kuo, C.S.; Huang, R.F. Correlations between folate, B12, homocysteine levels, and radiological markers of neuropathology in elderly post-stroke patients. J. Am. Coll. Nutr. 2007, 26, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Chanarin, I. The Megaloblastic Anaemias, 3rd ed.; Blackwell Scientific Publications: Oxford, UK, 1990. [Google Scholar]
- Den Heijer, T.; Vermeer, S.E.; Clarke, R.; Oudkerk, M.; Koudstaal, P.J.; Hofman, A.; Breteler, M.M. Homocysteine and brain atrophy on MRI of non-demented elderly. Brain 2003, 126, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, S.; Wolf, P.A.; Beiser, A.S.; Selhub, J.; Au, R.; Jacques, P.F.; Yoshita, M.; Rosenberg, I.H.; D’agostino, R.B.; Decarli, C. Association of plasma total homocysteine levels with subclinical brain injury: Cerebral volumes, white matter hyperintensity, and silent brain infarcts at volumetric magnetic resonance imaging in the Framingham Offspring Study. Arch. Neurol. 2008, 65, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.H.; Pereira, E.A.; Budge, M.M.; Bradley, K.M. Minimal hippocampal width relates to plasma homocysteine in community-dwelling older people. Age Ageing 2002, 31, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Smith, S.M.; De Jager, C.A.; Whitbread, P.; Johnston, C.; Agacinski, G.; Oulhaj, A.; Bradley, K.M.; Jacoby, R.; Refsum, H. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: A randomized controlled trial. PLoS ONE 2010, 5, e12244. [Google Scholar] [CrossRef] [PubMed]
- Raz, N.; Rodrigue, K.M. Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neurosci. Biobehav. Rev. 2006, 30, 730–748. [Google Scholar] [CrossRef] [PubMed]
- Popp, J.; Lewczuk, P.; Linnebank, M.; Cvetanovska, G.; Smulders, Y.; Kolsch, H.; Frommann, I.; Kornhuber, J.; Maier, W.; Jessen, F. Homocysteine metabolism and cerebrospinal fluid markers for Alzheimer’s disease. J. Alzheimers Disease 2009, 18, 819–828. [Google Scholar]
- Zhang, C.E.; Tian, Q.; Wei, W.; Peng, J.H.; Liu, G.P.; Zhou, X.W.; Wang, Q.; Wang, D.W.; Wang, J.Z. Homocysteine induces tau phosphorylation by inactivating protein phosphatase 2A in rat hippocampus. Neurobiol. Aging 2008, 29, 1654–1665. [Google Scholar] [CrossRef] [PubMed]
- Wald, D.S.; Law, M.; Morris, J.K. Homocysteine and cardiovascular disease: Evidence on causality from a meta-analysis. BMJ 2002, 325, 1202. [Google Scholar] [CrossRef] [PubMed]
- Stojsavljevic, N.; Levic, Z.; Drulovic, J.; Dragutinovic, G. A 44-month clinical-brain MRI follow-up in a patient with B12 deficiency. Neurology 1997, 49, 878–881. [Google Scholar] [CrossRef] [PubMed]
- Scalabrino, G. Cobalamin (vitamin B(12)) in subacute combined degeneration and beyond: Traditional interpretations and novel theories. Exp. Neurol. 2005, 192, 463–479. [Google Scholar] [CrossRef] [PubMed]
- Brouwer-Brolsma, E.M.; Dhonukshe-Rutten, R.A.; Van Wijngaarden, J.P.; Zwaluw, N.L.; Velde, N.; De Groot, L.C. Dietary Sources of Vitamin B-12 and Their Association with Vitamin B-12 Status Markers in Healthy Older Adults in the B-PROOF Study. Nutrients 2015, 7, 7781–7797. [Google Scholar] [CrossRef] [PubMed]
- Bates, C.J.; Prentice, A.; Van Der Pols, J.C.; Walmsley, C.; Pentieva, K.D.; Finch, S.; Smithers, G.; Clarke, P.C. Estimation of the use of dietary supplements in the National Diet and Nutrition Survey: People aged 65 years and Over. An observed paradox and a recommendation. Eur. J. Clin. Nutr. 1998, 52, 917–923. [Google Scholar] [CrossRef] [PubMed]
Variable | Total Population (n = 218) | With B-Vitamin Supplementation (n = 106) | Without B-Vitamin Supplementation (n = 112) | p-Value |
---|---|---|---|---|
Age | 73.6 ± 5.9 | 72.7 ± 5.3 | 74.5 ± 6.3 | 0.02 |
Sex, men, n (%) | 124 (57%) | 60 (57%) | 64 (57%) | 0.94 |
Body mass index, kg/m2 | 27.7 ± 4.2 | 27.3 ± 4.4 | 28.1 ± 4.1 | 0.21 |
Blood pressure, systolic, mmHg | 147 ± 18 | 146 ± 19 | 148 ± 17 | 0.42 |
Blood pressure, diastolic, mmHg | 78 ± 10 | 78 ± 10 | 78 ± 10 | 0.76 |
Education, n (%) | 0.12 | |||
Low | 90 (41%) | 49 (46%) | 41 (37%) | |
Medium | 52 (24%) | 19 (18%) | 33 (30%) | |
High | 76 (35%) | 38 (36%) | 39 (34%) | |
Smoking, n (%) | 0.67 | |||
Never | 64 (29%) | 27 (26%) | 37 (33%) | |
Former | 139 (64%) | 70 (66%) | 69 (62%) | |
Current | 15 (7%) | 9 (9%) | 6 (5%) | |
Alcohol, n (%) | 0.72 | |||
Light | 152 (70%) | 73 (69%) | 79 (71%) | |
Moderate | 60 (28%) | 31 (29%) | 29 (26%) | |
Excessive | 6 (3%) | 2 (2%) | 4 (3%) | |
Self-initiated supplement use, vitamin B12, n (%) | 27 (8%) | 11 (7%) | 16 (10%) | 0.43 |
Self-initiated supplement use, folic acid, n (%) | 30 (12%) | 12 (9%) | 18 (15%) | 0.37 |
MMSE, max 30 points | 28 [27–29] | 29 [27–30] | 28 [27–29] | 0.09 |
Low MMSE < 25, n (%) | 6 (3%) | 4 (4%) | 2 (2%) | 0.37 |
GDS, max 15 points | 1 (0–2) | 1 (0–2) | 1 (0–2) | 0.89 |
Physical activity (kcal/day) | 664 ± 416 | 642 ± 288 | 683 ± 440 | 0.47 |
ApoE-ε4, carrier, n (%) | 60 (28%) | 32 (30%) | 28 (25%) | 0.45 |
MTHFR, 677TT, n (%) | 28 (13%) | 17 (15%) | 11 (10%) | 0.40 |
Grey matter (mL) | 574 ± 56 | 577 ± 57 | 572 ± 55 | 0.51 |
Grey matter/ICV | 0.42 ± 0.02 | 0.42 ± 0.02 | 0.42 ± 0.02 | 0.98 |
White matter (mL) | 493 ± 61 | 495 ± 63 | 492 ± 60 | 0.73 |
White matter/ICV | 0.36 ± 0.02 | 0.36 ± 0.02 | 0.36 ± 0.02 | 0.74 |
Cerebrospinal fluid (mL) | 304 ± 52 | 306 ± 51 | 302 ± 53 | 0.62 |
Cerebrospinal fluid/ICV | 0.22 ± 0.03 | 0.22 ± 0.03 | 0.22 ± 0.03 | 0.81 |
Serum folate (nmol/L) | 36.7 [23.4–54.2] | 53.1 [42.5–68.3] | 24.1 [19.5–31.8] | <0.001 |
Serum vitamine B12 (pmol/L) | 404 [262–558] | 558 [459–715] | 274 [222–373] | <0.001 |
Vitamin B12 < 258 pmol/L, n (%) | 49 (23%) | 1 (1%) | 48 (43%) | <0.001 |
Serum holotranscobalamin (pmol/L) | 81 [56–111] | 111 [89–147] a | 63 [44–80] | <0.001 |
Holotranscobalamin < 30 pmol/L, n (%) | 12 (6%) | 1 (1%) | 11 (10%) | 0.01 |
Serum methylmalonic acid (µmol/L) | 0.20 [0.16–0.25] | 0.17 [0.15–0.21] | 0.24 [0.19–0.30] | <0.001 |
Methylmalonic acid > 0.30 µmol/L, n (%) | 35 (16%) | 5 (5%) | 30 (27%) | <0.001 |
Plasma homocysteine (µmol/L) | 11.4 [8.9–14.4] | 9.1 [7.8–10.6] b | 13.9 [12.0–16.3] c | <0.001 |
Variable | Total Population (n = 218) | Without B-Vitamin Supplementation (n = 112) | With B-Vitamin Supplementation (n = 106) | |||
---|---|---|---|---|---|---|
Crude | Model 1 | Crude | Model 1 f | Crude | Model 1 i | |
Serum folate, nmol/L | ||||||
Grey matter | −0.05 (−0.22, 0.13) | −0.03 (−0.21, 0.15) a | 0.29 (−0.18, 0.75) | 0.19 (−0.28, 0.65) | −0.07 (−0.38, 0.24) | −0.03 (−0.36, 0.31) |
White matter | −0.14 (−0.31, 0.02) | −0.17 (−0.34, 0.01) a | −0.08 (−0.50, 0.34) | −0.06 (−0.49, 0.37) | −0.14 (−0.43, 0.16) | −0.24 (−0.56, 0.09) |
Total brain volume | −0.19 (−0.37, −0.01) | −0.20 (−0.38, −0.02) a,* | 0.20 (−0.27, 0.68) | 0.11 (−0.46, 0.68) | −0.20 (−0.51, 0.11) | −0.24 (−0.57, 0.09) |
Serum vitamin B12, pmol/L | ||||||
Grey matter | −0.01 (−0.02, 0.01) | −0.01 (−0.02, 0.01) | 0.02 (−0.03, 0.06) | 0.01 (−0.04, 0.06) | −0.01 (−0.04, 0.02) | −0.01 (−0.04, 0.02) |
White matter | 0.00 (0.01, 0.02) | −0.00 (−0.02 0.02) | 0.02 (−0.02, 0.07) | 0.02 (−0.02, 0.07) | 0.02 (−0.01, 0.04) | 0.02 (−0.01, 0.04) |
Total brain volume | −0.01 (−0.02, 0.01) | −0.01 (−0.03, 0.01) | 0.04 (−0.01, 0.09) | 0.03 (−0.02, 0.08) | 0.01 (−0.02, 0.04) | 0.00 (−0.02, 0.03) |
Serum holotranscobalamin, pmol/L | ||||||
Grey matter | −0.00 (−0.09, 0.09) b | 0.01 (−0.08, 0.09) c | 0.00 (−0.21, 0.21) | −0.04 (−0.25, 0.18) | 0.05 (−0.09, 0.18) j | 0.06 (−0.08, 0.20) k |
White matter | 0.02 (−0.06, 0.10) b | 0.01 (−0.07, 0.09) c | 0.15 (−0.04, 0.34) | 0.16 (−0.04, 0.35) | 0.06 (−0.07, 0.19) j | 0.05 (−0.09, 0.18) k |
Total brain volume | 0.02 (−0.07, 0.11) b | 0.02 (−0.07, 0.10) c | 0.16 (−0.06, 0.37) | 0.12 (−0.10, 0.34) | 0.10 (−0.03, 0.24) j | 0.11 (−0.03, 0..24) k |
Serum methylmalonic acid, µmol/L | ||||||
Grey matter | −13.2 (−39.3, 12.9) | −14.5 (−40.6, 11.5) a | −8.9 (−38.7, 20.8) | −10.5 (−40.5, 19.5) | −136.6 (−237.2, −36.0) * | −136.2 (−241.6, −30.8) * |
White matter | −7.7 (−32.2, 16.8) | −7.2 (−32.3, 17.9) a | −19.9 (−46.8, 6.0) | −16.7 (−44.3, 10.9) | 29.9 (−70.1, 130.2) | 9.4 (−98.0, 116.9) |
Total brain volume | −20.9 (−47.4, 5.6) | −21.6 (−48.1, 4.8) a | −28.9 (−58.7, 0.90) | −27.1 (−57.7, 3.5) | −106.7 (−208.8, −4.5) * | −127.1 (−232.2, −21.9) * |
Plasma homocysteine, µmol/L | ||||||
Grey matter | −0.33 (−1.26, 0.60) d | −0.53 (−1.47, 0.41) e | −0.67 (−1.98, 0.64) g | −0.78 (−2.09, 0.53) h | −1.88 (−4.47, 0.70) i | −2.53 (−5.24, 0.19) L |
White matter | −0.36 (−1.22, 0.51) d | −0.43 (−1.31, 0.50) e | −1.08 (−2.23, 0.07) g | −1.30 (−2.50, −0.10) h,* | −2.10 (−4.58, 0.39) i | −1.19 (−3.87, 1.49) L |
Total brain volume | −0.69(−1.62, 0.25) d | −0.91 (−1.85, 0.03) e | −1.75 (−3.02, −0.48) g,* | −1.88 (−3.21, −0.55) h,** | −3.98 (−6.47, −1.49) i,** | −4.09 (−6.73, −1.44) L,** |
Crude Model | Model 1 a | |||||
---|---|---|---|---|---|---|
Without B-Vitamin Supplementation | With B-Vitamin Supplementation | p-Value | Without B-Vitamin Supplementation | With B-Vitamin Supplementation | p-Value | |
Grey matter | 575.7 (570.6, 580.8) | 572.5 (567.3, 577.8) | 0.40 | 575.6 (570.4, 580.8) | 573.4 (568.0, 578.7) | 0.57 |
White matter | 495.6 (490.8, 500,4) | 490.3 (485.4, 495.2) | 0.13 | 496.7 (491.7, 501.6) | 490.2 (485.2, 495.3) | 0.07 |
Total brain volume | 1071.3 (1066.1, 1076.5) | 1062.8 (1057.5, 1068.1) | 0.03 | 1072.4 (1067.2, 1077.5) | 1063.6 (1058.2, 1069.0) | 0.03 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van der Zwaluw, N.L.; Brouwer-Brolsma, E.M.; Van de Rest, O.; Van Wijngaarden, J.P.; In ’t Veld, P.H.; Kourie, D.I.; Swart, K.M.A.; Enneman, A.W.; Van Dijk, S.C.; Van der Velde, N.; et al. Folate and Vitamin B12-Related Biomarkers in Relation to Brain Volumes. Nutrients 2017, 9, 8. https://doi.org/10.3390/nu9010008
Van der Zwaluw NL, Brouwer-Brolsma EM, Van de Rest O, Van Wijngaarden JP, In ’t Veld PH, Kourie DI, Swart KMA, Enneman AW, Van Dijk SC, Van der Velde N, et al. Folate and Vitamin B12-Related Biomarkers in Relation to Brain Volumes. Nutrients. 2017; 9(1):8. https://doi.org/10.3390/nu9010008
Chicago/Turabian StyleVan der Zwaluw, Nikita L., Elske M. Brouwer-Brolsma, Ondine Van de Rest, Janneke P. Van Wijngaarden, Paulette H. In ’t Veld, Daniella I. Kourie, Karin M. A. Swart, Anke W. Enneman, Suzanne C. Van Dijk, Nathalie Van der Velde, and et al. 2017. "Folate and Vitamin B12-Related Biomarkers in Relation to Brain Volumes" Nutrients 9, no. 1: 8. https://doi.org/10.3390/nu9010008
APA StyleVan der Zwaluw, N. L., Brouwer-Brolsma, E. M., Van de Rest, O., Van Wijngaarden, J. P., In ’t Veld, P. H., Kourie, D. I., Swart, K. M. A., Enneman, A. W., Van Dijk, S. C., Van der Velde, N., Kessels, R. P. C., Smeets, P. A. M., Kok, F. J., Dhonukshe-Rutten, R. A. M., & De Groot, L. C. P. G. M. (2017). Folate and Vitamin B12-Related Biomarkers in Relation to Brain Volumes. Nutrients, 9(1), 8. https://doi.org/10.3390/nu9010008