Consumption of Red Meat, but Not Cooking Oils High in Polyunsaturated Fat, Is Associated with Higher Arachidonic Acid Status in Singapore Chinese Adults
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Singapore Prospective Study Program (SP2)
2.1.1. Study Population and Design
2.1.2. Assessment of Diet and Covariates
2.1.3. Physical Examination and Blood Collection
2.2. Singapore Chinese Health Study (SCHS)
2.2.1. Study Population and Design
2.2.2. Assessment of Diet and Covariates
2.2.3. Blood Collection
2.3. Measurement of Plasma Fatty Acids
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Populations
3.2. Plasma Polyunsaturated Fat (PUFA) Concentrations by Fish and Red Meat Consumption
3.3. PUFA Intake and Cooking Oil Use in Relation to Plasma PUFA
3.4. Effect Modification by Sex, Age and Overweight Status
4. Discussion and Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AA | arachidonic acid |
LA | linoleic acid |
PUFA | polyunsaturated fatty acids / polyunsaturated fat |
SP2 | Singapore Prospective Study Program |
SCHS | Singapore Chinese Health Study |
DGLA | dihomo-gamma-linolenic acid |
ALA | alpha-linolenic acid |
EPA | eicosapentaenoic acid |
DHA | docosahexaenoic acid |
CVD | cardiovascular disease |
FFQ | food frequency questionnaire |
BMI | body mass index |
CV | coefficient of variation |
MET | metabolic task-equivalent |
References
- Mensink, R.P.; Katan, M.B. Effect of dietary fatty-acids on serum-lipids and lipoproteins—A meta-analysis of 27 trials. Arterioscler. Thromb. 1992, 12, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [PubMed]
- Siguel, E. A new relationship between total/high density lipoprotein cholesterol and polyunsaturated fatty acids. Lipids 1996, 31, S51–S56. [Google Scholar] [CrossRef] [PubMed]
- Grimsgaard, S.; Bonaa, K.H.; Jacobsen, B.K.; Bjerve, K.S. Plasma saturated and linoleic fatty acids are independently associated with blood pressure. Hypertension 1999, 34, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Farvid, M.S.; Ding, M.; Pan, A.; Sun, Q.; Chiuve, S.E.; Steffen, L.M.; Willett, W.C.; Hu, F.B. Dietary Linoleic Acid and Risk of Coronary Heart Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Circulation 2014, 130, 1568–1578. [Google Scholar] [CrossRef] [PubMed]
- Ramsden, C.E.; Zamora, D.; Leelarthaepin, B.; Majchrzak-Hong, S.F.; Faurot, K.R.; Suchindran, C.M.; Ringel, A.; Davis, J.M.; Hibbeln, J.R. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: Evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ 2013, 346. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.L. Dietary n-6 and n-3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 2009, 77, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, J.; Ogawa, M.; Watanabe, R.; Takayama, K.; Hirata, Y.; Nagai, R.; Isobe, M. Roles of Prostaglandin E2 in Cardiovascular Diseases Focus on the Potential Use of a Novel Selective EP4 Receptor Agonist. Int. Heart J. 2011, 52. [Google Scholar] [CrossRef] [PubMed]
- Jala, V.R.; Haribabu, B. Leukotrienes and atherosclerosis: New roles for old mediators. Trends Immunol. 2004, 25, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Hjelte, L.E.; Nilsson, A. Arachidonic acid and ischemic heart disease. J. Nutr. 2005, 135, 2271–2273. [Google Scholar] [PubMed]
- Serhan, C.N.; Savill, J. Resolution of inflammation: The beginning programs the end. Nat. Immunol. 2005, 6, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Huang, Y.S. Gamma linolenic acid: An antiinflammatory omega-6 fatty acid. Curr. Pharm. Biotechnol. 2006, 7, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Pischon, T.; Hankinson, S.E.; Hotamisligil, G.S.; Rifai, N.; Willett, W.C.; Rimm, E.B. Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women. Circulation 2003, 108, 155–160. [Google Scholar] [CrossRef] [PubMed]
- De Goede, J.; Geleijnse, J.M.; Boer, J.M.; Kromhout, D.; Verschuren, W.M. Marine (n-3) Fatty Acids, Fish Consumption, and the 10-Year Risk of Fatal and Nonfatal Coronary Heart Disease in a Large Population of Dutch Adults with Low Fish Intake. J. Nutr. 2010, 140, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Ma, J.; Campos, H.; Rexrode, K.M.; Albert, C.M.; Mozaffarian, D.; Hu, F.B. Blood concentrations of individual long-chain n-3 fatty acids and risk of nonfatal myocardial infarction. Am. J. Clin. Nutr. 2008, 88, 216–223. [Google Scholar] [PubMed]
- Balk, E.M.; Lichtenstein, A.H.; Chung, M.; Kupelnick, B.; Chew, P.; Lau, J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: A systematic review. Atherosclerosis 2006, 189, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Vrablik, M.; Prusikova, M.; Snejdrlova, M.; Zlatohlavek, L. Omega-3 Fatty Acids and Cardiovascular Disease Risk: Do We Understand the Relationship? Physiol. Res. 2009, 58, S19–S26. [Google Scholar] [PubMed]
- Albert, C.M.; Oh, K.; Whang, W.; Manson, J.E.; Chae, C.U.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Dietary alpha-linolenic acid intake and risk of sudden cardiac death and coronary heart disease. Circulation 2005, 112, 3232–3238. [Google Scholar] [CrossRef] [PubMed]
- Campos, H.; Baylin, A.; Willett, W.C. Alpha-linolenic acid and risk of nonfatal acute myocardial infarction. Circulation 2008, 118, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Oomen, C.M.; Ocké, M.C.; Feskens, E.J.; Kok, F.J.; Kromhout, D. Alpha-Linolenic acid intake is not beneficially associated with 10-y risk of coronary artery disease incidence: The Zutphen Elderly Study. Am. J. Clin. Nutr. 2001, 74, 457–463. [Google Scholar] [PubMed]
- Wang, C.C.; Harris, W.S.; Chung, M.; Lichtenstein, A.H.; Balk, E.M.; Kupelnick, B.; Jordan, H.S.; Lau, J. n-3 fatty acids from fish or fish-oil supplements, but not alpha-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: A systematic review. Am. J. Clin. Nutr. 2006, 84, 5–17. [Google Scholar] [PubMed]
- Burdge, G.C.; Calder, P.C. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005, 45, 581–597. [Google Scholar] [CrossRef] [PubMed]
- Bemelmans, W.J.; Broer, J.; Feskens, E.J.; Smit, A.J.; Muskiet, F.A.; Lefrandt, J.D.; Bom, V.J.; May, J.F.; Meyboom-de Jong, B. Effect of an increased intake of alpha-linolenic acid and group nutritional education on cardiovascular risk factors: The Mediterranean Alpha-linolenic Enriched Groningen Dietary Intervention (MARGARIN) study. Am. J. Clin. Nutr. 2002, 75, 221–227. [Google Scholar] [PubMed]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Araya, J.; Rodrigo, R.; Pettinelli, P.; Araya, A.V.; Poniachik, J.; Videla, L.A. Decreased Liver Fatty Acid Delta-6 and Delta-5 Desaturase Activity in Obese Patients. Obesity 2010, 18, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.J.; Mann, N.J.; Lewis, J.L.; Milligan, G.C.; Sinclair, A.J.; Howe, P.R. Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids. Lipids 2003, 38, 391–398. [Google Scholar] [CrossRef]
- Rett, B.S.; Whelan, J. Increasing dietary linoleic acid does not increase tissue arachidonic acid content in adults consuming Western-type diets: A systematic review. Nutr. Metab. 2011, 10, 8–36. [Google Scholar] [CrossRef] [PubMed]
- Mann, N.; Pirotta, Y.; O’Connell, S.; Li, D.; Kelly, F.; Sinclair, A. Fatty acid composition of habitual omnivore and vegetarian diets. Lipids 2006, 41, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Odea, K.; Sinclair, A.J. Increased proportion of arachidonic-acid in plasma-lipids after 2 weeks on a diet of tropical seafood. Am. J. Clin. Nutr. 1982, 36, 868–872. [Google Scholar]
- Sinclair, A.J.; Johnson, L.; Odea, K.; Holman, R.T. Diets rich in lean beef increase arachidonic-acid and long-chain omega-3 polyunsaturated fatty-acid levels in plasma phospholipids. Lipids 1994, 29, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, A.J.; O’Dea, K.; Dunstan, G.; Ireland, P.D.; Niall, M. Effects on plasma lipids and fatty acid composition of very low fat diets enriched with fish or kangaroo meat. Lipids 1987, 22, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Nang, E.E.; Khoo, C.M.; Tai, E.S.; Lim, S.C.; Tavintharan, S.; Wong, T.Y.; Heng, D.; Lee, J. Is There a Clear Threshold for Fasting Plasma Glucose that Differentiates between Those with and without Neuropathy and Chronic Kidney Disease? Am. J. Epidemiol. 2009, 169, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Deurenberg-Yap, M.; Li, T.; Tan, W.L.; van Staveren, W.A.; Deurenberg, P. Validation of a semiquantitative food frequency questionnaire for estimation of intakes of energy, fats and cholesterol among Singaporeans. Asia Pac. J. Clin. Nutr. 2000, 9, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Nang, E.E.; Gitau Ngunjiri, S.A.; Wu, Y.; Salim, A.; Tai, E.S.; Lee, J.; van Dam, R.M. Validity of the International Physical Activity Questionnaire and the Singapore Prospective Study Program physical activity questionnaire in a multiethnic urban Asian population. BMC Med. Res. Methodol. 2011, 11, 141. [Google Scholar] [CrossRef] [PubMed]
- International Physical Activity Questionnaire. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)-Short and Long Forms. Available online: http://www.ipaq.ki.se/scoring.pdf (accessed on 16 May 2016).
- Sun, Y.; Koh, W.P.; Yuan, J.M.; Choi, H.; Su, J.; Ong, C.N.; van Dam, R.M. Plasma alpha-Linolenic and Long-Chain omega-3 Fatty Acids Are Associated with a Lower Risk of Acute Myocardial Infarction in Singapore Chinese Adults. J. Nutr. 2016, 146, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Hankin, J.H.; Stram, D.O.; Arakawa, K.; Park, S.; Low, S.H.; Lee, H.P.; Yu, M.C. Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutr. Cancer 2001, 39, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.P.; Yuan, J.M.; Wang, R.; Lee, H.P.; Yu, M.C. Body mass index and smoking-related lung cancer risk in the Singapore Chinese Health Study. Br. J. Cancer 2010, 102, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Jetté, M.; Sidney, K.; Blümchen, G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ng, A.; Mann, N.J.; Sinclair, A.J. Contribution of meat fat to dietary arachidonic acid. Lipids 1998, 33, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Taber, L.; Chiu, C.H.; Whelan, J. Assessment of the arachidonic acid content in foods commonly consumed in the American diet. Lipids 1998, 33, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Li, G.P.; Sinclair, A.J.; Li, D. Comparison of Lipid Content and Fatty Acid Composition in the Edible Meat of Wild and Cultured Freshwater and Marine Fish and Shrimps from China. J. Agric. Food Chem. 2011, 59, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, S.K.; Psota, T.L.; Harris, W.S.; Kris-Etherton, P.M. n-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am. J. Clin. Nutr. 2006, 83, S1526–S1535. [Google Scholar] [PubMed]
- De Antueno, R.J.; Knickle, L.C.; Smith, H.; Elliot, M.L.; Allen, S.J.; Nwaka, S.; Winther, M.D. Activity of human Delta5 and Delta6 desaturases on multiple n-3 and n-6 polyunsaturated fatty acids. FEBS Lett. 2001, 509, 77–80. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 Fatty Acids and Inflammatory Processes. Nutrients 2010, 2, 355–374. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol. 2013, 75, 645–662. [Google Scholar] [CrossRef] [PubMed]
- Shearer, G.C.; Savinova, O.V.; Harris, W.S. Fish oil—How does it reduce plasma triglycerides? Biochim. Biophys. Acta. 2012, 1821, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.E.; van Elswyk, M.; Alexander, D.D. Long-Chain Omega-3 Fatty Acids Eicosapentaenoic Acid and Docosahexaenoic Acid and Blood Pressure: A Meta-Analysis of Randomized Controlled Trials. Am. J. Hypertens. 2014, 27, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef] [PubMed]
- Katan, M.B.; Deslypere, J.P.; van Birgelen, A.P.; Penders, M.; Zegwaard, M. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: An 18-month controlled study. J. Lipid Res. 1997, 38, 2012–2022. [Google Scholar] [PubMed]
- Kobayashi, M.; Sasaki, S.; Kawabata, T.; Hasegawa, K.; Akabane, M.; Tsugane, S. Single measurement of serum phospholipid fatty acid as a biomarker of specific fatty acid intake in middle-aged Japanese men. Eur. J. Clin. Nutr. 2001, 55, 643–650. [Google Scholar] [CrossRef] [PubMed]
Variable | All | Low Fish, Low Red Meat | High Fish | High Red Meat | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
N = 269 | N = 86 | N = 89 | N = 94 | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Age (years) | 51.4 | 12.2 | 50 | 11.2 | 52.1 | 11.7 | 52.1 | 13.3 | 0.401 |
BMI (kg·m−2) | 23.2 | 3.9 | 22.5 | 3.8 | 23.7 | 3.9 | 23.2 | 3.9 | 0.112 |
Waist circumference (cm) | 82.3 | 11.3 | 79.8 | 11.7 | 83.8 | 11.3 | 83.1 | 10.7 | 0.047 |
Energy intake (kcal) | 2008.9 | 550.9 | 1965.5 | 534.9 | 1946.7 | 554.9 | 2107.3 | 553.5 | 0.097 |
Total physical activity (MET-hours/week) 1 | 114.4 | 103.8 | 108.2 | 76 | 107.2 | 77.5 | 127 | 140.9 | 0.347 |
Alcohol (g/day) | 14.4 | 69.8 | 8.3 | 32.1 | 11.3 | 38.2 | 22.8 | 107.8 | 0.336 |
Red meat (g/2000 kcal) | 68.6 | 62.4 | 14.1 | 8.4 | 44.7 | 24.4 | 141 | 44.9 | <0.001 |
Fish (g/2000 kcal) | 100 | 77.9 | 24.6 | 14.4 | 193.2 | 47.6 | 80.8 | 35.2 | <0.001 |
Soy (g/2000 kcal) | 16.5 | 17.2 | 21.4 | 23.5 | 15.0 | 14.1 | 13.4 | 11.1 | 0.005 |
Poultry (g/2000 kcal) | 42.8 | 32.9 | 26.7 | 22.9 | 42.5 | 28.2 | 57.9 | 37.6 | <0.001 |
N | % | N | % | N | % | N | % | ||
Sex | - | - | - | - | - | - | - | 0.868 | |
Male | 134 | 49.8% | 41 | 30.6% | 46 | 34.3% | 47 | 35.1% | |
Female | 135 | 50.2% | 45 | 33.3% | 43 | 31.9% | 47 | 34.8% | |
Type of cooking oil used 2 | 0.861 | ||||||||
Blended vegetable oil | 99 | 36.8% | 31 | 31.3% | 30 | 30.3% | 38 | 38.4% | |
Polyunsaturated oil | 78 | 29.0% | 26 | 33.3% | 24 | 30.8% | 28 | 35.9% | |
Monounsaturated oil | 84 | 31.2% | 27 | 32.1% | 31 | 36.9% | 26 | 31.0% |
Fatty Acid | All | Low Fish, Low Red Meat | High Fish | High Red Meat | p-Value 1 | ||||
---|---|---|---|---|---|---|---|---|---|
N = 269 | N = 86 | N = 89 | N = 94 | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
18:2n-6 (LA) 2 | 50.05 | 5.36 | 51.54 a | 5.52 | 49.72 b | 4.26 | 48.99 b | 5.87 | 0.004 |
Adjusted means 3 | - | - | 51.05 a | - | 50.00 b | - | 49.17 b | - | <0.001 |
18:3n-3 (ALA) | 0.22 | 0.09 | 0.22 | 0.1 | 0.24 | 0.09 | 0.21 | 0.09 | 0.201 |
Adjusted means | - | - | 0.22 | - | 0.24 | - | 0.22 | - | 0.531 |
20:3n-6 (DGLA) | 0.74 | 0.32 | 0.80 a | 0.35 | 0.67 b | 0.27 | 0.76 a,b | 0.33 | 0.022 |
Adjusted means | - | - | 0.83 a | - | 0.66 b | - | 0.74 a,b | - | 0.026 |
20:4n-6 (AA) | 6.39 | 2.13 | 5.56 a | 1.9 | 6.65 b,c | 1.97 | 6.92 b,c | 2.26 | <0.001 |
Adjusted means | - | - | 5.60 a | - | 6.70 b,c | 6.84 b,c | - | <0.001 | |
20:5n-3 (EPA) | 0.3 | 0.19 | 0.23 a | 0.13 | 0.38 b | 0.24 | 0.29 c | 0.16 | <0.001 |
Adjusted means | - | - | 0.23 a | - | 0.38 b | - | 0.29 c | - | <0.001 |
22:6n-3 (DHA) | 1.02 | 0.46 | 0.73 a | 0.33 | 1.27 b | 0.47 | 1.07 c | 0.39 | <0.001 |
Adjusted means | - | - | 0.73 a | - | 1.26 b | - | 1.07 c | - | <0.001 |
Dietary Variables | Fatty Acid (%) | ||||||
---|---|---|---|---|---|---|---|
LA 2 | ALA | DGLA | AA | EPA | DHA | ||
Fish (per 50 g) | β1 (SE) | 0.318 (0.251) | 0.009 (0.012) | −0.038 (0.017) * | −0.025 (0.095) | 0.085 (0.021) ** | 0.468 (0.077) ** |
β2 (SE) | 0.338 (0.254) | 0.012 (0.012) | −0.043 (0.018) * | −0.063 (0.096) | 0.089 (0.022) ** | 0.479 (0.079) ** | |
Red meat (per 50 g) | β1 (SE) | 0.071 (0.395) | −0.057 (0.018) ** | 0.012 (0.027) | 0.428 (0.018) ** | −0.003 (0.034) | −0.052 (0.124) |
β2 (SE) | −0.083 (0.411) | −0.068 (0.019) ** | 0.020 (0.028) | 0.500 (0.155) ** | −0.047 (0.035) | −0.260 (0.127) | |
Poultry (per 50 g) | β1 (SE) | 0.150 (0.442) | 0.014 (0.020) | −0.007 (0.030) | 0.060 (0.166) | 0.075 (0.038) * | 0.425 (0.138) ** |
β2 (SE) | −0.104 (0.458) | 0.029 (0.021) | −0.003 (0.032) | −0.010 (0.173) | 0.068 (0.039) | 0.454 (0.141) ** | |
Soy (per 50 g) | β1 (SE) | 0.096 (0.091) | 0.012 (0.004) ** | 0.001 (0.006) | −0.069 (0.034) * | 0.008 (0.008) | 0.003 (0.029) |
β2 (SE) | 0.031 (0.091) | 0.011 (0.004) * | 0.001 (0.006) | −0.041 (0.034) | 0.005 (0.008) | −0.002 (0.028) |
Dietary Variables | Fatty Acid (%) | ||||||
---|---|---|---|---|---|---|---|
LA 2 | ALA | DGLA | AA | EPA | DHA | ||
SP2 (N = 269) | |||||||
PUFA intake (en %) | β1 (SE) | 0.284 (0.113) * | 0.008 (0.002) ** | −0.013 (0.07) | −0.032 (0.046) | 0.000 (0.008) | 0.009 (0.010) |
β2 (SE) | 0.259 (0.106) * | 0.008 (0.002) ** | −0.013 (0.07) | −0.007 (0.044) | 0.000 (0.004) | 0.011 (0.010) | |
Polyunsaturated oil (reference: blended vegetable oil) | β1 (SE) | 1.044 (0.786) | 0.044 (0.014) ** | −0.050 (0.048) | −0.116 (0.324) | 0.004 (0.029) | −0.004 (0.068) |
β2 (SE) | 0.982 (0.744) | 0.045 (0.014) ** | −0.059 (0.046) | −0.066 (0.297) | 0.009 (0.027) | 0.022 (0.057) | |
Monounsaturated oil (reference: blended vegetable oil) | β1 (SE) | 0.630 (0.771) | 0.042 (0.013) ** | −0.049 (0.047) | −0.269 (0.317) | 0.008 (0.028) | 0.022 (0.067) |
β2 (SE) | 0.389 (0.740) | 0.038 (0.014) ** | −0.037 (0.046) | −0.137 (0.296) | −0.003 (0.027) | 0.002 (0.057) | |
SCHS (N = 769) | |||||||
PUFA intake (en %) | β1 (SE) | 0.278 (0.063) ** | 0.017 (0.003) ** | −0.003 (0.005) | −0.046 (0.024) | 0.009 (0.005) * | 0.032 (0.019) |
β2 (SE) | 0.250 (0.063) ** | 0.017 (0.003) ** | −0.009 (0.005) * | −0.042 (0.024) | 0.009 (0.005) * | 0.036 (0.019) | |
n-6 PUFA intake (en %) | β1 (SE) | 0.295 (0.067) ** | 0.019 (0.003) ** | −0.003 (0.005) | −0.048 (0.025) | 0.010 (0.005) * | 0.032 (0.020) |
β2 (SE) | 0.267 (0.067) ** | 0.018 (0.003) ** | −0.009 (0.005) | −0.043 (0.025) | 0.010 (0.005) * | 0.036 (0.020) | |
Corn oil (reference: palm/blended oil) | β1 (SE) | 0.743 (0.480) | 0.048 (0.023) * | −0.006 (0.034) | 0.061 (0.195) | 0.057 (0.043) | 0.125 (0.159) |
β2 (SE) | 0.856 (0.479) | 0.044 (0.024) | −0.018 (0.034) | 0.117 (0.194) | 0.061 (0.043) | 0.128 (0.156) | |
Peanut oil (reference: palm/blended oil) | β1 (SE) | 0.435 (0.471) | −0.010 (0.023) | −0.075 (0.034) * | −0.366 (0.191) | −0.076 (0.042) | 0.004 (0.155) |
β2 (SE) | 0.430 (0.466) | −0.012 (0.023) | −0.071 (0.033) * | −0.374 (0.189) * | −0.081 (0.042) | −0.053 (0.152) | |
Soybean oil (reference: palm/blended oil) | β1 (SE) | 0.366 (0.661) | 0.077 (0.032) * | −0.032 (0.047) | −0.118 (0.269) | −0.100 (0.059) | −0.268 (0.334) |
β2 (SE) | 0.544 (0.655) | 0.079 (0.032) * | −0.032 (0.047) | −0.173 (0.266) | −0.094 (0.059) | −0.273 (0.213) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seah, J.Y.H.; Gay, G.M.W.; Su, J.; Tai, E.-S.; Yuan, J.-M.; Koh, W.-P.; Ong, C.N.; Van Dam, R.M. Consumption of Red Meat, but Not Cooking Oils High in Polyunsaturated Fat, Is Associated with Higher Arachidonic Acid Status in Singapore Chinese Adults. Nutrients 2017, 9, 101. https://doi.org/10.3390/nu9020101
Seah JYH, Gay GMW, Su J, Tai E-S, Yuan J-M, Koh W-P, Ong CN, Van Dam RM. Consumption of Red Meat, but Not Cooking Oils High in Polyunsaturated Fat, Is Associated with Higher Arachidonic Acid Status in Singapore Chinese Adults. Nutrients. 2017; 9(2):101. https://doi.org/10.3390/nu9020101
Chicago/Turabian StyleSeah, Jowy Yi Hoong, Gibson Ming Wei Gay, Jin Su, E-Shyong Tai, Jian-Min Yuan, Woon-Puay Koh, Choon Nam Ong, and Rob M. Van Dam. 2017. "Consumption of Red Meat, but Not Cooking Oils High in Polyunsaturated Fat, Is Associated with Higher Arachidonic Acid Status in Singapore Chinese Adults" Nutrients 9, no. 2: 101. https://doi.org/10.3390/nu9020101
APA StyleSeah, J. Y. H., Gay, G. M. W., Su, J., Tai, E. -S., Yuan, J. -M., Koh, W. -P., Ong, C. N., & Van Dam, R. M. (2017). Consumption of Red Meat, but Not Cooking Oils High in Polyunsaturated Fat, Is Associated with Higher Arachidonic Acid Status in Singapore Chinese Adults. Nutrients, 9(2), 101. https://doi.org/10.3390/nu9020101