A Potential Tool for Clinicians; Evaluating a Computer-Led Dietary Assessment Method in Overweight and Obese Women during Weight Loss
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Participants
2.3. Anthropometrics/Body Composition/Demographics
2.4. Actual Dietary Intake
2.5. Reported Dietary Intake
2.6. Classification of Items
2.7. Portion Size
2.8. Statistical Methods
2.8.1. Exclusion
2.8.2. Portion Size
2.8.3. Energy/Nutrients
3. Results
3.1. Participants
3.2. Classification of Food/Beverage Type
3.3. Portion Size
3.4. Nutrients
4. Discussion
4.1. Performance of Computerized Recall
4.2. Possible Causes of Misreporting
Strengths/Limitations of Study
4.3. Use in Practice
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Imes, C.C.; Burke, L.E. The obesity epidemic: The United States as a cautionary tale for the rest of the world. Curr. Epidemiol. Rep. 2014, 1, 82–88. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Diabetes and Digestive and Kidney Diseases. Overweight and Obesity Statistics. 2012. Available online: https://www.niddk.nih.gov/health-information/health-statistics/Pages/overweight-obesity-statistics.aspx (accessed on 2 November 2016). [Google Scholar]
- Finkelstein, E.A.; Trogdon, J.G.; Cohen, J.W.; Dietz, W. Annual medical spending attributable to obesity: Payer-and service-specific estimates. Health Aff. 2009, 28, w822–w831. [Google Scholar] [CrossRef] [PubMed]
- Gallup. Personal Weight Situation. 2016. Available online: http://www.gallup.com/poll/7264/personal-weight-situation.aspx (accessed on 2 November 2016).
- McCarthy, J. Fewer Americans Say They Want to Lose Weight. 2015. Available online: http://www.gallup.com/poll/186920/fewer-americans-say-lose-weight.aspx (accessed on 2 November 2016).
- Coalition, O.A. Physician Supervised Weight Loss Programs. Available online: http://www.obesityaction.org/obesity-treatments/physician-supervised-programs (accessed on 2 November 2016).
- Galuska, D.A.; Will, J.C.; Serdula, M.K.; Ford, E.S. Are health care professionals advising obese patients to lose weight? JAMA 1999, 282, 1576–1578. [Google Scholar] [CrossRef] [PubMed]
- Levine, D.M.; Savarimuthu, S.; Squires, A.; Nicholson, J.; Jay, M. Technology-assisted weight loss interventions in primary care: A systematic review. J. Gen. Intern Med. 2015, 30, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.; Burke, L.E.; Spring, B.J.; Ewing, L.J.; Turk, M.; Lichtenstein, A.H.; Cornier, M.A.; Spence, J.D.; Coons, M.; American Heart Association Obesity Committee of the Council on Nutrition, Physical Activity and Metabolism; et al. New and emerging weight management strategies for busy ambulatory settings: A scientific statement from the American Heart Association endorsed by the Society of Behavioral Medicine. Circulation 2011, 124, 1182–1203. [Google Scholar] [CrossRef] [PubMed]
- Freedman, L.S.; Commins, J.M.; Moler, J.E.; Arab, L.; Baer, D.J.; Kipnis, V.; Midthune, D.; Moshfegh, A.J.; Neuhouser, M.L.; Prentice, R.L.; et al. Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for energy and protein intake. Am. J. Epidemiol. 2014, 180, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Archer, E.; Hand, G.A.; Blair, S.N. Validity of U.S. nutritional surveillance: National Health and Nutrition Examination Survey caloric energy intake data, 1971–2010. PLoS ONE 2013, 8, e76632. [Google Scholar] [CrossRef]
- Johnson, R.K. Dietary intake—How do we measure what people are really eating? Obes. Res. 2002, 10, 63S–68S. [Google Scholar] [CrossRef] [PubMed]
- Westerterp, K.R.; Goris, A.H. Validity of the assessment of dietary intake: Problems of misreporting. Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, B.L.; Lissner, L. Obese individuals underestimate their food intake—Which food groups are under-reported? Ugeskr. Laeger 1996, 158, 6902–6906. [Google Scholar] [PubMed]
- Poppitt, S.D.; Swann, D.; Black, A.E.; Prentice, A.M. Assessment of selective under-reporting of food intake by both obese and non-obese women in a metabolic facility. Int. J. Obes. Relat. Metab. Disord. 1998, 22, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Carroll, R.J.; Midthune, D.; Subar, A.F.; Shumakovich, M.; Freedman, L.S.; Thompson, F.E.; Kipnis, V. Taking advantage of the strengths of 2 different dietary assessment instruments to improve intake estimates for nutritional epidemiology. Am. J. Epidemiol. 2012, 175, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Schatzkin, A.; Kipnis, V.; Carroll, R.J.; Midthune, D.; Subar, A.F.; Bingham, S.; Schoeller, D.A.; Troiano, R.P.; Freedman, L.S. A comparison of a food frequency questionnaire with a 24-h recall for use in an epidemiological cohort study: Results from the biomarker-based Observing Protein and Energy Nutrition (OPEN) study. Int. J. Epidemiol. 2003, 32, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Kirkpatrick, S.I.; Mittl, B.; Zimmerman, T.P.; Thompson, F.E.; Bingley, C.; Willis, G.; Islam, N.G.; Baranowski, T.; McNutt, S.; et al. The Automated Self-Administered 24-h dietary recall (ASA24): A resource for researchers, clinicians, and educators from the National Cancer Institute. J. Acad. Nutr. Diet. 2012, 112, 1134–1137. [Google Scholar] [CrossRef] [PubMed]
- Thompson, F.E.; Dixit-Joshi, S.; Potischman, N.; Dodd, K.W.; Kirkpatrick, S.I.; Kushi, L.H.; Alexander, G.L.; Coleman, L.A.; Zimmerman, T.P.; Sundaram, M.E.; et al. Comparison of Interviewer-Administered and Automated Self-Administered 24-h Dietary Recalls in 3 Diverse Integrated Health Systems. Am. J. Epidemiol. 2015, 181, 970–978. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Thompson, F.E.; Potischman, N.; Forsyth, B.H.; Buday, R.; Richards, D.; McNutt, S.; Hull, S.G.; Guenther, P.M.; Schatzkin, A.; et al. Formative research of a quick list for an automated self-administered 24-h dietary recall. J. Am. Diet. Assoc. 2007, 107, 1002–1007. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, T.P.; Hull, S.G.; McNutt, S.; Mittl, B.; Islam, N.; Guenther, P.M.; Thompson, F.E.; Potischman, N.A.; Subar, A.F. Challenges in converting an interviewer-administered food probe database to self-administration in the National Cancer Institute Automated Self-administered 24-h Recall (ASA24). J. Food Compost. Anal. 2009, 22, S48–S51. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Crafts, J.; Zimmerman, T.P.; Wilson, M.; Mittl, B.; Islam, N.G.; McNutt, S.; Potischman, N.; Buday, R.; Hull, S.G.; et al. Assessment of the accuracy of portion size reports using computer-based food photographs aids in the development of an automated self-administered 24-h recall. J. Am. Diet. Assoc. 2010, 110, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, S.I.; Subar, A.F.; Douglass, D.; Zimmerman, T.P.; Thompson, F.E.; Kahle, L.L.; George, S.M.; Dodd, K.W.; Potischman, N. Performance of the Automated Self-Administered 24-h Recall relative to a measure of true intakes and to an interviewer-administered 24-h recall. Am. J. Clin. Nutr. 2014, 100, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Burnett, D.; Peerson, J.; Miller, B.; Welch, L.; Witbract, M.; Krishnan, S.; Keim, N. Dietary Adherence Monitoring Tool for Free-living, Controlled Feeding Studies. In Proceedings of the Experimental Biology Annual Conference, San Diego, CA, USA, 2–6 April 2016.
- Bjorge-Schohl, B.; Johnston, C.S.; Trier, C.M.; Fleming, K.R. Agreement in participant-coded and investigator-coded food-record analysis in overweight research participants: An examination of interpretation bias. J. Acad. Nutr. Diet. 2014, 114, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Macdiarmid, J.; Blundell, J. Assessing dietary intake: Who, what and why of under-reporting. Nutr. Res. Rev. 1998, 11, 231–253. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.; Atkinson, M.; Darbyshire, S. Food photography. I: The perception of food portion size from photographs. Br. J. Nutr. 1994, 72, 649–663. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, S.I.; Potischman, N.; Dodd, K.W.; Douglass, D.; Zimmerman, T.P.; Kahle, L.L.; Thompson, F.E.; George, S.M.; Subar, A.F. The Use of Digital Images in 24-h Recalls May Lead to Less Misestimation of Portion Size Compared with Traditional Interviewer-Administered Recalls. J. Nutr. 2016, 146, 2567–2573. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.M.; Ingwersen, L.A.; Vinyard, B.T.; Moshfegh, A.J. Effectiveness of the US Department of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. Am. J. Clin. Nutr. 2003, 77, 1171–1178. [Google Scholar] [PubMed]
- Japur, C.C.; Diez-Garcia, R.W. Food energy content influences food portion size estimation by nutrition students. J. Hum. Nutr. Diet. 2010, 23, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Souverein, O.W.; de Boer, W.J.; Geelen, A.; van der Voet, H.; de Vries, J.H.; Feinberg, M.; Veer, P.V. Uncertainty in intake due to portion size estimation in 24-h recalls varies between food groups. J. Nutr. 2011, 141, 1396–1401. [Google Scholar] [CrossRef] [PubMed]
- Baxter, S.D.; Hardin, J.W.; Guinn, C.H.; Royer, J.A.; Mackelprang, A.J.; Smith, A.F. Fourth-grade children’s dietary recall accuracy is influenced by retention interval (target period and interview time). J. Am. Diet. Assoc. 2009, 109, 846–856. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.O.; Stuckey, H.L.; Chen, M.C.; Kraschnewski, J.L.; Forjuoh, S.N.; Poger, J.M.; McTigue, K.M.; Sciamanna, C.N. Primary care providers’ perspectives on online weight-loss programs: A big wish list. J. Med. Internet Res. 2012, 14, e16. [Google Scholar] [CrossRef] [PubMed]
Reported Items Code a | Mean Proportion (%) | Standard Deviation (%) |
---|---|---|
Exact match | 52.3 | 15.2 |
Close match | 26.5 | 9.8 |
Far match | 5.1 | 4.8 |
All matches combined | 84.0 | 10.7 |
Excluded | 16.0 | 10.7 |
Falsely included | 3.5 | 4.5 |
Food Group | Number of Items | Mean Proportion of Items Not Reported (%) | Standard Deviation(%) |
---|---|---|---|
Dairy | 207 | 12.1 | 32.7 |
Added fat | 90 | 15.6 | 36.4 |
Fruit | 93 | 21.5 | 41.3 |
Grain | 225 | 15.1 | 35.9 |
Nuts/seeds | 117 | 25.6 | 43.9 |
Animal protein | 91 | 5.5 | 22.9 |
Added sugars | 47 | 45.5 | 50.0 |
Vegetables | 150 | 12.0 | 32.6 |
Food Group | Parameter Estimate (SE) | Modeled Probability of Exclusion | OR (95% CI) a |
---|---|---|---|
Intercept | −1.70 (0.12) | 0.18 | N/A |
Dairy | −0.39 (0.21) | 0.14 | 0.68 (0.45, 1.01) |
Added fat | −0.06 (0.27) | 0.17 | 0.94 (0.56, 1.60) |
Fruit | 0.32 (0.24) | 0.25 | 1.37 (0.85, 2.21) |
Grain | −0.17 (0.19) | 0.15 | 0.85 (0.59, 1.23) |
Nuts/seeds | 0.59 (0.22) * | 0.33 | 1.80 (1.18, 2.76) b |
Animal protein | −1.25 (0.38) ** | 0.05 | 0.29 (0.14, 0.61) c |
Added sugar | 1.40 (0.29) ** | 0.74 | 4.06 (2.28, 7.22) b |
Vegetables | −0.44 (0.24) | 0.12 | 0.65 (0.41, 1.03) |
Food Group/Meal | Mean Amount Eaten g (SE) | Mean Amount Reported g (SE) | Proportion of Reported Portion Sizes within 25% of Truth | Average Over/Underestimate of Portion Size a % (SE) | p-Value |
---|---|---|---|---|---|
Dairy | 170.7 (11.0) | 208.6 (12.8) | 50.0% | 27.7 (1.0) | <0.001 |
Added fat | 10.6 (1.2) | 10.8 (1.1) | 42.9% | 31.1 (17.4) | 0.075 |
Fruit | 77.5 (8.0) | 86.7 (8.1) | 54.1% | 21.7 (8.6) | 0.011 |
Grain | 53.8 (4.3) | 47.4 (3.5) | 49.6% | 0.3 (6.1) | 0.96 |
Nuts/seeds | 12.0 (0.9) | 14.8 (1.3) | 57.6% | 26.7 (11.6) | 0.021 |
Animal protein | 51.0 (4.3) | 61.3 (9.3) | 34.1% | 33.1 (11.2) | 0.003 |
Added sugars | 16.6 (2.5) | 15.3 (1.7) | 37.5% | 28.8 (23.1) | 0.212 |
Vegetables | 50.5 (7.7) | 55.5 (5.5) | 38.5% | 48.2 (8.5) | <0.001 |
Breakfast | 85.1 (9.2) | 92.9 (8.8) | 55.3% | 7.6 (4.9) | 0.123 |
Lunch | 66.8 (4.5) | 76.4 (5.9) | 36.8% | 2.9 (4.7) | 0.536 |
Dinner | 79.0 (11.2) | 75.5 (11.8) | 43.4% | −20.2 (7.1) | 0.005 |
Nutrient | Mean Actual Intake | Mean Reported Intake | Mean Difference a (CI) | Magnitude of Difference b (%) | p-Value c |
---|---|---|---|---|---|
Energy (kcal) | 2202.8 | 2087.9 | −114.9 (−230.3, 0.46) | −5.22 | 0.051 |
Total Protein (g) | 90.4 | 91.6 | 1.2 (−4.1, 6.5) | 1.31 | 0.65 |
Total Fat (g) | 65.4 | 66.1 | 0.7 (−4.9, 6.3) | 1.10 | 0.80 |
Total Carbohydrate (g) | 326.8 | 294.4 | −32.3 (−51.7, −12.9) | −9.89 | 0.002 |
Total Dietary Fiber (g) | 29.3 | 27.3 | −1.9 (−4.0, 0.1) | −6.61 | 0.06 |
Calcium (mg) | 1254.3 | 1371.7 | 117.4 (32.1, 202.7) | 9.36 | 0.008 |
Iron (mg) | 20.3 | 20.3 | 0.0 (−1.2, 1.2) | −0.03 | 0.99 |
Magnesium (mg) | 425.9 | 427.9 | 1.9 (−26.9, 30.8) | 0.45 | 0.89 |
Phosphorus (mg) | 1753.7 | 1773.8 | 20.1 (−83.1, 123.3) | 1.14 | 0.70 |
Copper (mg) | 1.6 | 1.6 | 0.1 (0.0, 0.2) | 5.97 | 0.19 |
Potassium (mg) | 3223.9 | 3311.8 | 87.9 (−105.8, 281.6) | 2.73 | 0.37 |
Sodium (mg) | 3049.14 | 3262.31 | 213.2 (−4.2, 430.6) | 6.99 | 0.054 |
Zinc (mg) | 15.5 | 15.9 | 0.4 (−0.5,1.3) | 2.54 | 0.40 |
Selenium (mcg) | 117.9 | 108.3 | −9.6 (−16.8, −2.4) | −8.15 | 0.010 |
Vitamin C (mg) | 141.2 | 124.7 | −16.5 (−31.2, −2.6) | −11.69 | 0.022 |
Dietary Folate Eq (mcg) | 863.2 | 902.5 | 39.3 (−16.1, 94.6) | 4.55 | 0.16 |
Vitamin B12 (mcg) | 4.5 | 1.9 | −2.6 (−2.9, −2.3) | −57.33 | <0.0001 |
Total Saturated Fat (g) | 19.5 | 21.0 | 1.5 (−0.2, 3.2) | 7.65 | 0.09 |
Vitamin D (mcg) | 5.1 | 6.0 | 0.8(0.4, 1.3) | 16.08 | 0.001 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widaman, A.M.; Keim, N.L.; Burnett, D.J.; Miller, B.; Witbracht, M.G.; Widaman, K.F.; Laugero, K.D. A Potential Tool for Clinicians; Evaluating a Computer-Led Dietary Assessment Method in Overweight and Obese Women during Weight Loss. Nutrients 2017, 9, 218. https://doi.org/10.3390/nu9030218
Widaman AM, Keim NL, Burnett DJ, Miller B, Witbracht MG, Widaman KF, Laugero KD. A Potential Tool for Clinicians; Evaluating a Computer-Led Dietary Assessment Method in Overweight and Obese Women during Weight Loss. Nutrients. 2017; 9(3):218. https://doi.org/10.3390/nu9030218
Chicago/Turabian StyleWidaman, Adrianne M., Nancy L. Keim, Dustin J. Burnett, Beverly Miller, Megan G. Witbracht, Keith F. Widaman, and Kevin D. Laugero. 2017. "A Potential Tool for Clinicians; Evaluating a Computer-Led Dietary Assessment Method in Overweight and Obese Women during Weight Loss" Nutrients 9, no. 3: 218. https://doi.org/10.3390/nu9030218
APA StyleWidaman, A. M., Keim, N. L., Burnett, D. J., Miller, B., Witbracht, M. G., Widaman, K. F., & Laugero, K. D. (2017). A Potential Tool for Clinicians; Evaluating a Computer-Led Dietary Assessment Method in Overweight and Obese Women during Weight Loss. Nutrients, 9(3), 218. https://doi.org/10.3390/nu9030218