Effect of a Lactobacillus Salivarius Probiotic on a Double-Species Streptococcus Mutans and Candida Albicans Caries Biofilm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Plaque Sampling Methods
2.3. Characteristics of Isolated Species of Bacteria and Fungi
2.4. Phenotyping
2.5. Preparation of Microbial Suspensions
2.6. Biofilm Generation
2.6.1. Mono-Species Biofilm
2.6.2. Double-Species Biofilm
2.7. Bacterial Enumeration (CFU/mL) in Biofilms
2.8. Biofilm Mass Determination
2.9. Scanning Electron Microscopic Analysis of Biofilm
2.10. Statistical Methods
3. Results
3.1. Study Design
3.2. Morphological Characterization of Isolated Species of Bacteria and Fungi
3.3. Analysis of Biofilm before and after Incubation with L. salivarius Probiotic
3.4. Analysis of Formed Biofilm Mass before and after Incubation with L. salivarius Probiotic
3.5. Relationship between the Colony Forming Unit Log(CFU/mL) and the Biofilm Mass (OD) before and after Lactobacillus salivarius Administration
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hajishengallis, E.; Parsaei, Y.; Klein, M.I.; Koo, H. Advances in the microbial etiology and pathogenesis of early childhood caries. Mol. Oral Microbiol. 2017, 32, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Jurczak, A.; Kościelniak, D.; Gregorczyk-Maga, I.; Olczak-Kowalczyk, D.; Kołodziej, I.; Ciepły, J.; Bąk, E.; Słowik, J.; Krzyściak, W. Caries status among children residing in Cracow compared with the rest of Poland. J. Stomatol. 2014, 67, 781–799. [Google Scholar] [CrossRef]
- Kim, D.; Sengupta, A.; Niepa, T.H.; Lee, B.H.; Weljie, A.; Freitas-Blanco, V.S.; Murata, R.M.; Stebe, K.J.; Lee, D.; Koo, H. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci. Rep. 2017, 7, 41332. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tanner, A. Effect of antimicrobial interventions on the oral microbiota associated with early childhood caries. Pediatr. Dent. 2015, 37, 226–244. [Google Scholar] [PubMed]
- Food and Agriculture Organization of the United Nations and WHO. Guidelines for the Evaluation of Probiotics in Food. In Proceedings of the Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food, London, ON, Canada, 30 April–1 May 2002. [Google Scholar]
- Cagetti, M.G.; Mastroberardino, S.; Milia, E.; Cocco, F.; Lingström, P.; Campus, G. The use of probiotic strains in caries prevention: A systematic review. Nutrients 2013, 5, 2530–2550. [Google Scholar] [CrossRef] [PubMed]
- Hedayati-Hajikand, T.; Lundberg, U.; Eldh, C.; Twetman, S. Effect of probiotic chewing tablets on early childhood caries—A randomized controlled trial. BMC Oral Health 2015, 15, 112. [Google Scholar] [CrossRef] [PubMed]
- Söderling, E. Probiotics and dental caries. Microb. Ecol. Health Dis. 2012, 23. [Google Scholar] [CrossRef]
- Teanpaisan, R.; Piwat, S. Lactobacillus paracasei SD1, a novel probiotic, reduces mutans streptococci in human volunteers: A randomized placebo-controlled trial. Clin. Oral. Investig. 2014, 18, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Alamoudi, N. Consumption Effect of Probiotic Products on Salivary Cariogenic Bacterial Counts in Preschool Children. ClinicalTrials.gov Identifier: NCT02692625. Available online: https://clinicaltrials.gov/ct2/show/NCT02692625?term=NCT02692625&rank=1 (accessed on 26 February 2016).
- Del Pilar Angarita, M. Effect of Lactobacillus Rhamnosus GG and Bifidobacterium Longum in Children Aged 3 to 5 Years of Villavicencio and Pasto. ClinicalTrials.gov Identifier: NCT03078179. Available online: https://clinicaltrials.gov/ct2/show/NCT03078179?term=NCT03078179&rank=1 (accessed on 7 August 2017).
- Campus, G.; Cocco, F.; Carta, G.; Cagetti, M.G.; Simark-Mattson, C.; Strohmenger, L.; Lingström, P. Effect of a daily dose of Lactobacillus brevis CD2 lozenges in high caries risk schoolchildren. Clin. Oral Investig. 2014, 18, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, T.; Kageyama, S.; Furuta, M.; Tsuboi, H.; Takeuchi, K.; Shibata, Y.; Shimazaki, Y.; Akifusa, S.; Ninomiya, T.; Kiyohara, Y.; et al. Bacterial diversity in saliva and oral health-related conditions: The Hisayama Study. Sci. Rep. 2016, 6, 22164. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.B. Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses. J. Dent. Res. 2010, 89, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Nishihara, T.; Suzuki, N.; Yoneda, M.; Hirofuji, T. Effects of Lactobacillus salivarius-containing tablets on caries risk factors: A randomized open-label clinical trial. BMC Oral Health 2014, 14, 110. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, G.; Ruiz, B.; Faleiros, S.; Vistoso, A.; Marró, M.L.; Sánchez, J.; Urzúa, I.; Cabello, R. Probiotic Compared with Standard Milk for High-caries Children: A Cluster Randomized Trial. J. Dent. Res. 2016, 95, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Çaglar, E.; Cildir, S.K.; Ergeneli, S.; Sandalli, N.; Twetman, S. Salivary mutans streptococci and lactobacilli levels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC 55730 by straws or tablets. Acta Odontol. Scand. 2006, 64, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Lexner, M.O.; Blomqvist, S.; Dahlén, G.; Twetman, S. Microbiological profiles in saliva and supragingival plaque from caries-active adolescents before and after a short-term daily intake of milk supplemented with probiotic bacteria—A pilot study. Oral Health Prev. Dent. 2010, 8, 383–388. [Google Scholar] [PubMed]
- Chuang, L.C.; Huang, C.S.; Ou-Yang, L.W.; Lin, S.Y. Probiotic Lactobacillus paracasei effect on cariogenic bacterial flora. Clin. Oral Investig. 2011, 15, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Choudhari, S.; Mopgar, V.; Sakhare, S. Probiotic way of dental caries prevention. Int. J. Contemp. Dent. 2011, 2, 2–7. [Google Scholar]
- Saha, S.; Tomaro-Duchesneau, C.; Tabrizian, M.; Prakash, S. Probiotics as oral health biotherapeutics. Expert Opin. Biol. Ther. 2012, 12, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Redman, M.G.; Ward, E.J.; Phillips, R.S. The efficacy and safety of probiotics in people with cancer: A systematic review. Ann. Oncol. 2014, 25, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Kelesidis, T.; Pothoulakis, C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Ther. Adv. Gastroenterol. 2012, 5, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Falsetta, M.L.; Klein, M.I.; Colonne, P.M.; Scott-Anne, K.; Gregoire, S.; Pai, C.H.; Gonzalez-Begne, M.; Watson, G.; Krysan, D.J.; Bowen, W.H.; et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect. Immun. 2014, 82, 1968–1981. [Google Scholar] [CrossRef] [PubMed]
- Sztajer, H.; Szafranski, S.P.; Tomasch, J.; Reck, M.; Nimtz, M.; Rohde, M.; Wagner-Döbler, I. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans. ISME J. 2014, 8, 2256–2271. [Google Scholar] [CrossRef] [PubMed]
- Raja, M.; Hannan, A.; Ali, K. Association of oral candidal carriage with dental caries in children. Caries Res. 2010, 44, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Bamford, C.V.; d’Mello, A.; Nobbs, A.H.; Dutton, L.C.; Vickerman, M.M.; Jenkinson, H.F. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect. Immun. 2009, 77, 3696–3704. [Google Scholar] [CrossRef] [PubMed]
- Diaz, P.I.; Xie, Z.; Sobue, T.; Thompson, A.; Biyikoglu, B.; Ricker, A.; Ikonomou, L.; Dongari-Bagtzogloua, A. Synergistic interaction between Candida albicans and commensal oral Streptococci in a novel in vitro mucosal model. Infect. Immun. 2012, 80, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Metwalli, K.H.; Khan, S.A.; Krom, B.P.; Jabra-Rizk, M.A. Streptococcus mutans, Candida albicans, and the human mouth: A sticky situation. PLoS Pathog. 2013, 9, e1003616. [Google Scholar] [CrossRef] [PubMed]
- Kraneveld, E.A.; Buijs, M.J.; Bonder, M.J.; Visser, M.; Keijser, B.J.; Crielaard, W.; Zaura, E. The relation between oral candida load and bacterial microbiome profiles in dutch older adults. PLoS ONE 2012, 7, e42770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haukioja, A.; Loimaranta, V.; Tenovuo, J. Probiotic bacteria affect the composition of salivary pellicle and streptococcal adhesion in vitro. Oral Microbiol. Immunol. 2008, 23, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Slomka, V.; Hernandez-Sanabria, E.; Herrero, E.R.; Zaidel, L.; Bernaerts, K.; Boon, N.; Quirynen, M.; Teughels, W. Nutritional stimulation of commensal oral bacteria suppresses pathogens: The prebiotic concept. J. Clin. Periodontol. 2017, 44, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.C.; Surono, I.S.; Meriluoto, J.; Salminen, S. Potential probiotic characteristics of Lactobacillus and Enterococcus strains isolated from traditional dadih fermented milk against pathogen intestinal colonization. J. Food Prot. 2007, 70, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Twetman, L.; Larsen, U.; Fiehn, N.E.; Stecksén-Blicks, C.; Twetman, S. Coaggregation between probiotic bacteria and caries-associated strains: An in vitro study. Acta Odontol. Scand. 2009, 67, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.; Böttner, M.; Holz, C.; Veen, M.; Ryser, M.; Reindl, A.; Pompejus, M.; Tanzer, J.M. Specific Lactobacillus/Mutans Streptococcus co-aggregation. J. Dent. Res. 2010, 89, 175–179. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Oral Health Surveys: Basic Methods, 4th ed.; World Health Organization: Geneva, Switzerland, 1997. [Google Scholar]
- World Health Organization (WHO). Oral Health Surveys: Basic Methods, 5th ed.; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- International Caries Detection and Assessment System Coordinating Committee. Rationale and Evidence for the International Caries Detection and Assessment System (ICDAS II); ICDAS Coordination Committee: Baltimore, MD, USA, 2012. [Google Scholar]
- Wei, S.H.; Lang, N.P. Periodontal epidemiological indices for children and adolescents: II. Evaluation of oral hygiene; III. Clinical applications. Pediatr. Dent. 1982, 4, 64–73. [Google Scholar] [PubMed]
- Lebeaux, D.; Chauhan, A.; Rendueles, O.; Beloin, C. From In Vitro to In Vivo Models of Bacterial Biofilm-Related Infections. Pathogens 2013, 2, 288–356. [Google Scholar] [CrossRef] [PubMed]
- Peeters, E.; Nelis, H.J.; Coenye, T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 2008, 72, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Ellepola, K.; Liu, Y.; Cao, T.; Koo, H.; Seneviratne, C.J. Bacterial GtfB Augments Candida albicans Accumulation in Cross-Kingdom Biofilms. J. Dent. Res. 2017, 96, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, T.; Nyberg, B. Rate of depurination of native deoxyribonucleic acid. Biochemistry 1972, 11, 3610–3618. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; McLean, J.S.; Lux, R.; He, X.; Shi, W. The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucans on the surface of Streptococcus Mutans. Sci. Rep. 2015, 5, 18015. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, F.G.; Silva, D.S.; Hebling, J.; Spolidorio, L.C.; Spolidorio, D.M. Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries. Arch. Oral Biol. 2006, 51, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Q.; Zhang, Q.; Lu, L.Y.; Yang, R.; Liu, Y.; Zou, J. Genotypic distribution of Candida albicans in dental biofilm of Chinese children associated with severe early childhood caries. Arch. Oral Biol. 2012, 57, 1048–1053. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.F.A.; Seneviratne, C.J.; Koga-Ito, C.Y.; Samaranayake, L.P. Is the oral fungal pathogen Candida albicans a cariogen? Oral Dis. 2017, 17. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.M.; Jabra-Rizk, M.A.; O’May, G.A.; Costerton, J.W.; Shirtliff, M.E. Polymicrobial interactions: Impact on pathogenesis and human disease. Clin. Microbiol. Rev. 2012, 25, 193–213. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, M.M.; Xu, H.; Sobue, T.; Nobile, C.J.; Del Bel Cury, A.A.; Dongari-Bagtzoglou, A. Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes. Mol. Oral Microbiol. 2015, 30, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Shukla, C.; Maurya, R.; Singh, V.; Tijare, M. Evaluation of role of fixed orthodontics in changing oral ecological flora of opportunistic microbes in children and adolescent. J. Indian Soc. Pedod. Prev. Dent. 2017, 35, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, S.; Xiao, J.; Silva, B.B.; Gonzalez, I.; Agidi, P.S.; Klein, M.I.; Ambatipudi, K.S.; Rosalen, P.L.; Bauserman, R.; Waugh, R.E.; et al. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Appl. Environ. Microbiol. 2011, 77, 6357–6367. [Google Scholar] [CrossRef] [PubMed]
- Marchant, S.; Brailsford, S.R.; Twomey, A.C.; Roberts, G.J.; Beighton, D. The predominant microflora of nursing caries lesions. Caries Res. 2001, 35, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Samaranayake, L.P.; Samaranayake, Y.; Yip, H.K. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch. Oral Biol. 2004, 49, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Klinke, T.; Guggenheim, B.; Klimm, W.; Thurnheer, T. Dental caries in rats associated with Candida albicans. Caries Res. 2011, 45, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, J.O.; Rossoni, R.D.; Vilela, S.F.; de Alvarenga, J.A.; Velloso Mdos, S.; Prata, M.C.; Jorge, A.O.; Junqueira, J.C. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans. PLoS ONE 2016, 11, e0150457. [Google Scholar] [CrossRef] [PubMed]
- Tomé, F.M.; Ramos, P.L.; Freire, F.; Pereira, C.A.; de Oliveira, I.C.B.; Junqueira, J.C.; Jorge, A.O.C.; Oliveira, L.D. Influence of sucrose on growth and sensitivity of Candida albicans alone and in combination with Enterococcus faecalis and Streptococcus mutans to photodynamic therapy. Lasers Med. Sci. 2017, 32, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Kim, D.; Zhou, X.; Ahn, S.J.; Burne, R.A.; Richards, V.P.; Koo, H. RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms. Front. Microbiol. 2017, 8, 1036. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, H.F.; Demuth, D.R. Structure, function and immunogenicity of streptococcal antigen I/II polypeptides. Mol. Microbiol. 1997, 23, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Persoon, I.F.; Crielaard, W.; Özok, A.R. Prevalence and nature of fungi in root canal infections: A systematic review and meta-analysis. Int. Endod. J. 2017, 50, 1055–1066. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yu, D.; Gao, S.; Lin, J.; Chen, Z.; Zhao, W. Role of Candida albicans-secreted aspartyl proteinases (Saps) in severe early childhood caries. Int. J. Mol. Sci. 2014, 15, 10766–10779. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Cenci, T.; da Silva, W.J.; Cenci, M.S.; Cury, A.A. Temporal changes of denture plaque microbiologic composition evaluated in situ. Int. J. Prosthodont. 2010, 23, 239–242. [Google Scholar] [PubMed]
- Mayahara, M.; Kataoka, R.; Arimoto, T.; Tamaki, Y.; Yamaguchi, N.; Watanabe, Y.; Yamasaki, Y.; Miyazaki, T. Effects of surface roughness and dimorphism on the adhesion of Candida albicans to the surface of resins: Scanning electron microscope analyses of mode and number of adhesions. J. Investig. Clin. Dent. 2014, 5, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Moalic, E.; Gestalin, A.; Quinio, D.; Gest, P.E.; Zerilli, A.; Le Flohic, A.M. The extent of oral fungal flora in 353 students and possible relationships with dental caries. Caries Res. 2001, 35, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, M.R.; Castiblanco, G.; Twetman, S.; Keller, M.K. Prevention of caries with probiotic bacteria during early childhood. Promising but inconsistent findings. Am. J. Dent. 2016, 29, 127–131. [Google Scholar] [PubMed]
- Casadevall, A. The Pathogenic Potential of a Microbe. mSphere 2017, 2, e00015-17. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Lin, C.T.; Wu, C.Y.; Peng, W.S.; Lee, M.J.; Tsai, Y.C. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation. Mol. Oral Microbiol. 2015, 30, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Wu, D.; Zhou, L.; Liu, J.; Qiu, J.; Xin, Y. Effect of Lactobacillus species on Streptococcus mutans Biofilm formation. Pak. J. Pharm. Sci. 2014, 27, 1523–1528. [Google Scholar] [PubMed]
- Schwendicke, F.; Korte, F.; Dörfer, C.E.; Kneist, S.; Fawzy El-Sayed, K.; Paris, S. Inhibition of Streptococcus mutans Growth and Biofilm Formation by Probiotics In Vitro. Caries Res. 2017, 51, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Gao, X.; Jin, L.; Lo, E.C. Salivary Microbiome Diversity in Caries-Free and Caries-Affected Children. Int. J. Mol. Sci. 2016, 17, 1978. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.M.; Zaura, E.; Mira, A.; Takahashi, N.; Ten Cate, J.M. Second Era of OMICS in Caries Research: Moving Past the Phase of Disillusionment. J. Dent. Res. 2017, 96, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Marsh, P.D. Dental plaque as a biofilm and a microbial community—Implications for health and disease. BMC Oral Health 2006, 6 (Suppl. 1), S14. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.; Bowen, W.H. Candida albicans and Streptococcus mutans: A potential synergistic alliance to cause virulent tooth decay in children. Future Microbiol. 2014, 9, 1295–1297. [Google Scholar] [CrossRef] [PubMed]
- Nelun Barfod, M.; Magnusson, K.; Lexner, M.O.; Blomqvist, S.; Dahlén, G.; Twetman, S. Oral microflora in infants delivered vaginally and by caesarean section. Int. J. Paediatr. Dent. 2011, 21, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Alok, A.; Singh, I.D.; Singh, S.; Kishore, M.; Jha, P.C.; Iqubal, M.A. Probiotics: A New Era of Biotherapy. Adv. Biomed. Res. 2017, 6, 31. [Google Scholar] [CrossRef] [PubMed]
Examined Groups | Age: 3 Years (n = 6) | Age: 4 Years (n = 20) | Age: 5 Years (n = 28) | Age: 6 Years (n = 5) | p * |
---|---|---|---|---|---|
n | n | n | n | ||
Non-cavitated | 2 | 11 | 13 | 4 | 0.489 |
Cavitated | 4 | 9 | 15 | 1 |
Microorganisms | Girls (n = 25) | Boys (n = 34) | Total (n = 59) |
---|---|---|---|
n | n | n | |
C. albicans | 12 | 18 | 30 |
S. mutans | 13 | 16 | 29 |
Species | Time | Test | n | Mean | SD | Median | Min | Max | Q1 | Q3 | p *** |
---|---|---|---|---|---|---|---|---|---|---|---|
S. mutans | 18 h | Before LS | 29 | 0.134 | 0.005 | 0.132 | 0.125 | 0.143 | 0.130 | 0.138 | <0.001 |
After LS | 29 | 0.127 | 0.005 | 0.127 | 0.119 | 0.135 | 0.122 | 0.130 | |||
20 h | Before LS | 29 | 0.136 | 0.005 | 0.134 | 0.128 | 0.145 | 0.132 | 0.141 | <0.001 | |
After LS | 29 | 0.128 | 0.005 | 0.128 | 0.120 | 0.137 | 0.124 | 0.132 | |||
22 h | Before LS | 29 | 0.138 | 0.006 | 0.136 | 0.129 | 0.148 | 0.134 | 0.143 | <0.001 | |
After LS | 29 | 0.130 | 0.005 | 0.130 | 0.121 | 0.139 | 0.126 | 0.134 | |||
24 h | Before LS | 29 | 0.139 | 0.007 | 0.136 | 0.129 | 0.154 | 0.135 | 0.144 | <0.001 | |
After LS | 29 | 0.131 | 0.004 | 0.131 | 0.123 | 0.140 | 0.126 | 0.134 | |||
C. albicans | 18 h | Before LS | 30 | 0.095 | 0.013 | 0.094 | 0.070 | 0.120 | 0.084 | 0.106 | <0.001 |
After LS | 30 | 0.078 | 0.006 | 0.080 | 0.070 | 0.092 | 0.074 | 0.082 | |||
20 h | Before LS | 30 | 0.098 | 0.013 | 0.097 | 0.072 | 0.123 | 0.086 | 0.108 | <0.001 | |
After LS | 30 | 0.081 | 0.006 | 0.082 | 0.072 | 0.094 | 0.076 | 0.084 | |||
22 h | Before LS | 30 | 0.100 | 0.013 | 0.100 | 0.074 | 0.125 | 0.088 | 0.110 | <0.001 | |
After LS | 30 | 0.083 | 0.006 | 0.084 | 0.074 | 0.096 | 0.078 | 0.086 | |||
24 h | Before LS | 30 | 0.100 | 0.013 | 0.101 | 0.075 | 0.126 | 0.089 | 0.111 | <0.001 | |
After LS | 30 | 0.084 | 0.006 | 0.085 | 0.074 | 0.097 | 0.080 | 0.086 | |||
S. mutans/C. albicans | 18 h | Before LS | 29 | 0.171 | 0.024 | 0.179 | 0.125 | 0.221 | 0.151 | 0.191 | <0.001 |
After LS | 29 | 0.123 | 0.006 | 0.122 | 0.112 | 0.131 | 0.118 | 0.129 | |||
20 h | Before LS | 29 | 0.173 | 0.024 | 0.181 | 0.127 | 0.224 | 0.154 | 0.193 | <0.001 | |
After LS | 29 | 0.125 | 0.006 | 0.124 | 0.114 | 0.134 | 0.120 | 0.130 | |||
22 h | Before LS | 29 | 0.175 | 0.024 | 0.183 | 0.129 | 0.226 | 0.156 | 0.195 | <0.001 | |
After LS | 29 | 0.127 | 0.005 | 0.126 | 0.115 | 0.134 | 0.123 | 0.132 | |||
24 h | Before LS | 29 | 0.176 | 0.024 | 0.184 | 0.130 | 0.228 | 0.157 | 0.194 | <0.001 | |
After LS | 29 | 0.127 | 0.005 | 0.127 | 0.117 | 0.134 | 0.123 | 0.132 |
Species | Incubation Time | Before LS | After LS | ||
---|---|---|---|---|---|
r | p | r | p | ||
S. mutans | 18 h | 0.495 | 0.006 | 0.371 | 0.048 |
20 h | 0.534 | 0.003 | 0.379 | 0.043 | |
22 h | 0.500 | 0.006 | 0.502 | 0.005 | |
24 h | 0.553 | 0.002 | 0.473 | 0.009 | |
C. albicans | 18 h | 0.920 | <0.001 | 0.136 | 0.473 |
20 h | 0.918 | <0.001 | 0.128 | 0.927 | |
22 h | 0.931 | <0.001 | 0.127 | 0.888 | |
24 h | 0.935 | <0.001 | 0.135 | 0.853 | |
S. mutans/C. albicans | 18 h | 0.764 | <0.001 | 0.181 | 0.337 |
20 h | 0.769 | <0.001 | 0.191 | 0.393 | |
22 h | 0.766 | <0.001 | 0.200 | 0.459 | |
24 h | 0.842 | <0.001 | 0.192 | 0.628 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzyściak, W.; Kościelniak, D.; Papież, M.; Vyhouskaya, P.; Zagórska-Świeży, K.; Kołodziej, I.; Bystrowska, B.; Jurczak, A. Effect of a Lactobacillus Salivarius Probiotic on a Double-Species Streptococcus Mutans and Candida Albicans Caries Biofilm. Nutrients 2017, 9, 1242. https://doi.org/10.3390/nu9111242
Krzyściak W, Kościelniak D, Papież M, Vyhouskaya P, Zagórska-Świeży K, Kołodziej I, Bystrowska B, Jurczak A. Effect of a Lactobacillus Salivarius Probiotic on a Double-Species Streptococcus Mutans and Candida Albicans Caries Biofilm. Nutrients. 2017; 9(11):1242. https://doi.org/10.3390/nu9111242
Chicago/Turabian StyleKrzyściak, Wirginia, Dorota Kościelniak, Monika Papież, Palina Vyhouskaya, Katarzyna Zagórska-Świeży, Iwona Kołodziej, Beata Bystrowska, and Anna Jurczak. 2017. "Effect of a Lactobacillus Salivarius Probiotic on a Double-Species Streptococcus Mutans and Candida Albicans Caries Biofilm" Nutrients 9, no. 11: 1242. https://doi.org/10.3390/nu9111242
APA StyleKrzyściak, W., Kościelniak, D., Papież, M., Vyhouskaya, P., Zagórska-Świeży, K., Kołodziej, I., Bystrowska, B., & Jurczak, A. (2017). Effect of a Lactobacillus Salivarius Probiotic on a Double-Species Streptococcus Mutans and Candida Albicans Caries Biofilm. Nutrients, 9(11), 1242. https://doi.org/10.3390/nu9111242