Prospective Study of Nut Consumption and Incidence of Metabolic Syndrome: Tehran Lipid and Glucose Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definition of Metabolic Syndrome
2.3. Dietary Assessment
2.4. Biochemical Assessment
2.5. Assessment of Other Variables
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kaur, J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014, 2014, 943162. [Google Scholar] [CrossRef] [PubMed]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, O.O. Metabolic syndrome and the risk of chronic kidney disease. Kidneys 2017, 6, 80–90. [Google Scholar] [CrossRef]
- International Diabetes Federation. The IDF Consensus Worldwide Definition of the Metabolic Syndrome; International Diabetes Federation: Brussels, Belgium, 2006. [Google Scholar]
- Grundy, S.M. Metabolic syndrome pandemic. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Noshad, S.; Abbasi, M.; Etemad, K.; Meysamie, A.; Afarideh, M.; Khajeh, E.; Asgari, F.; Mousavizadeh, M.; Rafei, A.; Neishaboury, M.; et al. The prevalence of metabolic syndrome in Iran: A 2011 update. J. Diabetes 2017, 9, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Vimaleswaran, K.; Radha, V.; Mohan, V. Thr54 allele carriers of the Ala54Thr variant of FABP2 gene have associations with metabolic syndrome and hypertriglyceridemia in urban South Indians. Metabolism 2006, 55, 1222–1226. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.; Gokulakrishnan, K.; Deepa, R.; Shanthirani, C.; Datta, M. Association of physical inactivity with components of metabolic syndrome and coronary artery disease—The Chennai Urban Population Study (CUPS no. 15). Diabet. Med. 2005, 22, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Mozzafarian, D.; Apple, L.J.; van Horn, L. Components of a cardioprotective diet: New insights. Circulation 2011, 123, 2870–2891. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Montero, A.; Bes-Rastrollo, M.; Beunza, J.J.; Barrio-Lopez, M.T.; de la Fuente-Arrillaga, C.; Moreno-Galarraga, L.; Martinez-Gonzalez, M.A. Nut consumption and incidence of metabolic syndrome after 6-year follow-up: the SUN (Seguimiento Universidad de Navarra, University of Navarra follow-up) cohort. Public Health Nutr. 2013, 16, 2064–2072. [Google Scholar] [CrossRef] [PubMed]
- Casas-Agustench, P.; Lopez-Uriarte, P.; Bullo, M.; Ros, E.; Cabre´-Vila, J.J.; Salas-Salvado, J. Effects of one serving of mixed nuts on serum lipids, insulin resistance and inflammatory markers in patients with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvado, J.; Fernandez-Ballart, J.; Ros, E.; Martinez-Gonza, M.-A.; Fito, M.; Estruch, R.; Corella, D.; Fiol, M.; Gómez-Gracia, E.; Arós, F.; et al. Effect of a mediterranean diet supplemented with nuts on metabolic syndrome status: One-year results of the PREDIMED randomized trial. Arch. Intern. Med. 2008, 168, 2449–2458. [Google Scholar] [CrossRef] [PubMed]
- Ibarrola-Jurado, N.; Bullo, M.; Guasch-Ferre, M.; Ros, E.; Martinez-Gonzalez, M.A.; Corella, D.; Fiol, M.; Warnberg, J.; Estruch, R.; Román, P.; et al. Cross-sectional assessment of nut consumption and obesity, metabolic syndrome and other cardiometabolic risk factors: The PREDIMED study. PLoS ONE 2013, 8, e57367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaceldo-Siegl, K.; Haddad, E.; Oda, K.; Fraser, G.E.; Sabate, J. Tree nuts are inversely associated with metabolic syndrome and obesity: The Adventist health study-2. PLoS ONE 2014, 9, e85133. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, C.E.; Keast, D.R.; Nicklas, T.A.; Fulgoni, V.L. Nut consumption is associated with decreased health risk factors for cardiovascular disease and metabolic syndrome in U.S. adults: NHANES 1999–2004. J. Am. Coll. Nutr. 2011, 30, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Steffen, L.M.; Van Horn, L.; Daviglus, M.L.; Zhou, X.; Reis, J.P.; Loria, C.M.; Jacobs, D.R.; Duffey, K.J. A modified Mediterranean diet score is associated with a lower risk of incident metabolic syndrome over 25 years among young adults: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Br. J. Nutr. 2014, 112, 1654–1661. [Google Scholar] [CrossRef] [PubMed]
- Lutsey, P.L.; Steffen, L.M.; Stevens, J. Dietary intake and the development of the metabolic syndrome: The atherosclerosis risk in communities study. Circulation 2008, 117, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Babio, N.; Toledo, E.; Estruch, R.; Ros, E.; Martínez-González, M.A.; Olga, C.; Bulló, M.; Corella, D.; Aros, F.; Gómez-Gracia, E.; et al. Mediterranean diets and metabolic syndrome status in the PREDIMED randomized trial. CMAJ 2014, 186, E649–E657. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Huang, W.; Peng, C.; Zhang, J.; Wong, C.; Kim, J.H.; Yeoh, E.K.; Su, X. Effect of nut consumption on vascular endothelial function: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Azizi, F.; Ghanbarian, A.; Momenan, A.A.; Hadaegh, F.; Mirmiran, P.; Hedayati, M.; Mehrabi, Y.; Zahedi-Asl, S.; Lipid, T.; Glucose Study Group. Prevention of non-communicable disease in a population in nutrition transition: Tehran lipid and glucose study phase II. Trials 2009, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Hosseini-Esfahani, F.; Jessri, M.; Mirmiran, P.; Bastan, S.; Azizi, F. Adherence to dietary recommendations and risk of metabolic syndrome: Tehran lipid and glucose study. Metabolism 2010, 59, 1833–1842. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed]
- Azizi, F.; Hadaegh, F.; Khalili, D.; Esteghamati, A.; Hosseinpanah, F.; Delavari, A.; Larijan, B.; Mirmira, P.; Zabetia, A.; Mehrab, Y.; et al. Appropriate definition of metabolic syndrome among Iranian adults: Report of the Iranian National Committee of Obesity. Arch. Iran. Med. 2010, 13, 426. [Google Scholar] [PubMed]
- Hosseini-Esfahani, F.; Asghari, G.; Mirmiran, P.; Azizi, F. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran lipid and glucose study. J. Epidemiol. 2010, 20, 150–158. [Google Scholar] [CrossRef]
- Ghafarpour, M.; Houshiar-Rad, A.; Kianfar, H. The Manual for Household Measures, Cooking Yields Factors and Edible Portion of Food; Keshavarzi Press: Tehran, Iran, 1999. [Google Scholar]
- Kriska, A.; Knowler, W.; LaPorte, R.; Drash, A.; Wing, R.; Blair, S.; Bennett, P.; Kuller, L. Development of questionnaire to examine relationship of physical activity and diabetes in Pima Indians. Diabetes Care 1990, 13, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Stampfer, M. Implication of total energy intake for epidemiologic analyses. In Nutritional Epidemiology; Willet, W., Ed.; Oxford University Press: New York, NY, USA, 1998; pp. 288–290. [Google Scholar]
- Duffey, K.J.; Steffen, L.M.; Van Horn, L.; Jacobs, D.R., Jr.; Popkin, B.M. Dietary patterns matter: Diet beverages and cardiometabolic risks in the longitudinal Coronary Artery Risk Development in Young Adults (CARDIA) study. Am. J. Clin. Nutr. 2012, 95, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Kouki, R.; Schwab, U.; Hassinen, M.; Komulainen, P.; Heikkila, H.; Lakka, T.; Rauramaa, R. Food consumption, nutrient intake and the risk of having metabolic syndrome: The DR’s EXTRA Study. Eur. J. Clin. Nutr. 2011, 65, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi, H.; Harrison, G.; Mohammad, K. An accelerated nutrition transition in Iran. Public Health Nutr. 2002, 5, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Krauss, R.M.; Eckel, R.H.; Howard, B.; Appel, L.J.; Daniels, S.R.; Deckelbaum, R.J.; Erdman, J.W., Jr.; Kris-Etherton, P.; Goldberg, I.J.; Kotchen, T.A.; et al. AHA dietary guidelines. Revision 2000: A statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Circulation 2000, 102, 2284–2299. [Google Scholar]
- Salas-Salvado, J.; Guasch-Ferre, M.; Bullo, M.; Sabate, J. Nuts in the prevention and treatment of metabolic syndrome. Am. J. Clin. Nutr. 2014, 100, 399S–407S. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.; Germano, R.; Hartley, L.; Adler, A.J.; Rees, K. Nut consumption for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2015, 9, CD011583. [Google Scholar]
- Salas-Salvado, J.; Bullo, M.; Perez-Heras, A.; Ros, E. Dietary fibre, nuts and cardiovascular diseases. Br. J. Nutr. 2006, 96, S46–S51. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, S.; Sabate, J. Nuts, body weight and insulin resistance. Br. J. Nutr. 2006, 96, S79–S86. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Song, E.; Liu, Y.; Song, Y.; Hwang, H.; Kim, H.-S. Daily walnut consumption improves metabolic syndrome status in Korean adults. FASEB J. 2017, 31, 797–798. [Google Scholar]
- Mukuddem-Petersen, J.; Stonehouse Oosthuizen, W.; Jerling, J.C.; Hanekom, S.M.; White, Z. Effects of a high walnut and high cashew nut diet on selected markers of the metabolic syndrome: A controlled feeding trial. Br. J. Nutr. 2007, 97, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Pan, A.; Yu, Z.; Qi, Q.; Lu, L.; Zhang, G.; Yu, D.; Zong, G.; Zhou, Y.; Chen, X.; et al. Lifestyle counseling and supplementation with flaxseed or walnuts influence the management of metabolic syndrome. J. Nutr. 2010, 140, 1937–1942. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Manson, J.; Stampfer, M.; Liu, S.; Willett, W.C.; Hu, F.B. Nut and peanut butter consumption and risk of type 2 diabeted in women. JAMA 2002, 288, 2554–2560. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Sun, Q.; Manson, J.E.; Willett, W.C.; Hu, F.B. Walnut consumption is associated with lower risk of type 2 diabetes in women. J. Nutr. 2013, 143, 512–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.J.; Nam, G.E.; Seo, J.A.; Yoon, T.; Seo, I.; Lee, J.H.; Im, D.; Bahn, K.-N.; Jeong, S.A.; Kang, T.S.; et al. Nut consumption has favorable effects on lipid profiles of Korean women with metabolic syndrome. Nutr. Res. 2014, 34, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Misra, A.; Pandey, R.M.; Bhatt, S.P.; Saluja, S. Effects of pistachio nuts on body composition, metabolic, inflammatory and oxidative stress parameters in Asian Indians with metabolic syndrome: A 24-week, randomized control trial. Nutrition 2014, 30, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Wien, M.; Bleich, D.; Raghuwanshi, M.; Gould-Forgerite, S.; Gomes, J.; Monahan-Couch, L. Almond Consumption and cardiovascular risk factors in adults with prediabetes. J. Am. Coll. Nutr. 2010, 29, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Li, S.C.; Liu, Y.H.; Liu, J.F.; Chang, W.H.; Chen, C.M.; Chen, C.Y. Almond consumption improved glycemic control and lipid profiles in patients with type 2 diabetes mellitus. Metabolism 2011, 60, 474–479. [Google Scholar] [CrossRef] [PubMed]
Tertiles of Nuts Consumption | ||||
---|---|---|---|---|
1 | 2 | 3 | p b | |
Participants (n) | 419 | 425 | 421 | |
Age (years) | 36.7 ± 11.9 | 36.2 ± 11.1 | 38.9 ± 12.6 d | <0.001 |
females (%) | 54.9 | 54.6 | 58.7 | 0.44 |
Physical activity (MET h-week) | 41.1 ± 78.8 | 35.4 ± 53.1 | 34.9 ± 51.3 | 0.27 |
Family history of diabetes (%) | 19.1 | 19.1 | 19.7 | 0.79 |
Academic degrees (%) | 34.7 | 33.6 | 36.5 | 0.80 |
Occupational status, employed (%) | 37.6 | 41.8 | 39.5 | 0.73 |
Current smoking (%) | 13.0 | 12.2 | 7.0 | 0.01 |
BMI (kg/m2) | 23.4 ± 4.8 | 24.4 ± 4.7 | 22.4 ± 4.2 | 0.99 |
Obese (%) | 59.8 | 58.0 | 59.8 | 0.84 |
Anti-hypertensive drugs (%) | 75.7 | 67.1 | 78.2 | 0.38 |
Anti-hyperglycemia drugs (%) | 85.7 | 83.3 | 83.3 | 0.98 |
Hypolipidemic drugs (%) | 72.5 | 72.7 | 76.5 | 0.88 |
Systolic blood pressure (mm Hg) | ||||
At baseline | 107 ± 0.6 | 108 ± 0.6 | 108 ± 0.6 | 0.70 |
After 6.2 years | 113 ± 0.7 | 112 ± 0.7 | 110 ± 0.7 c | 0.02 |
Diastolic Blood pressure (mm Hg) | ||||
At baseline | 72.1 ± 0.4 | 71.3 ± 0.4 | 72.0 ± 0.4 | 0.49 |
After 6.2 years | 76.7 ± 0.5 | 76.0 ± 0.5 | 75.8 ± 0.5 | 0.30 |
Fasting serum glucose (mg/dL) | ||||
At baseline | 91.5 ± 0.6 | 86.2 ± 0.6 | 80.2 ± 0.6 c,d | 0.04 |
After 6.2 years | 95.3 ± 0.9 | 93.5 ± 0.8 | 84.1 ± 0.9 c,d | 0.02 |
Serum triglyceride (mg/dL) | ||||
At baseline | 126 ± 3.4 | 127 ± 3.3 | 123 ± 3.4 | 0.68 |
After 6.2 years | 137 ± 4.0 | 141 ± 3.9 | 126 ± 3.5 c,d | 0.01 |
Serum HDL-C (mg/dL) | ||||
At baseline | 43.0 ± 0.5 | 43.5 ± 0.5 | 45.2 ± 0.5 c,d | 0.007 |
After 6.2 years | 50.0 ± 0.6 | 49.6 ± 0.6 | 51.0 ± 0.6 | 0.26 |
Waist circumference (cm) | ||||
At baseline | 86.9 ± 0.6 | 87.3 ± 0.6 | 86.6 ± 0.6 | 0.74 |
After 6.2 years | 93.4 ± 0.5 | 91.9 ± 0.5 | 90.5 ± 0.5 c | 0.04 |
Tertiles of Nuts Consumption | ||||
---|---|---|---|---|
1 | 2 | 3 | p | |
Almonds (serving/week) | 0.1 ± 0.04 | 0.2 ± 0.04 | 0.8 ± 0.04 | <0.001 |
Peanuts (serving/week) | 0.1 ± 0.1 | 0.3 ± 0.1 | 0.8 ± 0.1 | <0.001 |
Pistachios (serving/week) | 0.02 ± 0.04 | 0.06 ± 0.04 | 0.31 ± 0.04 | <0.001 |
Hazelnuts (serving/week) | 0.1 ± 0.04 | 0.2 ± 0.04 | 0.6 ± 0.4 | <0.001 |
Walnuts (servings/week) | 0.7 ± 0.3 | 1.1 ± 0.3 | 7.5 ± 0.2 | <0.001 |
Total energy (kcal/day) | 2054 ± 695 | 2313 ± 689 | 2465 ± 680 a,b | <0.001 |
Carbohydrate (% of total energy) | 56.7 ± 7.8 | 57.8 ± 6.8 | 56.9 ± 6.3 | 0.04 |
Protein (% of total energy) | 13.5 ± 2.5 | 13.6 ± 2.1 | 13.8 ± 2.3 | 0.03 |
Fat (% of total energy) | 31.7 ± 7.8 | 31.0 ± 6.6 | 32.3 ± 6.0 a | 0.01 |
SFA (% of total energy) | 10.5 ± 3.1 | 10.6 ± 3.0 | 10.9 ± 3.6 | 0.22 |
MUFA (% of total energy) | 11.1 ± 3.1 | 10.7 ± 2.6 | 10.9 ± 2.4 | 0.11 |
PUFA (% of total energy) | 6.2 ± 2.0 | 6.1 ± 2.4 | 6.7 ± 2.2 a,b | 0.01 |
Carbohydrate (g/day) | 294 ± 5.4 | 335 ± 5.3 | 349 ± 5.4 | <0.001 |
Protein (g/day) | 70.0 ± 1.3 | 78.8 ± 1.3 | 84.2 ± 1.3 | <0.001 |
Fat (g/day) | 72.8 ± 1.5 | 79.5 ± 1.46 | 87.6 ± 1.47 | <0.001 |
SFA (g/day) | 29.4 ± 0.6 | 28.1 ± 0.6 | 29.7 ± 0.6 | 0.53 |
MUFA (g/day) | 25.6 ± 0.5 | 26.6 ± 0.5 | 26.8 ± 0.5 | 0.45 |
PUFA (g/day) | 15.4 ± 0.3 | 16.1 ± 0.4 | 18.2 ± 0.3 | <0.001 |
Total fiber (g/day) | 34.4 ± 21.9 | 37.8 ± 18.8 | 39.7 ± 18.3 a,b | 0.02 |
Cholesterol (g/day) | 209 ± 191 | 227 ± 111 | 243 ± 121 | 0.78 |
Vegetable (g/day) | 315 ± 216 | 359 ± 247 | 397 ± 242 | 0.11 |
Fruit (g/day) | 273 ± 230 | 358 ± 270 | 473 ± 295 a,b | 0.001 |
Meat, poultry, fish (g/day) | 44.0 ± 34.2 | 47.8 ± 33.7 | 49.4 ± 37.9 | 0.71 |
Whole grain (g/day) | 73.7 ± 89.2 | 94.1 ± 116.3 | 97.0 ± 98.6 | 0.40 |
Legumes (g/day) | 15.6 ± 21.8 | 18.2 ± 18.2 | 20.5 ± 20.4 | 0.39 |
Dairy products (g/day) | 395 ± 268 | 474 ± 333 | 512 ± 309 | 0.07 |
Tertiles | p for Trend a | Servings per Week | |||
---|---|---|---|---|---|
1 | 2 | 3 | |||
Total nuts | |||||
Median intake (servings/week) | 0.57 | 2.08 | 7.93 | ||
Median (IQR) intake (g/week) | 1.56 (0.66–2.80) | 3.42 (2.28–5.52) | 8.66 (5.33–15.76) | ||
Range of intake (servings/week) | ≤1 | 2–4 | ≥5 | ||
Model 1 | 1 | 0.88 (0.64–1.21) | 0.55 (0.39–0.77) | 0.002 | 0.95 (0.94–0.99) |
Model 2 | 1 | 0.90 (0.68–1.29) | 0.58 (0.42–0.81) | 0.01 | 0.97 (0.94–1.05) |
Model 3 | 1 | 0.94 (0.75–1.35) | 0.62 (0.45–0.86) | 0.01 | 1.02 (0.95–1.12) |
Model 4 | 1 | 0.97 (0.78–1.36) | 0.68 (0.44–0.91) | 0.03 | 1.04 (0.98–0.14) |
Walnuts | |||||
Median intake (servings/week) | 0.19 | 0.95 | 4.83 | ||
Median (IQR) intake (g/week) | 0.61 (0.05–0.83) | 3.12 (1.31–7.98) | 5.45 (2.69–9.16) | ||
Range of intake (servings/week) | ≤0.5 | 0.5–1.4 | ≥1.5 | ||
Model 1 | 1 | 0.87 (0.63–1.18) | 0.61 (0.44–0.86) | 0.02 | 0.92 (0.87–0.95) |
Model 2 | 1 | 0.89 (0.69–1.20) | 0.64 (0.47–0.89) | 0.02 | 0.93 (0.90–0.95) |
Model 3 | 1 | 0.91 (0.75–1.26) | 0.70 (0.49–0.94) | 0.03 | 0.94 (0.91–0.98) |
Model 4 | 1 | 0.94 (0.79–1.32) | 0.75 (0.53–0.98) | 0.05 | 0.97 (0.93–0.99) |
Almonds | |||||
Median intake (servings/week) | 0.01 | 0.09 | 0.46 | ||
Median (IQR) intake (g/week) | 0.05 (0.03–0.14) | 0.29 (0.05–0.41) | 0.38 (0.05–1.53) | ||
Range of intake (servings/week) | ≤0.01 | 0.02–0.03 | ≥0.04 | ||
Model 1 | 1 | 0.95 (0.68–1.32) | 0.72 (0.53–1.33) | 0.20 | 1.02 (0.87–1.15) |
Model 2 | 1 | 1.08 (0.74–1.57) | 0.79 (0.54–1.14) | 0.14 | 1.02 (0.88–1.15) |
Model 3 | 1 | 1.11 (0.76–1.61) | 0.79 (0.55–1.16) | 0.14 | 1.03 (0.89–1.20) |
Model 4 | 1 | 1.13 (0.76–1.69) | 0.81 (0.57–1.14) | 0.25 | 1.04 (0.91–1.22) |
Hazelnuts | |||||
Median intake (servings/week) | 0.01 | 0.05 | 0.23 | ||
Median (IQR) intake (g/week) | 0.05 (0.02–0.09) | 0.13 (0.02–0.63) | 0.13 (0.08–0.63) | ||
Range of intake (servings/week) | 00 | 0.01–0.03 | ≥0.04 | ||
Model 1 | 1 | 0.73 (0.53–1.03) | 0.90 (0.65–1.23) | 0.28 | 1.09 (0.92–1.29) |
Model 2 | 1 | 0.89 (0.61–1.29) | 1.15 (0.81–1.63) | 0.27 | 1.06 (0.89–1.27) |
Model 3 | 1 | 0.91 (0.63–1.33) | 1.17 (0.81–1.69) | 0.25 | 1.06 (0.89–1.27) |
Model 4 | 1 | 0.96 (0.65–1.43) | 1.23 (0.84–1.80) | 0.21 | 1.07 (0.88–1.30) |
Peanuts | |||||
Median intake (servings/week) | 0.00 | 0.06 | 0.46 | ||
Median (IQR) intake (g/week) | 0.07 (0.03–0.22) | 0.49 (0.05–0.53) | 0.49 (0.08–1.39) | ||
Range of intake (servings/week) | 00 | 0.01–0.03 | ≥0.04 | ||
Model 1 | 1 | 0.95 (0.67–1.34) | 0.90 (0.65–1.23) | 0.80 | 0.97 (0.86–1.10) |
Model 2 | 1 | 1.04 (0.71–1.52) | 1.03 (0.72–1.47) | 0.90 | 0.98 (0.87–1.10) |
Model 3 | 1 | 1.06 (0.72–1.55) | 1.04 (0.72–1.50) | 0.89 | 1.01 (0.90–1.13) |
Model 4 | 1 | 1.15 (0.77–1.72) | 1.04 (0.75–1.53) | 0.94 | 1.00 (0.94–1.14) |
Pistachios | |||||
Median intake (servings/week) | 0.00 | 0.03 | 0.14 | ||
Median (IQR) intake (g/week) | 0.09 (0.03–0.24) | 0.15 (0.09–0.70) | 0.73 (0.23–2.21) | ||
Range of intake (servings/week) | ≤0.03 | 0.04–0.07 | ≥0.08 | ||
Model 1 | 1 | 0.77 (0.55–1.08) | 1.02 (0.74–1.40) | 0.20 | 0.90 (0.50–1.64) |
Model 2 | 1 | 0.82 (0.56–1.20) | 1.10 (0.84–1.70) | 0.25 | 0.97 (0.54–1.75) |
Model 3 | 1 | 0.83 (0.58–1.21) | 1.20 (0.89–1.74) | 0.23 | 1.01 (0.56–1.80) |
Model 4 | 1 | 0.85 (0.59–1.27) | 1.24 (0.94–1.83) | 0.32 | 1.11 (0.66–1.89) |
Family History of Diabetes | Age (Years) | Body Mass Index (kg/m2) | ||||
---|---|---|---|---|---|---|
Yes | No | 19–45 | ≥45 | <25 | ≥25 | |
Total nuts | ||||||
Tertile 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Tertile 2 | 0.77 (0.33–1.78) | 0.99 (0.60–1.35) | 1.09 (0.73–1.62) | 0.83 (0.59–1.18) | 2.19 (0.91–5.28) | 0.75 (0.51–1.10) |
Tertile 3 | 0.27 (0.11–0.69) | 0.86 (0.30–0.93) | 0.79 (0.37–0.97) | 0.49 (0.33–0.71) | 1.25 (0.46–3.39) | 0.43 (0.28–0.66) |
p for trend a | 0.01 | 0.02 | 0.032 | 0.001 | 0.25 | 0.001 |
Walnuts | ||||||
Tertile 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Tertile 2 | 0.73 (0.49–1.09) | 1.48 (0.65–3.37) | 1.11 (0.75–1.66) | 0.87 (0.62–1.23) | 1.14 (0.64–3.22) | 0.71 (0.49–1.04) |
Tertile 3 | 0.39 (0.25–0.61) | 0.81 (0.20–0.93) | 0.93 (0.46–1.17) | 0.52 (0.36–0.76) | 0.83 (0.27–1.93) | 0.52 (0.34–0.79) |
P for trend | <0.001 | 0.04 | 0.18 | 0.002 | 0.32 | 0.009 |
Almonds | ||||||
Tertile 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Tertile 2 | 0.74 (0.31–1.74) | 1.33 (0.69–1.54) | 1.21 (0.79–1.85) | 1.02 (0.71–1.46) | 1.65 (0.65–4.21) | 0.85 (0.57–1.26) |
Tertile 3 | 0.71 (0.12–1.65) | 1.31 (0.85–2.03) | 0.91 (0.53–1.23) | 0.79 (0.56–1.12) | 1.70 (0.71–4.06) | 0.59 (0.40–0.87) |
p for trend | 0.39 | 0.40 | 0.20 | 0.33 | 0.43 | 0.02 |
Hazelnus | ||||||
Tertile 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Tertile 2 | 1.05 (0.46–2.41) | 0.81 (0.53–1.23) | 0.72 (0.47–1.10) | 1.02 (0.71–1.46) | 1.04 (0.41–2.66) | 0.79 (0.53–1.17) |
Tertile 3 | 0.88 (0.37–2.08) | 1.25 (0.83–1.87) | 0.95 (0.62–1.44) | 1.39 (0.85–1.53) | 1.07 (0.82–2.70) | 1.78 (0.53–1.15) |
P for trend | 0.92 | 0.13 | 0.27 | 0.33 | 0.19 | 0.37 |
Peanuts | ||||||
Tertile 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Tertile 2 | 1.21 (0.48–2.61) | 1.01 (0.65–1.55) | 1.22 (0.65–1.59) | 0.98 (0.67–1.41) | 1.42 (0.58–3.48) | 0.87 (0.58–1.32) |
Tertile 3 | 0.88 (0.36–2.13) | 1.09 (0.73–1.63) | 1.18 (0.58–1.35) | 0.94 (0.66–1.33) | 1.24 (0.42–2.53) | 0.85 (0.58–1.24) |
p for trend | 0.86 | 0.89 | 0.77 | 0.93 | 0.67 | 0.68 |
Pistachio | ||||||
Tertile 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Tertile 2 | 0.83 (0.35–1.96) | 0.92 (0.59–1.41) | 1.03 (0.66–1.61) | 0.89 (0.59–1.21) | 0.48 (0.21–1.09) | 0.98 (0.52–1.06) |
Tertile 3 | 1.03 (0.44–2.37) | 1.31 (0.86–1.98) | 1.30 (0.84–2.01) | 0.67 (0.47–1.11) | 0.51 (0.29–1.11) | 1.41 (0.75–1.26) |
p for trend | 0.87 | 0.20 | 0.40 | 0.11 | 0.01 | 0.43 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseinpour-Niazi, S.; Hosseini, S.; Mirmiran, P.; Azizi, F. Prospective Study of Nut Consumption and Incidence of Metabolic Syndrome: Tehran Lipid and Glucose Study. Nutrients 2017, 9, 1056. https://doi.org/10.3390/nu9101056
Hosseinpour-Niazi S, Hosseini S, Mirmiran P, Azizi F. Prospective Study of Nut Consumption and Incidence of Metabolic Syndrome: Tehran Lipid and Glucose Study. Nutrients. 2017; 9(10):1056. https://doi.org/10.3390/nu9101056
Chicago/Turabian StyleHosseinpour-Niazi, Somayeh, Shabnam Hosseini, Parvin Mirmiran, and Fereidoun Azizi. 2017. "Prospective Study of Nut Consumption and Incidence of Metabolic Syndrome: Tehran Lipid and Glucose Study" Nutrients 9, no. 10: 1056. https://doi.org/10.3390/nu9101056
APA StyleHosseinpour-Niazi, S., Hosseini, S., Mirmiran, P., & Azizi, F. (2017). Prospective Study of Nut Consumption and Incidence of Metabolic Syndrome: Tehran Lipid and Glucose Study. Nutrients, 9(10), 1056. https://doi.org/10.3390/nu9101056