Temporal Trends in Dietary Macronutrient Intakes among Adults in Rural China from 1991 to 2011: Findings from the CHNS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Data Collection
2.3. Other Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sun, J.; Buys, N.J.; Hills, A.P. Dietary pattern and its association with the prevalence of obesity, hypertension and other cardiovascular risk factors among Chinese older adults. Int. J. Environ. Res. Public Health 2014, 11, 3956–3971. [Google Scholar] [CrossRef] [PubMed]
- Oza-Frank, R.; Cheng, Y.J.; Narayan, K.M.; Gregg, E.W. Trends in nutrient intake among adults with diabetes in the United States: 1988–2004. J. Am. Diet. Assoc. 2009, 109, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M. Understanding global nutrition dynamics as a step towards controlling cancer incidence. Nat. Rev. Cancer 2007, 7, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Bonnefond, C.; Clement, M. Social class and body weight among Chinese urban adults: The role of the middle classes in the nutrition transition. Soc. Sci. Med. 2014, 112, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Dibley, M.J. Trends in dietary energy, fat, carbohydrate and protein intake in Chinese children and adolescents from 1991 to 2009. Br. J. Nutr. 2012, 108, 1292–1299. [Google Scholar] [CrossRef] [PubMed]
- Fryar, C.D.; Wright, J.D.; Eberhardt, M.S.; Dye, B.A. Trends in nutrient intakes and chronic health conditions among Mexican-American adults, a 25-year profile: United States, 1982–2006. Natl. Health Stat. Rep. 2012, 28, 1–20. [Google Scholar]
- Zhang, Y.X. Changes in the nutritional status of children and adolescents in Shandong, China. Public Health Nutr. 2016, 19, 2708–2711. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Guo, X.; Yu, S.; Sun, G.; Li, Z.; Sun, Y. Association between the hypertriglyceridemia waist phenotype, prediabetes, and diabetes mellitus in rural Chinese population: A cross-sectional study. Int. J. Environ. Res. Public Health 2016, 13, 368. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wu, M.C.; Yang, T. Challenge of China’s rural health. BMJ 2016, 353, i2003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhai, F.Y.; Du, S.F.; Popkin, B.M. The China Health and Nutrition Survey, 1989–2011. Obes. Rev. 2014, 15 (Suppl. 1), 2–7. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Byles, J.E.; Shi, Z.; Hall, J.J. Evaluation of older Chinese people’s macronutrient intake status: Results from the China Health and Nutrition Survey. Br. J. Nutr. 2015, 113, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.; Smith, L.P.; Batis, C.; Popkin, B.M.; Kenan, W.R. Increased energy intake and a shift towards high-fat, non-staple high-carbohydrate foods amongst China’s older adults, 1991–2009. J. Aging Res. Clin. Pract. 2014, 3, 107–115. [Google Scholar] [PubMed]
- Wu, L.; Yang, Z.; Yin, S.A.; Zhu, M.; Gao, H. The relationship between socioeconomic development and malnutrition in children younger than 5 years in China during the period 1990 to 2010. Asia Pac. J. Clin. Nutr. 2015, 24, 665–673. [Google Scholar] [PubMed]
- Perrin, A.E.; Simon, C.; Hedelin, G.; Arveiler, D.; Schaffer, P.; Schlienger, J.L. Ten-year trends of dietary intake in a middle-aged French population: Relationship with educational level. Eur. J. Clin. Nutr. 2002, 56, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, B.; Zhai, F.; Wang, H.; Zhang, J.; Du, W.; Su, C.; Zhang, J.; Jiang, H.; Popkin, B.M. Fatty and lean red meat consumption in China: Differential association with Chinese abdominal obestiy. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Carolina Population Center. Available online: http://www.cpc.unc.edu/projects/china (accessed on 15 October 2015).
- Li, Y.; Li, D.; Ma, C.Y.; Liu, C.Y.; Ding, H.; Wen, Z.M.; Peng, L.P. Consumption of, and factors influencing consumption of, fruit and vegetables among elderly Chinese people. Nutrition 2012, 28, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Xi, B.; Liang, Y.; He, T.; Reilly, K.H.; Hu, Y.; Wang, Q.; Yang, Y.; Mi, J. Secular trends in the prevalence of general and abdominal obesity among Chinese adults, 1993–2009. Obes. Rev. 2012, 13, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.X.; Wang, G.Y.; Pan, X.C. China Food Composition Table 2009; Peking University Medical Press: Beijing, China, 2009; pp. 4–191. [Google Scholar]
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes. Rev. 2014, 15 (Suppl. 1), 16–26. [Google Scholar] [CrossRef] [PubMed]
- Jones-Smith, J.C.; Popkin, B.M. Understanding community context and adult health changes in China: Development of an urbanicity scale. Soc. Sci. Med. 2010, 71, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Li, J.; Li, S.; Zhang, B.; Du, S.; Gordon-Larsen, P.; Adair, L.; Popkin, B.M. The expanding burden of cardiometabolic risk in China: The China Health and Nutrition Survey. Obes. Rev. 2014, 13, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Cyril, S.; Oldroyd, J.C.; Renzaho, A. Urbanisation, urbanicity, and health: A systematic review of the reliability and validity of urbanicity scale. BMC Public Health 2013, 13, 513. [Google Scholar] [CrossRef] [PubMed]
- Benjelloun, S. Nutrition transition in Morocco. Public Health Nutr. 2002, 5, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Albala, C.; Vio, F.; Kain, J.; Uauy, R. Nutrition transition in Chile: Determinants and consequences. Public Health Nutr. 2002, 5, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Kosulwat, V. The nutrition and health transition in Thailand. Public Health Nutr. 2002, 5, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Bishwajit, G. Nutrition transition in South Asia: The emergence of non-communicable chronic diseases. F1000Research 2015, 4, 8. [Google Scholar] [PubMed]
- Kim, S.; Moon, S.; Popkin, B.M. The nutrition transition in South Korea. Am. J. Clin. Nutr. 2000, 71, 44–53. [Google Scholar] [PubMed]
- Zhai, F.Y.; He, Y.N.; Wang, Z.H.; Yu, W.T.; Hu, Y.S.; Yang, X.G. The status and trends of dietary nutrients intake of Chinese Population. Acta Nutr. Sin. 2005, 27, 181–184. [Google Scholar]
- Yu, D.M.; He, Y.N.; Guo, Q.Y.; Fang, H.Y.; Xu, X.L.; Fang, Y.H.; Li, J.; Zhao, L.Y. Trends of energy and nutrients intake among Chinese population in 2002–2012. J. Hygiene Res. 2016, 45, 527–533. [Google Scholar]
- Meshram, I.I.; Balakrishna, N.; Sreeramakrishna, K.; Rao, K.M.; Kumar, R.H.; Arlappa, N.; Manohar, G.; Reddy, C.G.; Ravindranath, M.; Kumar, S.S.; et al. Trends in nutritional status and nutrient intakes and correlates of overweight/obesity among rural adult women (≥18–60 years) in India: National Nutrion Monitoring Bureau (NNMB) national surveys. Public Health Nutr. 2016, 19, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.W.; Howard, A.G.; Wang, H.J.; Su, C.; Zhang, B. The physical activity transition among adults in China: 1991–2011. Obes. Rev. 2014, 15, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, B.L.; Lissner, L.; Osler, M. Do we eat less fat, or just report so? Int. J. Obes. Relat. Metab. Disord. 2000, 24, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Chinese Nutrition Society. Chinese Dietary Guideline, 2016th ed.; People’s Health Publishing House: Beijing, China, 2016; pp. 266–298. [Google Scholar]
- He, F.J.; MacGregor, G.A. A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. J. Hum. Hypertens. 2009, 23, 363–384. [Google Scholar] [CrossRef] [PubMed]
- Boling, C.L.; Westman, E.C.; Yancy, W.S., Jr. Carbohydrate-restricted diets for obesity and related diseases: An update. Curr. Atheroscler. Rep. 2009, 11, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, Z.; Zhang, X.; Zheng, L.; Liu, S.; Xu, C.; Li, J.; Zhao, F.; Li, J.; Hu, D. Prevalence and associated factors of overweight and obesity in older rural Chinese. Intern. Med. J. 2007, 38, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.V.; Joensson, E.A. Low-carbohydrate diet in type 2 diabetes: Stable improvement of bodyweight and glycemic control during 44 months follow-up. Nutr. Metab. (Lond.) 2008, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M. Synthesis and implications: China’s nutrition transition in the context of changes across other low- and middle-income countries. Obes. Rev. 2014, 15, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Piernas, C.; Wang, D.; Du, S.; Zhang, B.; Wang, Z.; Su, C.; Popkin, B.M. The double burden of under- and overnutrition and nutrient adequacy among Chinese preschool and school-aged children in 2009–2011. Eur. J. Clin. Nutr. 2015, 69, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Liu, Z.W.; Hu, M.; Liu, X.G.; Liu, H.M.; Yang, J.P.; Zhou, L.; Xiao, S.Y. Assessment of mental health literacy using a multifaceted measure among a Chinese rural population. BMJ Open 2015, 5, e009054. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Kane, R.L.; Xu, D.; Meng, Q. Health literacy as a moderator of health-related quality of life responses to chronic disease among Chinese rural women. BMC Womens Health 2015, 15, 34. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Hu, X.; Yuan, B.; Hu, G.; Pan, X.; Dai, Y.; Byles, J.E.; Holmboe-Ottesen, G. Vegetable-rich food pattern is related to obesity in China. Int. J. Obes. (Lond.) 2008, 32, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Paeratakul, S.; Popkin, B.M.; Kohlmeier, L.; Hertz-Picciotto, I.; Guo, X.; Edwards, L.J. Measurement error in dietary data: Implications for the epidemiologic study of the diet-disease relationship. Eur. J. Clin. Nutr. 1998, 52, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.; Pryer, J.; Shetty, P. The problem of accuracy in dietary surveys. Analysis of the over 65 UK National Diet and Nutrition Survey. J. Epidemiol. Community Health 2000, 54, 611–616. [Google Scholar] [CrossRef] [PubMed]
General Characteristics | Survey Year 1 | |||||||
---|---|---|---|---|---|---|---|---|
1991 | 1993 | 1997 | 2000 | 2004 | 2006 | 2009 | 2011 | |
n | 4926 | 5212 | 5441 | 6036 | 5318 | 5112 | 5134 | 4560 |
Age (year) 2 | 36.2 ± 0.2 2 | 36.4 ± 0.2 | 37.8 ± 0.2 | 39.1 ± 0.1 | 41.7 ± 0.2 | 42.6 ± 0.2 | 42.7 ± 0.2 | 43.7 ± 0.2 |
18–39 (%) | 61.4 | 59.7 | 53.9 | 50.4 | 41.7 | 38.3 | 37.6 | 32.6 |
40–60 (%) | 38.6 | 40.3 | 46.1 | 49.6 | 58.3 | 61.7 | 62.4 | 67.4 |
Male (%) | 47.7 | 48.5 | 50.6 | 50.0 | 48.9 | 48.5 | 48.5 | 47.5 |
Income (CNY) 3 | ||||||||
Low | 4.0 ± 0.1 | 4.1 ± 0.1 | 5.1 ± 0.1 | 5.3 ± 0.1 | 6.0 ± 0.1 | 6.4 ± 0.1 | 10.3 ± 0.1 | 12.1 ± 0.2 |
Medium | 9.6 ± 0.1 | 10.3 ± 0.1 | 12.8 ± 0.1 | 15.1 ± 0.1 | 16.8 ± 0.1 | 18.9 ± 0.1 | 28.2 ± 0.1 | 34.4 ± 0.2 |
High | 22.1 ± 0.3 | 25.9 ± 0.3 | 30.8 ± 0.4 | 38.4 ± 0.6 | 46.5 ± 0.6 | 57.5 ± 1.2 | 78.8 ± 1.3 | 92.5 ± 1.6 |
Urbanicity (score) 2 | ||||||||
Low | 25.5 ± 0.1 | 26.6 ± 0.1 | 28.8 ± 0.1 | 35.2 ± 0.1 | 36.9 ± 0.1 | 38.4 ± 0.1 | 42.4 ± 0.1 | 44.4 ± 0.1 |
Medium | 36.9 ± 0.1 | 39.7 ± 0.1 | 42.1 ± 0.1 | 47.3 ± 0.1 | 49.3 ± 0.1 | 51.9 ± 0.1 | 55.3 ± 0.1 | 58.1 ± 0.1 |
High | 52.8 ± 0.2 | 55.9 ± 0.2 | 61.5 ± 0.2 | 67.5 ± 0.2 | 73.0 ± 0.3 | 75.6 ± 0.2 | 77.8 ± 0.3 | 80.1 ± 0.2 |
General Characteristics | Survey Year 1 | ptrend 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
1991 | 1993 | 1997 | 2000 | 2004 | 2006 | 2009 | 2011 | ||
All | 2512.7 ± 43.7 | 2411.7 ± 43.9 | 2398.7 ± 43.6 | 2393.5 ± 43.8 | 2348.8 ± 43.7 | 2344.2 ± 43.8 | 2273.0 ± 43.8 | 2192.0 ± 44.0 | p < 0.0001 |
Age (year) | |||||||||
18–39 | 2553.0 ± 37.0 | 2428.1 ± 37.1 | 2413.1 ± 36.9 | 2395.0 ± 37.0 | 2354.0 ± 38.0 | 2352.2 ± 37.6 | 2285.3 ± 38.2 | 2197.1 ± 39.4 | p < 0.0001 |
40–60 | 2472.9 ± 66.2 | 2402.1 ± 65.9 | 2391.9 ± 65.9 | 2388.3 ± 66.0 | 2345.1 ± 66.8 | 2340.5 ± 66.0 | 2244.2 ± 66.6 | 2190.1 ± 66.1 | p < 0.0001 |
Sex | |||||||||
Male | 2740.2 ± 46.6 | 2622.3 ± 46.2 | 2602.3 ± 46.2 | 2557.2 ± 46.1 | 2535.3 ± 46.6 | 2477.3 ± 46.4 | 2475.7 ± 46.4 | 2422.9 ± 46.9 | p < 0.0001 |
Female | 2297.8 ± 45.5 | 2296.4 ± 45.7 | 2221.7 ± 45.6 | 2209.5 ± 45.3 | 2181.6 ± 45.5 | 2155.6 ± 45.5 | 2086.4 ± 45.6 | 1979.8 ± 45.9 | p < 0.0001 |
Region | |||||||||
North | 2507.4 ± 30.7 | 2380.1 ± 30.5 | 2374.0 ± 29.6 | 2263.5 ± 27.8 | 2209.5 ± 27.6 | 2205.6 ± 27.3 | 2153.6 ± 28.0 | 2077.6 ± 28.9 | p < 0.0001 |
Central | 2526.6 ± 81.1 | 2520.7 ± 81.0 | 2488.8 ± 81.5 | 2459.6 ± 81.5 | 2382.4 ± 81.4 | 2368.8 ± 81.9 | 2358.9 ± 81.3 | 2313.5 ± 81.3 | p < 0.0001 |
South | 2493.5 ± 86.2 | 2441.2 ± 86.2 | 2424.2 ± 86.0 | 2408.4 ± 86.2 | 2367.8 ± 86.2 | 2354.0 ± 86.1 | 2243.6 ± 86.3 | 2177.3 ± 86.5 | p < 0.0001 |
Income | |||||||||
Low | 2595.4 ± 58.3 | 2440.4 ± 58.5 | 2428.4 ± 58.0 | 2421.9 ± 58.8 | 2357.4 ± 58.6 | 2328.7 ± 58.3 | 2262.1 ± 58.8 | 2203.6 ± 59.4 | p < 0.0001 |
Medium | 2541.8 ± 57.8 | 2447.4 ± 58.3 | 2433.8 ± 57.9 | 2401.3 ± 57.5 | 2366.8 ± 58.1 | 2353.8 ± 57.8 | 2299.2 ± 58.0 | 2235.6 ± 58.3 | p < 0.0001 |
High | 2451.5 ± 39.7 | 2381.7 ± 40.2 | 2379.1 ± 39.3 | 2374.9 ± 39.6 | 2336.1 ± 39.7 | 2331.7 ± 39.9 | 2276.7 ± 39.6 | 2164.9 ± 40.0 | p < 0.0001 |
Urbanicity | |||||||||
Low | 2586.3 ± 81.6 | 2457.9 ± 81.7 | 2433.7 ± 58.0 | 2384.0 ± 81.4 | 2375.7 ± 81.6 | 2325.5 ± 81.5 | 2309.3 ± 81.8 | 2262.2 ± 82.0 | p < 0.0001 |
Medium | 2540.3 ± 52.9 | 2448.5 ± 52.6 | 2436.2 ± 53.1 | 2427.5 ± 53.3 | 2394.5 ± 52.9 | 2366.0 ± 53.1 | 2321.2 ± 53.2 | 2104.7 ± 53.6 | p < 0.0001 |
High | 2456.5 ± 48.1 | 2383.9 ± 47.9 | 2372.1 ± 47.5 | 2359.3 ± 48.0 | 2333.5 ± 47.7 | 2265.6 ± 47.8 | 2178.4 ± 47.9 | 2150.7 ± 48.3 | p < 0.0001 |
General Characteristics | Survey Year 1 | ptrend 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
1991 | 1993 | 1997 | 2000 | 2004 | 2006 | 2009 | 2011 | ||
All | 394.8 ± 7.6 | 372.2 ± 7.7 | 363.6 ± 7.6 | 363.2 ± 7.6 | 361.6 ± 7.6 | 353.8 ± 7.6 | 332.7 ± 7.6 | 319.4 ± 7.7 | p < 0.0001 |
Age (year) | |||||||||
18–39 | 403.7 ± 7.0 | 382.6 ± 7.0 | 371.8 ± 7.0 | 367.9 ± 6.9 | 367.2 ± 7.1 | 353.3 ± 7.1 | 332.6 ± 7.2 | 328.2 ± 7.4 | p < 0.0001 |
40–60 | 386.9 ± 11.6 | 360.5 ± 11.7 | 359.4 ± 11.7 | 356.5 ± 11.6 | 355.0 ± 11.7 | 353.4 ± 11.6 | 332.6 ± 11.6 | 314.9 ± 11.6 | p < 0.0001 |
Sex | |||||||||
Male | 428.5 ± 8.2 | 394.8 ± 8.2 | 392.0 ± 8.2 | 387.2 ± 8.3 | 384.2 ± 8.3 | 379.5 ± 8.3 | 361.7 ± 8.3 | 353.4 ± 8.4 | p < 0.0001 |
Female | 362.9 ± 7.8 | 361.4 ± 7.8 | 348.9 ± 7.8 | 334.8 ± 7.8 | 333.3 ± 7.8 | 323.0 ± 7.8 | 306.1 ± 7.8 | 288.5 ± 7.9 | p < 0.0001 |
Region | |||||||||
North | 397.6 ± 5.5 | 375.5 ± 4.7 | 370.4 ± 4.6 | 335.3 ± 4.2 | 330.8 ± 4.2 | 330.6 ± 4.2 | 320.0 ± 4.3 | 304.4 ± 4.5 | p < 0.0001 |
Central | 403.5 ± 4.8 | 392.8 ± 5.6 | 384.7 ± 5.8 | 382.8 ± 5.7 | 382.2 ± 5.7 | 375.5 ± 5.6 | 375.0 ± 5.8 | 356.2 ± 6.0 | p < 0.0001 |
South | 395.5 ± 14.9 | 363.0 ± 15.0 | 354.5 ± 14.9 | 346.4 ± 15.0 | 345.9 ± 14.9 | 339.1 ± 15.0 | 308.7 ± 15.0 | 304.8 ± 15.0 | p < 0.0001 |
Income | |||||||||
Low | 431.6 ± 10.4 | 392.7 ± 10.5 | 390.6 ± 10.4 | 384.4 ± 10.3 | 381.6 ± 10.4 | 381.0 ± 10.4 | 343.3 ± 10.5 | 327.7 ± 10.6 | p < 0.0001 |
Medium | 404.4 ± 10.1 | 381.8 ± 10.1 | 371.3 ± 10.1 | 367.0 ± 10.1 | 366.7 ± 10.0 | 363.9 ± 10.1 | 334.6 ± 10.1 | 323.2 ± 10.2 | p < 0.0001 |
High | 365.5 ± 6.6 | 358.1 ± 6.7 | 349.7 ± 6.6 | 343.9 ± 6.7 | 343.6 ± 6.6 | 323.2 ± 6.6 | 318.4 ± 6.6 | 301.7 ± 6.7 | p < 0.0001 |
Urbanicity | |||||||||
Low | 445.6 ± 18.0 | 409.5 ± 18.0 | 404.5 ± 18.0 | 388.7 ± 18.0 | 384.7 ± 18.0 | 378.3 ± 18.0 | 341.7 ± 18.0 | 329.4 ± 18.1 | p < 0.0001 |
Medium | 416.6 ± 11.7 | 404.0 ± 11.7 | 380.4 ± 11.7 | 377.7 ± 11.7 | 374.4 ± 11.6 | 360.1 ± 11.7 | 336.3 ± 11.7 | 297.8 ± 11.8 | p < 0.0001 |
High | 376.7 ± 10.2 | 368.1 ± 10.1 | 362.9 ± 10.2 | 332.0 ± 10.1 | 329.9 ± 10.1 | 305.0 ± 10.1 | 289.8 ± 10.1 | 286.3 ± 10.2 | p < 0.0001 |
General Characteristics | Survey Year 1 | ptrend 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
1991 | 1993 | 1997 | 2000 | 2004 | 2006 | 2009 | 2011 | ||
All | 65.8 ± 4.1 | 68.1 ± 4.1 | 69.1 ± 4.1 | 70.8 ± 4.1 | 72.9 ± 4.1 | 73.8 ± 4.1 | 74.8 ± 4.1 | 76.9 ± 4.1 | p < 0.0001 |
Age (year) | |||||||||
18–39 | 63.6 ± 4.0 | 67.1 ± 4.2 | 68.8 ± 4.3 | 70.5 ± 4.2 | 70.9 ± 4.2 | 71.1 ± 4.2 | 73.6 ± 4.2 | 74.0 ± 7.2 | p < 0.0001 |
40–60 | 66.4 ± 4.2 | 68.7 ± 4.1 | 69.3 ± 4.0 | 71.3 ± 4.0 | 75.1 ± 4.0 | 75.2 ± 4.0 | 76.1 ± 4.0 | 79.2 ± 4.0 | p < 0.0001 |
Sex | |||||||||
Male | 71.3 ± 4.2 | 74.6 ± 4.2 | 75.5 ± 4.2 | 78.0 ± 4.2 | 80.3 ± 4.2 | 80.6 ± 4.2 | 81.3 ± 4.2 | 84.4 ± 4.2 | p < 0.0001 |
Female | 60.4 ± 3.8 | 62.0 ± 3.8 | 62.9 ± 3.8 | 63.9 ± 3.8 | 65.9 ± 3.8 | 67.4 ± 3.8 | 68.6 ± 3.8 | 69.8 ± 3.8 | p < 0.0001 |
Region | |||||||||
North | 62.5 ± 2.7 | 65.3 ± 2.7 | 65.6 ± 2.7 | 66.9 ± 2.7 | 67.0 ± 2.7 | 68.3 ± 2.6 | 69.3 ± 2.6 | 70.4 ± 2.6 | p < 0.0001 |
Central | 57.8 ± 5.2 | 57.9 ± 5.2 | 61.7 ± 5.2 | 69.7 ± 5.1 | 71.5 ± 5.2 | 72.2 ± 5.2 | 72.8 ± 5.2 | 73.0 ± 5.2 | p < 0.0001 |
South | 75.2 ± 4.4 | 77.6 ± 4.4 | 78.5 ± 4.3 | 79.6 ± 4.4 | 79.8 ± 4.4 | 83.2 ± 4.4 | 83.4 ± 4.3 | 88.6 ± 4.4 | p < 0.0001 |
Income | |||||||||
Low | 56.2 ± 3.1 | 58.5 ± 3.1 | 62.3 ± 3.1 | 63.5 ± 3.1 | 68.5 ± 3.1 | 68.8 ± 3.1 | 70.4 ± 3.1 | 71.3 ± 3.1 | p < 0.0001 |
Medium | 64.6 ± 4.5 | 67.2 ± 4.5 | 68.4 ± 4.5 | 69.5 ± 4.5 | 72.9 ± 4.5 | 75.4 ± 4.5 | 75.5 ± 4.5 | 76.7 ± 4.5 | p < 0.0001 |
High | 72.5 ± 4.2 | 73.4 ± 4.2 | 76.9 ± 4.1 | 77.4 ± 4.1 | 77.7 ± 4.1 | 79.4 ± 4.1 | 81.9 ± 4.1 | 83.9 ± 4.1 | p < 0.0001 |
Urbanicity | |||||||||
Low | 55.3 ± 5.0 | 59.6 ± 5.0 | 59.7 ± 5.0 | 62.5 ± 5.0 | 62.9 ± 5.0 | 64.7 ± 5.0 | 66.1 ± 5.0 | 67.3 ± 5.0 | p < 0.0001 |
Medium | 59.9 ± 3.2 | 64.3 ± 3.2 | 65.0 ± 3.2 | 67.2 ± 3.2 | 74.1 ± 3.2 | 75.1 ± 3.1 | 77.4 ± 3.2 | 80.2 ± 3.2 | p < 0.0001 |
High | 71.0 ± 3.9 | 73.1 ± 3.9 | 76.6 ± 3.9 | 80.4 ± 3.9 | 81.7 ± 3.9 | 82.3 ± 3.9 | 84.7 ± 3.9 | 87.4 ± 3.9 | p < 0.0001 |
General Characteristics | Survey Year 1 | ptrend 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
1991 | 1993 | 1997 | 2000 | 2004 | 2006 | 2009 | 2011 | ||
All | 24.4 ± 0.6 | 25.4 ± 0.6 | 26.5 ± 0.6 | 34.8 ± 0.7 | 38.7 ± 0.6 | 47.9 ± 0.7 | 52.7 ± 0.7 | 58.3 ± 0.7 | p < 0.0001 |
Age (year) | |||||||||
18–39 | 24.9 ± 0.8 | 25.8 ± 0.8 | 26.2 ± 0.8 | 37.7 ± 0.9 | 33.1 ± 1.0 | 48.3 ± 1.1 | 51.6 ± 1.1 | 57.9 ± 1.3 | p < 0.0001 |
40–60 | 23.6 ± 0.9 | 24.7 ± 1.0 | 27.8 ± 0.9 | 39.8 ± 0.9 | 35.9 ± 0.9 | 47.7 ± 0.9 | 53.4 ± 0.9 | 58.5 ± 0.9 | p < 0.0001 |
Sex | |||||||||
Male | 26.0 ± 0.9 | 27.1 ± 0.8 | 27.6 ± 0.9 | 35.3 ± 0.9 | 39.0 ± 0.9 | 48.4 ± 0.9 | 53.2 ± 1.0 | 57.9 ± 1.1 | p < 0.0001 |
Female | 22.8 ± 0.8 | 23.4 ± 0.8 | 25.8 ± 0.8 | 34.3 ± 0.9 | 38.5 ± 0.9 | 47.5 ± 1.0 | 52.3 ± 1.0 | 58.6 ± 1.0 | p < 0.0001 |
Region | |||||||||
North | 17.2 ± 1.1 | 19.4 ± 1.1 | 24.5 ± 1.2 | 35.9 ± 1.1 | 41.2 ± 1.2 | 44.9 ± 1.2 | 50.1 ± 1.2 | 55.1 ± 1.3 | p < 0.0001 |
Central | 16.7 ± 0.9 | 18.8 ± 1.0 | 27.4 ± 1.2 | 28.3 ± 1.0 | 36.9 ± 1.2 | 42.8 ± 1.2 | 46.1 ± 1.2 | 54.2 ± 1.3 | p < 0.0001 |
South | 29.0 ± 1.0 | 31.7 ± 1.0 | 35.3 ± 1.1 | 36.3 ± 1.0 | 43.2 ± 1.1 | 56.0 ± 1.2 | 61.8 ± 1.2 | 65.1 ± 1.2 | p < 0.0001 |
Income | |||||||||
Low | 15.0 ± 0.9 | 15.5 ± 0.9 | 19.0 ± 0.9 | 22.7 ± 1.0 | 27.7 ± 1.0 | 36.9 ± 1.3 | 45.3 ± 1.3 | 51.7 ± 1.4 | p < 0.0001 |
Medium | 23.4 ± 1.0 | 23.6 ± 1.0 | 24.5 ± 1.1 | 33.0 ± 1.2 | 35.6 ± 1.1 | 44.7 ± 1.2 | 51.7 ± 1.2 | 58.4 ± 1.3 | p < 0.0001 |
High | 31.6 ± 1.1 | 32.1 ± 1.1 | 38.3 ± 1.1 | 46.7 ± 1.1 | 51.4 ± 1.1 | 59.1 ± 1.1 | 59.3 ± 1.1 | 62.8 ± 1.2 | p < 0.0001 |
Urbanicity | |||||||||
Low | 11.2 ± 0.8 | 14.3 ± 0.9 | 18.1 ± 0.9 | 19.1 ± 0.9 | 22.2 ± 1.0 | 30.6 ± 1.1 | 36.0 ± 1.2 | 45.2 ± 1.3 | p < 0.0001 |
Medium | 18.7 ± 1.0 | 21.5 ± 1.0 | 23.5 ± 1.0 | 33.0 ± 1.1 | 38.5 ± 1.1 | 47.9 ± 1.2 | 53.2 ± 1.2 | 56.9 ± 1.3 | p < 0.0001 |
High | 34.6 ± 1.1 | 35.9 ± 1.1 | 43.7 ± 1.1 | 51.9 ± 1.2 | 57.0 ± 1.1 | 62.9 ± 1.1 | 67.9 ± 1.1 | 70.8 ± 1.1 | p < 0.0001 |
General Characteristics | Survey Year 1 | ptrend 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
1991 | 1993 | 1997 | 2000 | 2004 | 2006 | 2009 | 2011 | ||
All | 75.3 ± 1.5 | 74.7 ± 1.5 | 73.9 ± 1.5 | 71.4 ± 1.5 | 70.2 ± 1.5 | 69.6 ± 1.5 | 69.3 ± 1.5 | 64.4 ± 1.5 | p < 0.0001 |
Age (year) | |||||||||
18–39 | 76.9 ± 1.4 | 75.9 ± 1.4 | 74.8 ± 1.4 | 70.6 ± 1.4 | 69.3 ± 1.4 | 68.9 ± 1.4 | 68.7 ± 1.4 | 65.0 ± 1.5 | p < 0.0001 |
40–60 | 73.3 ± 1.9 | 73.4 ± 1.9 | 73.1 ± 1.9 | 72.7 ± 1.9 | 71.0 ± 1.9 | 70.8 ± 1.9 | 70.0 ± 1.9 | 64.1 ± 1.9 | p < 0.0001 |
Sex | |||||||||
Male | 80.6 ± 1.8 | 79.7 ± 1.8 | 79.3 ± 1.8 | 78.0 ± 1.8 | 76.3 ± 1.8 | 75.5 ± 1.8 | 75.2 ± 1.8 | 71.3 ± 1.8 | p < 0.0001 |
Female | 71.0 ± 1.4 | 70.4 ± 1.4 | 67.5 ± 1.4 | 65.0 ± 1.4 | 64.4 ± 1.3 | 64.3 ± 1.2 | 63.5 ± 1.4 | 58.1 ± 1.4 | p < 0.0001 |
Region | |||||||||
North | 78.1 ± 2.5 | 77.5 ± 2.5 | 72.6 ± 2.5 | 71.4 ± 2.5 | 66.9 ± 2.5 | 66.4 ± 2.4 | 64.9 ± 2.5 | 63.5 ± 2.5 | p < 0.0001 |
Central | 75.7 ± 3.7 | 74.9 ± 3.7 | 75.5 ± 3.7 | 73.5 ± 3.7 | 72.5 ± 3.7 | 71.8 ± 3.7 | 70.7 ± 3.7 | 69.8 ± 3.7 | p < 0.0001 |
South | 72.8 ± 2.4 | 72.4 ± 2.4 | 72.5 ± 2.4 | 71.5 ± 2.4 | 70.7 ± 2.4 | 68.0 ± 2.4 | 66.7 ± 2.4 | 61.6 ± 2.4 | p < 0.0001 |
Income | |||||||||
Low | 74.2 ± 2.1 | 72.7 ± 2.1 | 72.1 ± 2.1 | 70.3 ± 2.1 | 68.7 ± 2.1 | 68.4 ± 2.1 | 67.1 ± 2.1 | 62.3 ± 2.1 | p < 0.0001 |
Medium | 75.8 ± 1.4 | 74.6 ± 1.4 | 74.0 ± 1.4 | 71.6 ± 1.4 | 69.8 ± 1.4 | 69.6 ± 1.4 | 69.0 ± 1.4 | 66.2 ± 1.4 | p < 0.0001 |
High | 76.3 ± 1.5 | 76.2 ± 1.5 | 73.4 ± 1.5 | 72.4 ± 1.5 | 72.3 ± 1.5 | 71.0 ± 1.5 | 71.9 ± 1.5 | 66.8 ± 1.5 | p < 0.0001 |
Urbanicity | |||||||||
Low | 74.7 ± 2.3 | 74.0 ± 2.3 | 71.1 ± 2.3 | 70.8 ± 2.3 | 68.6 ± 2.3 | 68.6 ± 2.3 | 66.5 ± 2.3 | 65.2 ± 2.3 | p < 0.0001 |
Medium | 73.7 ± 1.6 | 73.3 ± 1.6 | 72.5 ± 1.6 | 71.2 ± 1.6 | 71.5 ± 1.6 | 69.7 ± 1.6 | 70.1 ± 1.6 | 61.9 ± 1.6 | p < 0.0001 |
High | 77.6 ± 1.5 | 77.0 ± 1.5 | 75.3 ± 1.5 | 73.0 ± 1.5 | 72.3 ± 1.5 | 71.2 ± 1.5 | 71.4 ± 1.5 | 66.7 ± 1.5 | p < 0.0001 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, C.; Zhao, J.; Wu, Y.; Wang, H.; Wang, Z.; Wang, Y.; Zhang, B. Temporal Trends in Dietary Macronutrient Intakes among Adults in Rural China from 1991 to 2011: Findings from the CHNS. Nutrients 2017, 9, 227. https://doi.org/10.3390/nu9030227
Su C, Zhao J, Wu Y, Wang H, Wang Z, Wang Y, Zhang B. Temporal Trends in Dietary Macronutrient Intakes among Adults in Rural China from 1991 to 2011: Findings from the CHNS. Nutrients. 2017; 9(3):227. https://doi.org/10.3390/nu9030227
Chicago/Turabian StyleSu, Chang, Jian Zhao, Yang Wu, Huijun Wang, Zhihong Wang, Yun Wang, and Bing Zhang. 2017. "Temporal Trends in Dietary Macronutrient Intakes among Adults in Rural China from 1991 to 2011: Findings from the CHNS" Nutrients 9, no. 3: 227. https://doi.org/10.3390/nu9030227
APA StyleSu, C., Zhao, J., Wu, Y., Wang, H., Wang, Z., Wang, Y., & Zhang, B. (2017). Temporal Trends in Dietary Macronutrient Intakes among Adults in Rural China from 1991 to 2011: Findings from the CHNS. Nutrients, 9(3), 227. https://doi.org/10.3390/nu9030227