“Eat as If You Could Save the Planet and Win!” Sustainability Integration into Nutrition for Exercise and Sport
Abstract
:1. Introduction
1.1. Environmental Impact of Food
1.2. Dietary Change to Reduce Environmental Impact
2. Dietary Guidelines and Sustainability
2.1. Are People Willing to Change Diets to Protect the Environment?
2.2. Duality of Sustainability and Health
3. Eat as If You Could Save the Planet and Win!
3.1. Ecological Footprint: This Gets us Thinking
3.2. Sustainability in Sports Nutrition?
3.3. Quantity of Food
3.3.1. Eat Less and Better Meat
3.3.2. Insects
3.3.3. Dairy
3.3.4. Reinventing the Athlete’s Plate
3.3.5. An Omnivore’s Choice to Eat Vegan
3.4. Quality of Food
3.4.1. Plant Biodiversity—Diet Diversity
3.4.2. Nutrient Composition and Nutrient Density
3.4.3. The Grain Chain
3.5. Food Literacy and Food Citizenship in Sports and Exercise
3.5.1. Athletes to Farm
3.5.2. Taste Education and Cooking
3.5.3. Budgets, Planning, and Food Waste
3.6. Timing of Sustainability Integration in Exercise and Sports
3.7. Integration of Sustainability Practices as Collective Commitment in Sports
3.7.1. Team Sustainability
3.7.2. Institutional Sustainability
3.7.3. Event Sustainability
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falucci, A.; Tempio, G. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; The Food and Agriculture Organization (FAO): Rome, Italy, 2013. [Google Scholar]
- Sutton, C.; Dibb, S. Prime Cuts, Valuing the Meat We Eat; World Wildlife Fund, Food Ethics Council: Godalming, UK, 2013. [Google Scholar]
- The Food and Agriculture Organization. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2014; Volume 2014. [Google Scholar]
- The Food and Agriculture Organization. Livestock ’s Long Shadow Environmental Issues and Options; FAO: Rome, Italy, 2007. [Google Scholar]
- Pan, A.; Sun, Q.; Bernstein, A.M.; Schulze, M.B.; Manson, J.E.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Red meat consumption and mortality. Arch. Intern. Med. 2012, 172, 555–563. [Google Scholar] [PubMed]
- Richman, E.L.; Stampfer, M.J.; Paciorek, A.; Broering, J.M.; Carroll, P.R.; Chan, J.M. Intakes of meat, fish, poultry, and eggs and risk of prostate cancer progression. Am. J. Clin. Nutr. 2010, 91, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change. IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Gornall, J.; Betts, R.; Burke, E.; Clark, R.; Camp, J.; Willett, K.; Wiltshire, A. Implications of climate change for agricultural productivity in the early twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2973–2989. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.L.; Battisti, D.S.; Vimont, D.J.; Falcon, W.P.; Burke, M.B. Assessing risks of climate variability and climate change for Indonesian rice agriculture. Proc. Natl. Acad. Sci. USA 2007, 104, 7752–7757. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Sato, M.; Hearty, P.; Ruedy, R.; Kelley, M.; Masson-Delmotte, V.; Russell, G.; Tselioudis, G.; Cao, J.; Rignot, E.; et al. Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous. Atmos. Chem. Phys. 2016, 16, 3761–3812. [Google Scholar] [CrossRef]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; Declerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Smil, V. Feeding the World: A Challenge for the 21st Century, 1st ed.; Massachusetts Institute of Technology, MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Kibria, G.; Yousuf Haroon, A.; Nugegoda, D.; Rose, G. Climate Change and Chemicals: Environmental and Biological Aspects; New Indial Publishing: New Delhi, India, 2010. [Google Scholar]
- Bajželj, B.; Richards, K.S.; Allwood, J.M.; Smith, P.; Dennis, J.S.; Curmi, E.; Gilligan, C.A. Importance of food-demand management for climate mitigation. Nat. Clim. Chang. 2014, 4, 924–929. [Google Scholar] [CrossRef]
- Miranda, N.D.; Tuomisto, H.L.; McCulloch, M.D. Meta-analysis of greenhouse gas emissions from anaerobic digestion processes in dairy farms. Environ. Sci. Technol. 2015, 49, 5211–5219. [Google Scholar] [CrossRef] [PubMed]
- Ripple, W.J.; Smith, P.; Haberl, H.; Montzka, S.A.; McAlpine, C.; Boucher, D.H. Ruminants, climate change and climate policy. Nat. Clim. Chang. 2014, 4, 2–5. [Google Scholar] [CrossRef]
- Eshel, G.; Shepon, A.; Makov, T.; Milo, R. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 11996–12001. [Google Scholar] [CrossRef] [PubMed]
- Nemecek, T.; Dubois, D.; Huguenin-Elie, O.; Gaillard, G. Life cycle assessment of Swiss farming systems: I. Integrated and organic farming. Agric. Syst. 2011, 104, 217–232. [Google Scholar] [CrossRef]
- Sabaté, J.; Sranacharoenpong, K.; Harwatt, H.; Wien, M.; Soret, S. The environmental cost of protein food choices. Public Health Nutr. 2014, 18, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Auestad, N.; Fulgoni, V.L. What current literature tells us about sustainable diets: emerging research linking dietary patterns, environmental sustainability, and economics. Adv. Nutr. 2015, 6, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. PNAS 1999, 96, 5995–6000. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Havlík, P.; Valin, H.; Notenbaert, A.; Rufino, M.C.; Thornton, P.K.; Blümmel, M.; Weiss, F.; Grace, D.; Obersteiner, M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20888–20893. [Google Scholar] [CrossRef] [PubMed]
- Fantke, P.; Jolliet, O. Life cycle human health impacts of 875 pesticides. Int. J. Life Cycle Assess. 2016, 21, 722–733. [Google Scholar] [CrossRef]
- Guyton, K.Z.; Loomis, D.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Scoccianti, C.; Mattock, H.; Straif, K.; Blair, A.; et al. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol. 2015, 16, 490–491. [Google Scholar] [CrossRef]
- O’Kane, G. What is the real cost of our food? Implications for the environment, society and public health nutrition. Public Health Nutr. 2012, 15, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Viel, J.-F.; Warembourg, C.; Le Maner-Idrissi, G.; Lacroix, A.; Limon, G.; Rouget, F.; Monfort, C.; Durand, G.; Cordier, S.; Chevrier, C. Pyrethroid insecticide exposure and cognitive developmental disabilities in children: The PELAGIE mother-child cohort. Environ. Int. 2015, 82, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Samsel, A.; Seneff, S. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance. Interdiscip. Toxicol. 2013, 6, 159–184. [Google Scholar] [CrossRef] [PubMed]
- Samsel, A.; Seneff, S. Glyphosate’s Suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: Pathways to modern diseases. Entropy 2013, 15, 1416–1463. [Google Scholar] [CrossRef]
- Raanan, R.; Harley, K.G.; Balmes, J.R.; Bradman, A.; Lipsett, M.; Eskenazi, B. Early-life exposure to organophosphate pesticides and pediatric respiratory symptoms in the CHAMACOS cohort. Environ. Health Perspect. 2015, 123, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Stein, L.J.; Gunier, R.B.; Harley, K.; Kogut, K.; Bradman, A.; Eskenazi, B. Early childhood adversity potentiates the adverse association between prenatal organophosphate pesticide exposure and child IQ: The CHAMACOS cohort. Neurotoxicology 2016, 56, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Bassett, A.; Gunther, A.; Mundy, P. A Breath of Fresh Air: The Truth about Pasture-Based Livestock Production and Environmental Sustainability. 2013. Available online: http://animalwelfareapproved.org/wp-content/uploads/2013/01/A-Breath-of-Fresh-Air-v1.pdf (accessed on March 7 2016).
- Carlsson-Kanyama, A.; González, A.D. Potential contributions of food consumption patterns to climate change. Am. J. Clin. Nutr. 2009, 89, 1704S–1709S. [Google Scholar] [CrossRef] [PubMed]
- Macdiarmid, J.I.; Kyle, J.; Horgan, G.W.; Loe, J.; Fyfe, C.; Johnstone, A.; McNeill, G. Clean fuel for the future: Can we contribute to reducing greenhouse gas emissions by eating a healthy diet. Am. J. Clin. Nutr. 2012, 96, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, J.; Cederberg, C.; Sonesson, U. Global Food Losses and Food Waste—Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- The Food and Agriculture Organization. Food Wastage Footprint Summary Report; FAO: Rome, Italy, 2013. [Google Scholar]
- Reynolds, L.P.; Wulster-Radcliffe, M.C.; Aaron, D.K.; Davis, T.A. Importance of animals in agricultural sustainability and food security. J. Nutr. 2015, 145, 1377–1379. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Phil. Trans. R. Soc. B 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Guo, J.; Dore, M.; Chow, C.C. The progressive increase of food waste in america and its environmental impact. PLoS ONE 2009, 4, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Gunders, D. Wasted: How America Is Losing Up to 40 Percent of Its Food from Farm to Fork to Landfill. Available online: https://www.nrdc.org/sites/default/files/wasted-food-IP.pdf (accessed on 3 November 2016).
- Jones, T.W. Using Contemporary Archaeology and Applied Anthropology to Understand Food Loss in the American Food System. Available online: http://www.ce.cmu.edu/~gdrg/readings/2006/12/19/Jones_UsingContemporaryArchaeologyAndAppliedAnthropologyToUnderstandFoodLossInAmericanFoodSystem.pdf (accessed on 15 October 2016).
- Konikow, L.F. Groundwater Depletion in the United States (1900–2008). Available online: http://pubs.usgs.gov/sir/2013/5079 (accessed on 11 June 2015).
- Mekonnen, M.M.; Hoekstra, A.Y. A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef]
- International Organization for Standarization (ISO). Environmental management—Life Cycle Assessment—Principles and Framework; ISO/TC 207; Environmental Management, Subcommittee SC5: Geneva, Switzerland, 2006. [Google Scholar]
- Springmann, M.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Garnett, T. Food security and sustainable intensification. Philos. Trans. R. Soc. B 2014. [Google Scholar] [CrossRef] [PubMed]
- Donini, L.M.; Dernini, S.; Lairon, D.; Serra-Majem, L.; Amiot, M.-J.; del Balzo, V.; Giusti, A.-M.; Burlingame, B.; Belahsen, R.; Maiani, G.; et al. A consensus proposal for nutritional indicators to assess the sustainability of a healthy diet: the mediterranean diet as a case study. Front. Nutr. 2016. [Google Scholar] [CrossRef] [PubMed]
- Macdiarmid, J.I. Is a healthy diet an environmentally sustainable diet? Proc. Nutr. Soc. 2013, 72, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P. Environmental impact of dietary change: A systematic review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Masset, G.; Vieux, F.; Verger, E.O.; Soler, L.G.; Touazi, D.; Darmon, N. Reducing energy intake and energy density for a sustainable diet: A study based on self-selected diets in French adults. Am. J. Clin. Nutr. 2014, 99, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Friel, S.; Dangour, A.D.; Garnett, T.; Lock, K.; Chalabi, Z.; Roberts, I.; Butler, A.; Butler, C.D.; Waage, J.; McMichael, A.J.; et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Food and agriculture. Lancet 2009, 374, 2016–2025. [Google Scholar] [CrossRef]
- Westhoek, H.; Lesschen, J.P.; Rood, T.; Wagner, S.; De Marco, A.; Murphy-Bokern, D.; Leip, A.; van Grinsven, H.; Sutton, M.A.; Oenema, O. Food choices, health and environment: Effects of cutting Europe’s meat and dairy intake. Glob. Environ. Chang. 2014, 26, 196–205. [Google Scholar] [CrossRef]
- Sabaté, J.; Harwatt, H.; Soret, S. Environmental nutrition: A new frontier for public health. Am. J. Public Health 2016, 106, 815–821. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.; de Witt, A.; Aiking, H. Help the climate, change your diet: A cross-sectional study on how to involve consumers in a transition to a low-carbon society. Appetite 2016, 98, 19–27. [Google Scholar] [CrossRef] [PubMed]
- The Food and Agriculture Organization. Plates, Pyramids, Planets. Developments in National Healthy and Sustainable Dietary Guidelines: A State of Play Assessment; FAO and the Food Climate Research Network at The University of Oxford (FCRN): Oxford, UK, 2016. [Google Scholar]
- Hoekstra, A.Y. The hidden water resource use behind meat and dairy. Anim. Front. 2012, 2, 3–8. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: A systematic review. PLoS ONE 2016, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Aiking, H. Protein production: Planet, profit, plus people? Am. J. Clin. Nutr. 2014, 100, 483–489. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture. Profiling Food Consumption in America. In Agriculture Fact Book; The Delano Max Wealth Institute, Limited Liability Company: Las Vegas, NV, USA, 2003; pp. 13–22. [Google Scholar]
- Scarborough, P.; Appleby, P.N.; Mizdrak, A.; Briggs, A.D.M.; Travis, R.C.; Bradbury, K.E.; Key, T.J. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim. Chang. 2014, 125, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Macdiarmid, J.I.; Douglas, F.; Campbell, J. Eating like there’s no tomorrow: Public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. Appetite 2016, 96, 487–493. [Google Scholar] [CrossRef] [PubMed]
- DeLonge, M.S.; Owen, J.J.; Silver, W.L. Greenhouse Gas Mitigation Opportunities in California Agriculture: Review of California Rangeland Emissions and Mitigation Potential. NI GGMOCA R 4; Duke University: Durham, NC, USA, 2014. [Google Scholar]
- Lagerberg Fogelberg, C. Towards Environmentally Sound Dietary Guidelines; Swedish National Food Agency’s Dietary Guidelines, IDEON Agro Food: Uppsala, Sweden, 2013. [Google Scholar]
- U.S. Department of Agriculture (USDA). Agriculture Fact Book 2001–2002; USDA: Raleigh, NC, USA, 2002.
- U.S. Department of Agriculture (USDA). Scientific Report of the 2015 Dietary Guidelines Advisory Committee; USDA: Raleigh, NC, USA, 2015.
- U.S. Department of Agriculture (USDA). 2015–2020 Dietary Guidelines for Americans; USDA: Raleigh, NC, USA, 2015.
- Saxe, H.; Jensen, J.D. Does the environmental gain of switching to the healthy New Nordic Diet outweigh the increased consumer cost? In Proceedings of the 9th International Conference Proceedings LCA of Food, San Francisco, CA, USA, 8–10 October 2014. [Google Scholar]
- Van Dooren, C.; Aiking, H. Defining a nutritionally healthy, environmentally friendly, and culturally acceptable Low Lands Diet. Int. J. Life Cycle Assess. 2016, 21, 688–700. [Google Scholar] [CrossRef]
- Public Health England; Welsh Government; Food Standards Scotland; Food Standards Agency in Northen Ireland. Eat Well Guide; Food Standards, Scottland: Aberdeen, Scottland, 2016. [Google Scholar]
- Krebs-Smith, S.M.; Guenther, P.M.; Subar, A.F.; Kirkpatrick, S.I.; Dodd, K.W. Americans do not meet federal dietary recommendations. J. Nutr. 2010, 140, 1832–1838. [Google Scholar] [CrossRef] [PubMed]
- Schösler, H.; Boer, J.; de Boersema, J.J. Can we cut out the meat of the dish? Constructing consumer-oriented pathways towards meat substitution. Appetite 2012, 58, 39–47. [Google Scholar]
- Hekler, E.B.; Gardner, C.D.; Robinson, T.N. Effects of a College Course about Food and Society on Students’ Eating Behaviors. AMEPRE 2010, 38, 543–547. [Google Scholar] [CrossRef] [PubMed]
- The Culinary Institute of America; Harvard School of Public Health The Protein Flip. Available online: http://www.menusofchange.org/images/uploads/pdf/CIA_The_Protein_Flip_C_FINAL_6-17-15.pdf (accessed on 10 October 2016).
- Meatless Mondays. Available online: www.meatlessmonday.com (accessed on 10 August 2016).
- Brundtland, G. Report of the World Commision on Environement and Development: Our Common Future. Oxf. Pap. 1987. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Batello, C.; Wade, L.; Cox, S.; Pogna, N.; Bozzini, A.; Choptiany, J. Perennial Crops for Food Security: Proceedings of the FAO Expert Workshop; FAO: Rome, Italy, 2014. [Google Scholar]
- The Food And Agriculture Organization. Sustainable Diets and Biodiversity; FAO: Rome, Italy, 2010. [Google Scholar]
- Kjӕrgård, B.; Land, B.; Bransholm Pedersen, K. Health and sustainability. Health Promot. Int. 2014, 29, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Wallace, S.K.; Mozaffarian, D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: A systematic review and meta-analysis. Circulation 2010, 121, 2271–2283. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Han, Y.; Xu, J.; Zhu, W.; Li, Z. Red and processed meat intake and risk of esophageal adenocarcinoma: A meta-analysis of observational studies. Cancer Causes Control 2013, 24, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.M. Farm animal welfare and human health. Curr. Environ. Heal. Rep. 2016, 3, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Garnett, B.T. Plating up solutions. Sci. Mag. 2016. [Google Scholar] [CrossRef] [PubMed]
- Egli, V.; Oliver, M.; Tautolo, E.S. The development of a model of community garden benefits to wellbeing. Prev. Med. Rep. 2016, 3, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, K.; Land, B.; Kjӕrgård, B. Duality of health promotion and sustainable development: Perspectives on food waste reduction strategies. J. Transdiscipl. Environ. Stud. 2015, 14, 5–18. [Google Scholar]
- Hanlon, P.; Carlisle, S.; Hannah, M.; Lyon, A.; Reilly, D. A perspective on the future public health practitioner. Perspect. Public Health 2012, 132, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Personal Footprint. Available online: http://www.footprintnetwork.org/en/index.php/GFN/page/personal_footprint (accessed on 31 October 2016).
- TrueSport: U.S. Anti-Doping Agency. Available online: http://www.usada.org/truesport/ (accessed on 28 July 2016).
- Sundgot-Borgen, J.; Meyer, N.L.; Lohman, T.G.; Ackland, T.R.; Maughan, R.J.; Stewart, A.D.; Müller, W. How to minimise the health risks to athletes who compete in weight-sensitive sports review and position statement on behalf of the Ad Hoc Research Working Group on Body Composition, Health and Performance, under the auspices of the IOC Medical Commission. Br. J. Sports Med. 2013, 47, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Bratland-Sanda, S.; Sundgot-Borgen, J. Eating disorders in athletes: Overview of prevalence, risk factors and recommendations for prevention and treatment. Eur. J. Sport Sci. 2013, 13, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Parnell, J.A.; Wiens, K.P.; Erdman, K.A. Dietary intakes and supplement use in pre-adolescent and adolescent Canadian athletes. Nutrients 2016, 8, 526. [Google Scholar] [CrossRef] [PubMed]
- Gillen, J.B.; Trommelen, J.; Wardenaar, F.C.; Brinkmans, N.Y.J.; Versteegen, J.J.; Jonvik, K.L.; Kapp, C.; de Vries, J.; van den Borne, J.J.G.C.; Gibala, M.J.; et al. Dietary protein intake and distribution patterns of well-trained dutch athletes. Int. J. Sport Nutr. Exerc. Metab. 2016, 27, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Juzwiak, C.R.; Amancio, O.M.S.; Vitalle, M.S.S.; Pinheiro, M.M.; Szejnfeld, V.L. Body composition and nutritional profile of male adolescent tennis players. J. Sports Sci. 2008, 26, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Spendlove, J.; Mitchell, L.; Gifford, J.; Hackett, D.; Slater, G.; Cobley, S.; O’Connor, H. Dietary intake of competitive bodybuilders. Sports Med. 2015, 45, 1041–1063. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [PubMed]
- Churchward-Venne, T.A.; Murphy, C.H.; Longland, T.M.; Phillips, S.M. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans. Amino Acids. 2013, 45, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R.; Churchward-Venne, T.A.; Witard, O.; Breen, L.; Burd, N.A.; Tipton, K.D.; Phillips, S.M. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Atherton, P.J.; Etheridge, T.; Watt, P.W.; Wilkinson, D.; Selby, A.; Rankin, D.; Smith, K.; Rennie, M.J. Muscle full effect after oral protein: Time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am. J. Clin. Nutr. 2010, 92, 1080–1088. [Google Scholar] [CrossRef] [PubMed]
- Areta, J.L.; Burke, L.M.; Ross, M.L.; Camera, D.M.; West, D.W.D.; Broad, E.M.; Jeacocke, N.A.; Moore, D.R.; Stellingwerff, T.; Phillips, S.M.; et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J. Physiol. 2013, 591, 2319–2331. [Google Scholar] [CrossRef] [PubMed]
- Res, P.T.; Groen, B.; Pennings, B.; Beelen, M.; Wallis, G.A.; Gijsen, A.P.; Senden, J.M.G.; Van Loon, L.J.C. Protein ingestion before sleep improves postexercise overnight recovery. Med. Sci. Sports Exerc. 2012, 44, 1560–1569. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Chevalier, S.; Leidy, H.J. Protein “requirements” beyond the RDA: Implications for optimizing health. Appl. Physiol. Nutr. Metab. 2016, 572, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M. A brief review of higher dietary protein diets in weight loss: A focus on athletes. Sport. Med. 2014, 44, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Helms, E.R.; Zinn, C.; Rowlands, D.S.; Brown, S.R. A systematic review of dietary protein during caloric restriction in resistance trained lean athletes: A case for higher intakes. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Helms, E.R.; Aragon, A.A.; Fitschen, P.J. Evidence-based recommendations for natural bodybuilding contest preparation: Nutrition and supplementation. J. Int. Soc. Sports Nutr. 2014, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Arciero, P.J.; Miller, V.J.; Ward, E. Performance enhancing diets and the PRISE protocol to optimize athletic performance. J. Nutr. Metab. 2015. [Google Scholar] [CrossRef] [PubMed]
- Pelly, F.E.; Burkhart, S.J. Dietary regimens of athletes competing at the Delhi 2010 Commonwealth Games. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Della Guardia, L.; Cavallaro, M.; Cena, H. The risks of self-made diets: The case of an amateur bodybuilder. J. Int. Soc. Sports Nutr. 2015, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Manore, M.M.; Meyer, N.L.; Janice, T. Sport Nutrition for Health and Performance, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2009. [Google Scholar]
- Council for Agriculture Science Technology. Animal Agriculture and Global Food Supply; Library of Congress Cataloging in Publication Data: Ames, IA, USA, 1999; Volume 135. [Google Scholar]
- Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/#home (accessed on 29 August 2016).
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Available online: www.iom.edu (accessed on 15 November 2016).
- Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 2010, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Tessari, P.; Lante, A.; Mosca, G. Essential amino acids: Master regulators of nutrition and environmental footprint? Sci. Rep. 2016, 6, 26074. [Google Scholar] [CrossRef] [PubMed]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A.; Itterbeeck, J.; Van Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects. Future Prospects for Food and Feed Security; FAO: Rome, Italy, 2013; Volume 171. [Google Scholar]
- Babault, N.; Païzis, C.; Deley, G.; Guérin-Deremaux, L.; Saniez, M.-H.; Lefranc-Millot, C.; Allaert, F.A. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: A double-blind, randomized, placebo-controlled clinical trial vs. whey protein. J. Int. Soc. Sports Nutr. 2015, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- The Food and Agriculture Organization. Animal Production and Health Division. In Greenhouse Gas Emissions from the Dairy Sector: A Life Cycle Assessment; FAO: Rome, Italy, 2010. [Google Scholar]
- Von Keyserlingk, M.A.G.; Martin, N.P.; Kebreab, E.; Knowlton, K.F.; Grant, R.J.; Stephenson, M.; Sniffen, C.J.; Harner, J.P.; Wright, A.D.; Smith, S.I. Invited review: Sustainability of the US dairy industry. J. Dairy Sci. 2013, 96, 5405–5425. [Google Scholar] [CrossRef] [PubMed]
- Pilet, V.; Owens, S.; Rouyer, B.; Jachnik, P.; Valstar, M.; Scheepstra, J.; Jansen, J.; Krijger, A. The World Dairy Situation 2010; Bulletin 446/2010; International Dairy Federation (I.N.P.A): Brussels, Belgium, 2010; pp. 1–212. [Google Scholar]
- Buttriss, J.L. The Eatwell Guide refreshed. Nutr. Bull. 2016, 41, 135–141. [Google Scholar] [CrossRef]
- Vergé, X.P.C.; Maxime, D.; Dyer, J.A.; Desjardins, R.L.; Arcand, Y.; Vanderzaag, A. Carbon footprint of Canadian dairy products: Calculations and issues. J. Dairy Sci. 2013, 96, 6091–6104. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V. From yaks to yogurt: The history, development, and current use of probiotics. Clin. Infect. Dis. 2015, 60, S85–S90. [Google Scholar] [CrossRef] [PubMed]
- Slow Food USA. Slow Meat. Available online: https://www.slowfoodusa.org/slow-meat (accessed on 6 July 2016).
- Culinary Institute of America; Harvard School of Public Health. Protein Plays: Foodservice Strategies for Our Future. Available online: www.menusofchange.org (accessed on 16 November 2016).
- Team USA Nutrition. Available online: http://www.teamusa.org/nutrition (accessed on 20 February 2016).
- Reguant-Closa, A.; Harris, M.; Meyer, N. Validation of the athlete’s plate quantitative analysis (Phase 1). Int. J. Sport. Nutr. Exerc. Metab. 2016, 26, S1–S15. [Google Scholar]
- Reguant-Closa, A.; Judson, A.; Harris, M.; Moreman, T.; Meyer, N.L. Including sustainability principles into the Athlete’s Plate Nutritional Educational Tool. In Proceedings of the 17th International Confederation of Dietetics Associations, Granada, Spain, 7–10 September 2016. [Google Scholar]
- Drewnowski, A.; Fulgoni, V. Nutrient density: principles and evaluation tools. Am. J. Clin. Nutr. 2014, 99, 1223S-8S. [Google Scholar] [CrossRef] [PubMed]
- Lobstein, T.; Davies, S. Defining and labelling “healthy” and “unhealthy” food. Public Health Nutr. 2009, 12, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Knapik, J.J.; Steelman, R.A.; Hoedebecke, S.S.; Austin, K.G.; Farina, E.K.; Lieberman, H.R. Prevalence of Dietary supplement use by athletes: systematic review and meta-analysis. Sports Med. 2016, 46, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Judson, A.W.; Moreman, T.; Meyer, N.L. Integrating Sustainability into Sports Nutrition: The Protein Flip for Athlete’s. 2016; Unpublished work. [Google Scholar]
- University of Colorado, Colorado Springs (UCCS). Dining and Hospitality Services: Food Next Door. Available online: http://www.uccs.edu/diningservices/swell/food-next-door.html (accessed on 1 October 2016).
- Scheers, N.; Rossander-Hulthen, L.; Torsdottir, I.; Sandberg, A.-S. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe(3+)). Eur. J. Nutr. 2016, 55, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Bering, S.; Suchdev, S.; Sjøltov, L.; Berggren, A.; Tetens, I.; Bukhave, K. A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-rich meal in healthy women of childbearing age. Br. J. Nutr. 2006, 96, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, L.; Rossander, L. Absorption of iron from Western-type lunch and dinner meals. Am. J. Clin. Nutr. 1982, 35, 502–509. [Google Scholar] [PubMed]
- Kwak, C.S.; Lee, M.S.; Oh, S.I.; Park, S.C. Discovery of novel sources of vitamin B 12 in traditional korean foods from nutritional surveys of centenarians. Curr. Gerontol. Geriatr. Res. 2010, 2010, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C. Physical fitness and vegetarian diets: Is there a relation? Am. J. Clin. Nutr. 1999, 70, 570S–575S. [Google Scholar] [PubMed]
- Barr, S.I.; Rideout, C.A. Nutritional considerations for vegetarian athletes. Nutrition 2004, 20, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Venderley, A.M.; Campbell, W.W. Vegetarian diets: Nutritional considerations for athletes. Sports Med. 2006, 36, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Abbate, R.; Gensini, G.F.; Casini, A.; Sofi, F. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2016. [Google Scholar] [CrossRef] [PubMed]
- Craddock, J.C.; Probst, Y.C.; Peoples, G.E. Vegetarian and omnivorous nutrition—Comparing physical performance. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Fisak, B.; Peterson, R.D.; Tantleff-Dunn, S.; Molnar, J.M. Challenging previous conceptions of vegetarianism and eating disorders. Eat. Weight Disord. 2006, 11, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Hamerschlag, K. Meat Eaters Guide to Climate Change and Health; Environmental Working Group: Washington, DC, USA, 2011; Volume 115. [Google Scholar]
- Horgan, G.W.; Perrin, A.; Whybrow, S.; Macdiarmid, J.I. Achieving dietary recommendations and reducing greenhouse gas emissions: Modelling diets to minimise the change from current intakes. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 46. [Google Scholar] [CrossRef] [PubMed]
- Athlete’s for Farming. Available online: https://athletesforfarming.com (accessed on 1 January 2016).
- Mouillé, B.; Charrondière, U.R.; Burlingame, B.; Lutaladio, N. Nutrient Composition of the Potato: Interesting Varieties from Human Nutrition Perspective. Available online: http://www.fao.org/fileadmin/templates/food_composition/documents/upload/Poster_potato_nutrient_comp.pdf (accessed on 15 February 2016).
- Burlingame, B.; Charrondiere, R.; Mouille, B. Food composition is fundamental to the cross-cutting initiative on biodiversity for food and nutrition. J. Food Compos. Anal. 2009, 22, 361–365. [Google Scholar] [CrossRef]
- Burlingame, B.; Mouillé, B.; Charrondière, R. Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J. Food Compos. Anal. 2009, 22, 494–502. [Google Scholar] [CrossRef]
- Pinela, J.; Barros, L.; Carvalho, A.M.; Ferreira, I.C. F.R. Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer’ varieties in Northeastern Portugal homegardens. Food Chem. Toxicol. 2012, 50, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, G.W. Nutritional Analysis of New Mexico Blue Corn and Dent Corn Kernels. In Guide H-223,Cooperative Extension Service, College of Agriculture and Home Economics; New Mexico State University: Las Cruces, NM, USA, 2003; pp. 1–2. [Google Scholar]
- Rivera, D.; Obón, C.; Heinrich, M.; Inocencio, C.; Verde, A.; Fajardo, J. Gathered Mediterranean Food Plants—Ethnobotanical Investigations and Historical Development. In Local Mediterranean Food Plants and Nutraceuticals; Karger: Basel, Switzerland, 2006; pp. 18–74. [Google Scholar]
- Saxe, H.; Larsen, T.M.; Mogensen, L. The global warming potential of two healthy Nordic diets compared with the average Danish diet. Clim. Chang. 2013. [Google Scholar] [CrossRef]
- Van Dooren, C.; Marinussen, M.; Blonk, H.; Aiking, H.; Vellinga, P. Exploring dietary guidelines based on ecological and nutritional values: A comparison of six dietary patterns. Food Policy 2014, 44, 36–46. [Google Scholar] [CrossRef]
- Marsh, B.; Curtius, M. Nutritional Weaklings in the Supermarket. Available online: http://www.nytimes.com/interactive/2013/05/26/sunday-review/26corn-ch.html?_r=1ref=sunday (accessed on 18 October 2016).
- The Food And Agriculture Organization. International Network of Food Data Systems (INFOODS): Nutrition and Biodiversity. Available online: www.fao.org/infoods/infoods/food-biodiversity/en/ (accessed on 9 August 2016).
- Bioversity International Annual Report, 2013. Available online: http://www.bioversityinternational.org/e-library/publications/detail/bioversity-international-annual-report-2013/ (accessed on 8 December 2016).
- Storkey, J.; Meyer, S.; Still, K.S.; Leuschner, C. The impact of agricultural intensification and land-use change on the European arable flora. Proc. R. Soc. Lond. B Biol. Sci. 2012, 279, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Fanzo, J.; Hünter, D.; Borelli, T.; Mattei, F. Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health (Issues in Agricultural Biodiversity); Routledge: Halewood, UK, 2013. [Google Scholar]
- Antibiotic/Antimicrobial Resistance. Available online: https://www.cdc.gov/drugresistance/ (accessed on 30 December 2016).
- Broom, D.M.; Galindo, F.A.; Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. R. Soc. B Biol. Sci. 2013. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol. 2013, 75, 645–662. [Google Scholar] [CrossRef] [PubMed]
- The Food and Agriculture Organization/World Health Organization. Report of the joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption; FAO: Rome, Italy; World Health Organization: Geneva, Switzerland, 2011; p. 50. [Google Scholar]
- Mickleborough, T.D. Omega-3 polyunsaturated fatty acids in physical performance optimization. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Usydus, Z.; Szlinder-Richert, J. Functional properties of fish and fish products: A review. Int. J. Food Prop. 2012, 15, 823–846. [Google Scholar] [CrossRef]
- Nichols, P.D.; Glencross, B.; Petrie, J.R.; Singh, S.P. Readily available sources of long-chain omega-3 oils: Is farmed Australian seafood a better source of the good oil than wild-caught seafood? Nutrients 2014, 6, 1063–1079. [Google Scholar] [CrossRef] [PubMed]
- Lundebye, A.; Lock, E.; Rasinger, J.D.; Jakob, O.; Hannisdal, R.; Karlsbakk, E.; Wennevik, V.; Madhun, A.S.; Madsen, L.; Gra, E.; et al. Lower levels of persistent organic pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar). Environ. Res. 2017, 155, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Nøstbakken, O.J.; Hove, H.T.; Duinker, A.; Lundebye, A.-K.; Berntssen, M.H.G.; Hannisdal, R.; Lunestad, B.T.; Maage, A.; Madsen, L.; Torstensen, B.E.; et al. Contaminant levels in Norwegian farmed Atlantic salmon (Salmo salar) in the 13-year period from 1999 to 2011. Environ. Int. 2015, 74, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Seierstad, S.L.; Seljeflot, I.; Johansen, O.; Hansen, R.; Haugen, M.; Rosenlund, G.; Froyland, L.; Arnesen, H. Dietary intake of differently fed salmon; the influence on markers of human atherosclerosis. Eur. J. Clin. Investig. 2005, 35, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Sprague, M.; Dick, J.R.; Tocher, D.R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rosenlund, G.; Torstensen, B.E.; Stubhaug, I.; Usman, N.; Sissener, N.H. Atlantic salmon require long-chain n-3 fatty acids for optimal growth throughout the seawater period. J. Nutr. Sci. 2016, 5, e19. [Google Scholar] [CrossRef] [PubMed]
- National Oceanic and Atmospheric Administration Fisheries. Status of Stocks 2015. Annual Report to Congress on the Status of U.S. Fisheries. Available online: http://www.nmfs.noaa.gov/sfa/fisheries_eco/status_of_fisheries/archive/2015/2015_status_of_stocks_updated.pdf (accessed on 15 February 2017).
- Fry, J.P.; Love, D.C.; MacDonald, G.K.; West, P.C.; Engstrom, P.M.; Nachman, K.E.; Lawrence, R.S. Environmental health impacts of feeding crops to farmed fish. Environ. Int. 2016, 91, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Palupi, E.; Jayanegara, A.; Ploeger, A.; Kahl, J. Comparison of nutritional quality between conventional and organic dairy products: A meta-analysis. J. Sci. Food Agric. 2012, 92, 2774–2781. [Google Scholar] [CrossRef] [PubMed]
- Lucey, J.A. Raw Milk Consumption: Risks and Benefits. Nutr. Today 2015, 50, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Van Neerven, R.J.J.; Knol, E.F.; Heck, J.M.L.; Savelkoul, H.F.J. Which factors in raw cow’s milk contribute to protection against allergies? J. Allergy Clin. Immunol. 2012, 130, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Worthington, V. Nutritional quality of organic versus conventional fruits, vegetables, and grains. J. Altern. Complement. Med. 2001, 7, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, L.; Di Pierro, D.; Bigioni, M.; Sodi, V.; Galvano, F.; Cianci, R.; La Fauci, L.; De Lorenzo, A. Is antioxidant plasma status in humans a consequence of the antioxidant food content influence? Eur. Rev. Med. Pharmacol. Sci. 2007, 11, 185–192. [Google Scholar] [PubMed]
- Wunderlich, S.M.; Feldman, C.; Kane, S.; Hazhin, T. Nutritional quality of organic, conventional, and seasonally grown broccoli using vitamin C as a marker. Int. J. Food Sci. Nutr. 2008, 59, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.M.; Hrusch, C.L.; Gozdz, J.; Igartua, C.; Pivniouk, V.; Murray, E.S.; Ledford, G.J.; Marques dos Santos, M.; Anderson, R.L.; Metwali, N.; et al. Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. N. Engl. J. Med. 2016, 375, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Jabr, F. Bread Is Broken. Available online: http://www.nytimes.com/2015/11/01/magazine/bread-is-broken.html (accessed on 17 October 2016).
- Van den Broeck, H.; de Jong, H.C.; Salentijn, E.M.; Dekking, L.; Bosch, D.; Hamer, R.J.; Gilissen, L.J.; van der Meer, I.M.; Smulders, M.J. Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease. Theory Appl. Genet. 2010, 121, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Lis, D.; Stellingwerff, T.; Shing, C.M.; Ahuja K, D.K.; Fell, J. Exploring the popularity, experiences and beliefs surrounding gluten-free diets in non-coeliac athletes. Int. J. Sport Nutr. Exerc. Metab. 2014. [Google Scholar] [CrossRef]
- Lis, D.; Stellingwerff, T.; Kitic, C.M.; Ahuja, K.D.K.; Fell, J. No effects of a short-term gluten-free diet on performance in nonceliac athletes. Med. Sci. Sports Exerc. 2015, 47, 2563–2570. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef] [PubMed]
- Vaher, M.; Matso, K.; Levandi, T.; Helmja, K.; Kaljurand, M. Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. Procedia Chem. 2010, 2, 76–82. [Google Scholar] [CrossRef]
- Fan, M.S.; Zhao, F.J.; Poulton, P.R.; McGrath, S.P. Historical changes in the concentrations of selenium in soil and wheat grain from the Broadbalk experiment over the last 160 years. Sci. Total Environ. 2008, 389, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Dinelli, G.; Segura-Carretero, A.; Di Silvestro, R.; Marotti, I.; Arráez-Román, D.; Benedettelli, S.; Ghiselli, L.; Fernadez-Gutierrez, A. Profiles of phenolic compounds in modern and old common wheat varieties determined by liquid chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A 2011, 1218, 7670–7681. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.S.; Zhao, F.J.; Fairweather-Tait, S.J.; Poulton, P.R.; Dunham, S.J.; McGrath, S.P. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 2008, 22, 315–324. [Google Scholar] [CrossRef] [PubMed]
- De Lorgeril, M.; Salen, P. Gluten and wheat intolerance today: are modern wheat strains involved? Int. J. Food Sci. Nutr. 2014, 65, 963–7486. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, A.; Brandolini, A.; Pompei, C.; Piscozzi, R. Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.). J. Cereal Sci. 2006, 44, 182–193. [Google Scholar] [CrossRef]
- Lachman, J.; Orsák, M.; Pivec, V.; Jírů, K. Antioxidant activity of grain of einkorn (Triticum mono-coccum L.), emmer (Triticum dicoccum schuebl (schrank)) and spring wheat (Triticum aestivum L.) varieties. Plant, Soil Environ. 2012, 58, 15–21. [Google Scholar]
- Hussain, A.; Larsson, H.; Kuktaite, R.; Johansson, E. Mineral composition of organically grown wheat genotypes: Contribution to daily minerals intake. Int. J. Environ. Res. Public Health 2010, 7, 3442–3456. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Whittaker, A.; Cesari, F.; Gori, A.M.; Fiorillo, C.; Becatti, M.; Marotti, I.; Dinelli, G.; Casini, A.; Abbate, R.; et al. Characterization of Khorasan wheat (Kamut) and impact of a replacement diet on cardiovascular risk factors: Cross-over dietary intervention study. Eur. J. Clin. Nutr. 2013, 67, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Molberg, O.; Uhlen, A.K.; Jensen, T.; Flaete, N.S.; Fleckenstein, B.; Arentz-Hansen, H.; Raki, M.; Lundin, K.E.A.; Sollid, L.M. Mapping of gluten T-cell epitopes in the bread wheat ancestors: Implications for celiac disease. Gastroenterology 2005, 128, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Rogosa, E. Restoring Heritage Grains; Chelsea Green Publishing: White River Junction, VT, USA, 2016. [Google Scholar]
- Pizzuti, D.; Buda, A.; D’Odorico, A.; D’Incà, R.; Chiarelli, S.; Curioni, A.; Martines, D. Lack of intestinal mucosal toxicity of Triticum monococcum in celiac disease patients. Scand. J. Gastroenterol. 2006, 41, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Zanini, B.; Petroboni, B.; Not, T.; Di Toro, N.; Villanacci, V.; Lanzarotto, F.; Pogna, N.; Ricci, C.; Lanzini, A. Search for atoxic cereals: A single blind, cross-over study on the safety of a single dose of Triticum monococcum, in patients with celiac disease. BMC Gastroenterol. 2013, 13, 92. [Google Scholar] [CrossRef] [PubMed]
- Vaccino, P.; Becker, H.-A.; Brandolini, A.; Salamini, F.; Kilian, B. A catalogue of Triticum monococcum genes encoding toxic and immunogenic peptides for celiac disease patients. Mol. Genet. Genomics 2009, 281, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Kucek, L.K.; Veenstra, L.D.; Amnuaycheewa, P.; Sorrells, M.E. A grounded guide to gluten: How modern genotypes and processing impact wheat sensitivity. Compr. Rev. Food Sci. Food Saf. 2015, 14, 285–302. [Google Scholar] [CrossRef]
- Björck, I.; Elmståhl, H.L. The glycaemic index: Importance of dietary fibre and other food properties. Proc. Nutr. Soc. 2003, 62, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Lindenmeier, M.; Hofmann, T. Influence of baking conditions and precursor supplementation on the amounts of the antioxidant pronyl-L-lysine in bakery products. J. Agric. Food Chem. 2004, 52, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Stenman, S.M.; Venäläinen, J.I.; Lindfors, K.; Auriola, S.; Mauriala, T.; Kaukovirta-Norja, A.; Jantunen, A.; Laurila, K.; Qiao, S.-W.; Sollid, L.M.; et al. Enzymatic detoxification of gluten by germinating wheat proteases: Implications for new treatment of celiac disease. Ann. Med. 2009, 41, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; De Angelis, M.; McSweeney, P.L.H.; Corbo, M.R.; Gobbetti, M. Partial purification and characterization of an X-prolyl dipeptidyl aminopeptidase from Lactobacillus sanfranciscensis CB1. Food Chem. 2005, 91, 535–544. [Google Scholar] [CrossRef]
- Greco, L.; Gobbetti, M.; Auricchio, R.; Di Mase, R.; Landolfo, F.; Paparo, F.; Di Cagno, R.; De Angelis, M.; Rizzello, C.G.; Cassone, A.; et al. Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin. Gastroenterol. Hepatol. 2011, 9, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Engström, N.; Sandberg, A.S.; Scheers, N. Sourdough fermentation of wheat flour does not prevent the interaction of transglutaminase 2 with α2-gliadin or gluten. Nutrients 2015, 7, 2134–2144. [Google Scholar] [CrossRef] [PubMed]
- Kurppa, K.; Collin, P.; Viljamaa, M.; Haimila, K.; Saavalainen, P.; Partanen, J.; Laurila, K.; Huhtala, H.; Paasikivi, K.; Mäki, M.; Kaukinen, K. Diagnosing mild enteropathy celiac disease: A randomized, controlled clinical study. Gastroenterology 2009, 136, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Catassi, C.; Bai, C.; Bonaz, B.; Bouma, G.; Calabrò, A.; Carroccio, A.; Castillejo, G.; Ciacci, C.; Cristofori, F.; Dolinsek, J.; et al. Non-celiac gluten sensitivity: The new frontier of gluten related disorders. Nutrients 2013, 5, 3839–3853. [Google Scholar] [CrossRef] [PubMed]
- Biesiekierski, J.; Peters, S.; Newnham, E.; Rosella, O.; Muir, J.; Gibson, P. No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydartes. Gastroenterology 2013, 145, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Junker, Y.; Zeissig, S.; Kim, S.-J.; Barisani, D.; Wieser, H.; Leffler, D.A.; Zevallos, V.; Libermann, T.A.; Dillon, S.; Freitag, T.L.; et al. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J. Exp. Med. 2012, 209, 2395–2408. [Google Scholar] [CrossRef] [PubMed]
- Lis, D.; Ahuja, K.D.K.; Stellingwerff, T.; Kitic, C.M.; Fell, J. Case study: Utilizing a low FODMAP diet to combat exercise-induced gastrointestinal symptoms. Int. J. Sport. Nutr. Exerc. Metab. 2016, 26, 481–487. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, Y.; Bowyer, R.; Leach, H.; Guila, P.; Horobin, J.; O’Sullivan, N.; Pettit, C.; Reeves, L.; Seamark, L.; Williams, M.; et al. British Dietetic Association systematic review and evidence-based practice guidelines for the dietary management of irritable bowel syndrome in adults (2016 update). J. Hum. Nutr. Diet. 2016, 29, 549–575. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for training and competition. J. Sports Sci. 2011, 29, S17–S27. [Google Scholar] [CrossRef] [PubMed]
- The Land Institute Kernza Grain: Toward a Perennial Agriculture. Available online: https://landinstitute.org/our-work/perennial-crops/kernza/ (accessed on 10 September 2016).
- Vidgen, H.A.; Gallegos, D. Defining food literacy and its components. Appetite 2014, 76, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Gill, M.; Stott, R. Health professionals must act to tackle climate change. Lancet 2009, 374, 1953–1955. [Google Scholar] [CrossRef]
- Wiek, A.; Withycombe, L.; Redman, C.L. Key competencies in sustainability: A reference framework for academic program development. Sustain. Sci. 2011, 6, 203–218. [Google Scholar] [CrossRef]
- Wilkins, J. Eating right here: Moving from consumer to food citizen. Agriculture and Human values. Agric. Hum. Values 2005, 22–269. [Google Scholar]
- O’Kane, G. A moveable feast: Exploring barriers and enablers to food citizenship. Appetite 2016, 105, 674–687. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, C.; Hamm, U. Consumers’ perceptions and preferences for local food: A review. Food Qual. Prefer. 2015, 40, 152–164. [Google Scholar] [CrossRef]
- Brownlee, M. The Local Food Revolution: How Humanity Will Feed Itself in Uncertain Times; North Atlantic Books: Berkley, CA, USA, 2016. [Google Scholar]
- Fung, T.T.; Long, M.W.; Hung, P.; Cheung, L.W.Y. An expanded model for mindful eating for health promotion and sustainability: Issues and challenges for dietetics practice. J. Acad. Nutr. Diet. 2016, 116, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Feenstra, G. Creating space for sustainable food systems: Lessons from the field. Agric. Hum. Values 2002, 19, 99–106. [Google Scholar] [CrossRef]
- Environmental Working Group (WEG’s) 2016 Shopper’s Guide to Pesticides in Produce. Available online: https://www.ewg.org/foodnews/dirty_dozen_list.php (accessed on 16 August 2016).
- Local Harvest. Available online: http://www.localharvest.org (accessed on 10 May 2016).
- Bøhn, T.; Cuhra, M.; Traavik, T.; Sanden, M.; Fagan, J.; Primicerio, R. Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans. Food Chem. 2014, 153, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Shokryazdan, P.; Faseleh Jahromi, M.; Navidshad, B.; Liang, J.B. Effects of prebiotics on immune system and cytokine expression. Med. Microbiol. Immunol. 2017, 206, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Martinez, R.C.R.; Bedani, R.; Saad, S.M.I. Scientific evidence for health effects attributed to the consumption of probiotics and prebiotics: An update for current perspectives and future challenges. Br. J. Nutr. 2015, 114, 1993–2015. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.M.A.; Balvanera, P.; Benessaiah, K.; Chapman, M.; Díaz, S.; Gómez-Baggethun, E.; Gould, R.; Hannahs, N.; Jax, K.; Klain, S.; et al. Opinion: Why protect nature? Rethinking values and the environment. Proc. Natl. Acad. Sci. USA 2016, 113, 1462–1465. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.L. The Meaning of Local Food in Education. Available online: http://www.localfoodshift.pub/the-meaning-of-local-food-in-education/ (accessed on 7 October 2016).
- The Flying Carrot. Available online: http://www.uccs.edu/diningservices/swell/the-flying-carrot.html (accessed on 20 October 2016).
- Borderlands Food Bank. Available online: http://www.borderlandfoodbank.org (accessed on 10 June 2016).
- One World Café. Available online: http://oneworld-cafe.com/ (accessed on 28 September 2016).
- Slow Food USA. Available online: www.slowfoodusa.com (accessed on 3 July 2016).
- Edible Communities. Available online: http://www.ediblecommunities.com/ (accessed on 10 October 2016).
- Green Sports Alliance. Leveraging the Cultural Market Influence of Sports to Promote Healthy, Sustainable Communities Where We Live Play. Available online: http://greensportsalliance.org/ (accessed on 18 August 2016).
- Food Vision for the London 2012 Olympic Games and Paralympic Games. Available online: http://learninglegacy.independent.gov.uk/documents/pdfs/sustainability/cp-london-2012-food-vision.pdf (accessed on 18 November 2016).
- Diagnostic Analysis for the Supply of Healthy and Sustainable Food for the 2016 Rio Olympic and Paralympic Games. Available online: www.riofoodvision.org (accessed on 7 June 2015).
- Pelly, F.; Meyer, N.L.; Pearce, J.; Burkhart, S.J.; Burke, L.M. Evaluation of food provision and nutrition support at the London 2012 Olympic Games: The Opinion of sports nutrition experts. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Professionals in Nutrition for Exercise and Sport. Available online: www.pinesnutrition.org (accessed on 7 March 2016).
Low GhGs | Medium GhGs | High GhGs |
---|---|---|
1 kg CO2 eq/kg edible weight | 1–4 kg CO2 eq/kg edible weight | 4 kg CO2 eq/kg edible weight |
Potatoes | Chicken | * Beef |
Pasta | Milk, butter, yogurt | * Lamb |
Bread | Eggs | Pork |
Oats and other grain | Rice | Turkey |
Vegetables (e.g., onions, peas, carrots, corn, brassica) | Breakfast cereals | Fish |
Fruits (e.g., apples, pears, citrus, plums, grapes) | Spreads | Cheese |
Beans/lentils | Nuts/Seeds | |
Confectionary | Biscuits, cakes, dessert | |
Savory Snacks | Fruit (e.g., berries, banana, melons, salad) | |
Vegetables (e.g., salad, mushrooms, green beans, cauliflower, broccoli, squash) |
Germany | Brazil | Sweden | Qatar | |
---|---|---|---|---|
Sustainability Highlights | Eat meat in moderation. Use fresh ingredients. Take your time and enjoy eating. Eat fish once or twice a week. | Choose seasonally and locally grown produce. Try to restrict the amount of red meat. Limit the amount of processed foods. Eat in company. Develop, exercise and share cooking skills. Plan your time and make food and eating important in your life. | Eat less red and processed meat (no more than 500 g of cooked meat per week). Choose eco-labelled seafood. Try to maintain energy balance by eating just the right amount. | Limit red meat to 500 g per week. Avoid processed meat. Eat less fast foods and processed foods. Build and model healthy patterns for your family. Eat at least one meal together daily with family. |
Example | Units | Non-Athlete PRO RDA | Athlete‘s Standard PRO | Athlete‘s Hypocaloric PRO |
---|---|---|---|---|
60 kg female | PRO (g/day) | 48 | 90 | 150 |
Cooked Meat Contribution as 50% of total PRO (g/day) * | 92 | 172 | 288 | |
80 kg male | PRO (g/day) | 64 | 120 | 200 |
Cooked Meat Contribution as 50% of total PRO (g/day) * | 123 | 230 | 387 |
Meal | Actual | PRO g | Protein Flip | PRO g | Comments |
---|---|---|---|---|---|
Grilled Beef with Quinoa and Veggies | 4 oz beef | 26 | 2 oz 100% grassfed beef | 13 | Rename to Southwest Anasazi Bean and Beef Bowl. |
United States Olympic Committee | 4 oz kale and quinoa | 4 | 4 oz kale and quinoa | 4 | Launch educational campaign on protein flip. |
Colorado Springs | 4 oz broccoli | 3 | 2 oz Anasazi beans | 10 | Add history of Colorado beans and quinoa. |
1/2 stuffed portobello | 5 | 4 oz broccoli | 4 | ||
1/2 stuffed portobello | 5 | ||||
total | 38 | total | 36 | ||
Pork loin with Poblano Chili and Rice | 4 oz pork loin | 26 | 2 oz organic pork loin | 13 | Rename to Ancient Grains with Poblano Chili Pork. |
United States Olympic Committee | 4 oz poblano chili | 3 | 4 oz poblano chili | 3 | Launch educational campaign on protein flip. |
Colorado Springs | 4 oz white rice with veg | 4 | 6 oz farro, beans, veggies | 12 | Integrate nutritional benefits of ancient grains. |
Add history of emmer and biodiversity of grains. | |||||
total | 33 | total | 30 | ||
SWELL Burger | 4 oz beef burger | 22 | 2 oz 100% grassfed beef | 10 | This meal is served at UCCS Food Next Door. |
University of Colorado | white bun | 5 | 1.75 tsp black beans | 2 | SWELL Burger uses the protein flip approach. |
Colorado Springs | 1 cup dinner salad | 1 | 1.75 tsp quinoa | 1 | Launch educational campaign on protein flip. |
1.75 tsp hemp | 3 | Integrate sustainable food literacy. | |||
1 T peppers, carrots, leeks, chard | 1 | Highlight nutritional benefits of grassfed beef. | |||
garlic, chili, cumin, chives | Include social justice issues regarding CAFO. | ||||
1 slice socca (chick pea flatbread) | 4 | Highlight Slow Meat and Menus of Change ideas. | |||
SWELL kale salad with roasted veg | 2 | ||||
pumpkin seeds | 2 | ||||
total | 28 | total | 25 |
Food | Grams | Ounces | Cups | T | Calories | Limiting Amino Acids | Leucine (g) |
---|---|---|---|---|---|---|---|
Anasazi Beans | 322 | 11.4 | 1.4 | 23 | 426 | Sulfur containing AA | 1.2 |
Black Beans | 295 | 10.4 | 1.3 | 21 | 295 | Sulfur containing AA | 1.3 |
Chickpeas | 284 | 10 | 1.3 | 20 | 336 | Sulfur containing AA | 1 |
Soybeans | 204 | 7.2 | 1 | 14 | 268 | Complete plant protein | 2.3 |
Lentils | 250 | 8.8 | 1.1 | 18 | 253 | Sulfur containing AA | 1.3 |
Tofu | 284 | 10 | 1.3 | 20 | 189 | Complete plant protein | 1.3 |
Tempeh | 306 | 10.8 | 1.4 | 22 | 265 | Complete plant protein | 2.4 |
Edamame | 318 | 11.2 | 1.4 | 22 | 265 | Complete plant protein | 1.2 |
Seitan | 408 | 14.4 | 1.8 | 29 | 270 | Complete plant protein | no data |
Buckwheat | 755 | 26.6 | 3.3 | 53 | 516 | Complete plant protein | 0.4 |
Quinoa | 567 | 20 | 2.5 | 40 | 555 | Complete plant protein | 0.5 |
Millet | 748 | 26.4 | 3.3 | 53 | 683 | Lysine, threonine | 0.8 |
Amaranth | 500 | 17.6 | 2.2 | 35 | 552 | Complete plant protein | no data |
Einkorn | 145 | 5.1 | 0.6 | 10 | 218 | no data | no data |
Emmer | 227 | 8 | 1 | 16 | 200 | Lysine | 0.3 |
Spelt | 411 | 14.5 | 1.8 | 29 | 445 | No data | no data |
Kamut | 411 | 14.5 | 1.8 | 29 | 454 | Lysine | 0.8 |
Almonds | 227 | 8 | 1 | 16 | 575 | Methionine, Cysteine | 2.1 |
Peanut butter | 68 | 2.4 | 0.3 | 5 | 470 | Methionine, Cysteine | 3.9 |
Hemp seeds | 57 | 2 | 0.3 | 4 | 160 | Lysine | 0.7 |
Pumpkin seeds | 132 | 4.6 | 0.6 | 9 | 433 | Complete plant protein | 3 |
Beef 15% fat | 73 | 2.4 | 0.3 | 5 | 157 | Complete protein | 1.7 |
Chicken | 91 | 3.2 | 0.4 | 6 | 100 | Complete protein | 3.3 |
Pork | 73 | 2.4 | 0.3 | 5 | 152 | Complete protein | 1.9 |
Milk 2% fat | 567 | 20.0 | 2.5 | 40 | 284 | Complete protein | 0.8 |
Eggs | 188 | 6.4 | 0.8 | 13 | 291 | Complete protein | 2 |
Fish (tuna) | 141 | 4.8 | 0.6 | 10 | 179 | Complete protein | 3.2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, N.; Reguant-Closa, A. “Eat as If You Could Save the Planet and Win!” Sustainability Integration into Nutrition for Exercise and Sport. Nutrients 2017, 9, 412. https://doi.org/10.3390/nu9040412
Meyer N, Reguant-Closa A. “Eat as If You Could Save the Planet and Win!” Sustainability Integration into Nutrition for Exercise and Sport. Nutrients. 2017; 9(4):412. https://doi.org/10.3390/nu9040412
Chicago/Turabian StyleMeyer, Nanna, and Alba Reguant-Closa. 2017. "“Eat as If You Could Save the Planet and Win!” Sustainability Integration into Nutrition for Exercise and Sport" Nutrients 9, no. 4: 412. https://doi.org/10.3390/nu9040412
APA StyleMeyer, N., & Reguant-Closa, A. (2017). “Eat as If You Could Save the Planet and Win!” Sustainability Integration into Nutrition for Exercise and Sport. Nutrients, 9(4), 412. https://doi.org/10.3390/nu9040412