Effects of Vitamin D Supplementation on Bone Turnover Markers: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Intervention
2.4. Outcome Measure
2.5. Measurements
2.6. Data Analysis
3. Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bonjour, J.P.; Kohrt, W.; Levasseur, R.; Warren, M.; Whiting, S.; Kraenzlin, M. Biochemical Markers for Assessment of Calcium Economy and Bone Metabolism: Application in Clinical Trials from Pharmaceutical Agents to Nutritional Products. Nutr. Res. Rev. 2014, 27, 252–267. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Resurrection of Vitamin D Deficiency and Rickets. J. Clin. Investig. 2006, 116, 2062–2072. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R.; Bolland, M.J.; Grey, A. Effects of Vitamin D Supplements on Bone Mineral Density: A Systematic Review and Meta-Analysis. Lancet 2014, 383, 146–155. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Dietary Reference Values for Vitamin D. EFSA J. 2016, 14, 4547. [Google Scholar]
- Zittermann, A.; Schleithoff, S.S.; Koerfer, R. Markers of Bone Metabolism in Congestive Heart Failure. Clin. Chim. Acta 2006, 366, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Wharton, B.; Bishop, N. Rickets. Lancet 2003, 362, 1389–1400. [Google Scholar] [CrossRef]
- Elder, C.J.; Bishop, N.J. Rickets. Lancet 2014, 383, 1665–1676. [Google Scholar] [CrossRef]
- Bingham, C.T.; Fitzpatrick, L.A. Noninvasive Testing in the Diagnosis of Osteomalacia. Am. J. Med. 1993, 95, 519–523. [Google Scholar] [CrossRef]
- Pilz, S.; Gaksch, M.; Kienreich, K.; Grubler, M.; Verheyen, N.; Fahrleitner-Pammer, A.; Treiber, G.; Drechsler, C.; O Hartaigh, B.; Obermayer-Pietsch, B.; et al. Effects of Vitamin D on Blood Pressure and Cardiovascular Risk Factors: A Randomized Controlled Trial. Hypertension 2015, 65, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gotzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 Explanation and Elaboration: Updated Guidelines for Reporting Parallel Group Randomised Trials. BMJ 2010, 340, c869. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Bohm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 2013, 34, 2159–2219. [Google Scholar] [CrossRef] [PubMed]
- Grubler, M.R.; Gaksch, M.; Kienreich, K.; Verheyen, N.; Schmid, J.; O Hartaigh, B.; Richtig, G.; Scharnagl, H.; Meinitzer, A.; Fahrleitner-Pammer, A.; et al. Effects of Vitamin D Supplementation on Glycated Haemoglobin and Fasting Glucose Levels in Hypertensive Patients: A Randomized Controlled Trial. Diabetes Obes. Metab. 2016, 18, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Grubler, M.R.; Gaksch, M.; Kienreich, K.; Verheyen, N.D.; Schmid, J.; Mullner, C.; Richtig, G.; Scharnagl, H.; Trummer, C.; Schwetz, V.; et al. Effects of Vitamin D3 on Asymmetric- and Symmetric Dimethylarginine in Arterial Hypertension. J. Steroid Biochem. Mol. Biol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Vickers, A.J.; Altman, D.G. Statistics Notes: Analysing Controlled Trials with Baseline and Follow Up Measurements. BMJ 2001, 323, 1123–1124. [Google Scholar] [CrossRef] [PubMed]
- Wamberg, L.; Pedersen, S.B.; Richelsen, B.; Rejnmark, L. The Effect of High-Dose Vitamin D Supplementation on Calciotropic Hormones and Bone Mineral Density in Obese Subjects with Low Levels of Circulating 25-Hydroxyvitamin d: Results from a Randomized Controlled Study. Calcif. Tissue Int. 2013, 93, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Seamans, K.M.; Hill, T.R.; Wallace, J.M.; Horigan, G.; Lucey, A.J.; Barnes, M.S.; Taylor, N.; Bonham, M.P.; Muldowney, S.; Duffy, E.M.; et al. Cholecalciferol Supplementation Throughout Winter does Not Affect Markers of Bone Turnover in Healthy Young and Elderly Adults. J. Nutr. 2010, 140, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Schleithoff, S.S.; Zittermann, A.; Tenderich, G.; Berthold, H.K.; Stehle, P.; Koerfer, R. Combined Calcium and Vitamin D Supplementation is Not Superior to Calcium Supplementation Alone in Improving Disturbed Bone Metabolism in Patients with Congestive Heart Failure. Eur. J. Clin. Nutr. 2008, 62, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Elmadfa, I. Österreichischer Ernährungsbericht 2012. Auflage 2012, 1. [Google Scholar]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of Medicine: What Clinicians Need to Know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Kuchuk, N.O.; Pluijm, S.M.; van Schoor, N.M.; Looman, C.W.; Smit, J.H.; Lips, P. Relationships of Serum 25-Hydroxyvitamin D to Bone Mineral Density and Serum Parathyroid Hormone and Markers of Bone Turnover in Older Persons. J. Clin. Endocrinol. Metab. 2009, 94, 1244–1250. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.Z.; Shamim, A.A.; Viljakainen, H.T.; Akhtaruzzaman, M.; Jehan, A.H.; Khan, H.U.; Al-Arif, F.A.; Lamberg-Allardt, C. Effect of Vitamin D, Calcium and Multiple Micronutrient Supplementation on Vitamin D and Bone Status in Bangladeshi Premenopausal Garment Factory Workers with Hypovitaminosis D: A Double-Blinded, Randomised, Placebo-Controlled 1-Year Intervention. Br. J. Nutr. 2010, 104, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Karkkainen, M.; Tuppurainen, M.; Salovaara, K.; Sandini, L.; Rikkonen, T.; Sirola, J.; Honkanen, R.; Jurvelin, J.; Alhava, E.; Kroger, H. Effect of Calcium and Vitamin D Supplementation on Bone Mineral Density in Women Aged 65-71 Years: A 3-Year Randomized Population-Based Trial (OSTPRE-FPS). Osteoporos. Int. 2010, 21, 2047–2055. [Google Scholar] [CrossRef] [PubMed]
- Uusi-Rasi, K.; Patil, R.; Karinkanta, S.; Kannus, P.; Tokola, K.; Lamberg-Allardt, C.; Sievanen, H. Exercise and Vitamin D in Fall Prevention among Older Women: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Nieves, J.W.; Cosman, F.; Grubert, E.; Ambrose, B.; Ralston, S.H.; Lindsay, R. Skeletal Effects of Vitamin D Supplementation in Postmenopausal Black Women. Calcif. Tissue Int. 2012, 91, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, H.M.; Wood, A.D.; Aucott, L.S.; Black, A.J.; Fraser, W.D.; Mavroeidi, A.; Reid, D.M.; Secombes, K.R.; Simpson, W.G.; Thies, F. Hip Bone Loss is Attenuated with 1000 IU but Not 400 IU Daily Vitamin D3: A 1-Year Double-Blind RCT in Postmenopausal Women. J. Bone Miner. Res. 2013, 28, 2202–2213. [Google Scholar] [CrossRef] [PubMed]
- Jorde, R.; Sneve, M.; Torjesen, P.A.; Figenschau, Y.; Hansen, J.B.; Grimnes, G. No Significant Effect on Bone Mineral Density by High Doses of Vitamin D3 Given to Overweight Subjects for One Year. Nutr. J. 2010, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Kukuljan, S.; Nowson, C.A.; Sanders, K.M.; Nicholson, G.C.; Seibel, M.J.; Salmon, J.; Daly, R.M. Independent and Combined Effects of Calcium-Vitamin D3 and Exercise on Bone Structure and Strength in Older Men: An 18-Month Factorial Design Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2011, 96, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Sanders, K.M.; Stuart, A.L.; Williamson, E.J.; Simpson, J.A.; Kotowicz, M.A.; Young, D.; Nicholson, G.C. Annual High-Dose Oral Vitamin D and Falls and Fractures in Older Women: A Randomized Controlled Trial. JAMA 2010, 303, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Bischoff-Ferrari, H.A.; Willett, W.C.; Wong, J.B.; Stuck, A.E.; Staehelin, H.B.; Orav, E.J.; Thoma, A.; Kiel, D.P.; Henschkowski, J. Prevention of Nonvertebral Fractures with Oral Vitamin D and Dose Dependency: A Meta-Analysis of Randomized Controlled Trials. Arch. Intern. Med. 2009, 169, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Bolland, M.J.; Grey, A.; Gamble, G.D.; Reid, I.R. The Effect of Vitamin D Supplementation on Skeletal, Vascular, Or Cancer Outcomes: A Trial Sequential Meta-Analysis. Lancet Diabetes Endocrinol. 2014, 2, 307–320. [Google Scholar] [CrossRef]
- Avenell, A.; Mak, J.C.; O'Connell, D. Vitamin D and Vitamin D Analogues for Preventing Fractures in Post-Menopausal Women and Older Men. Cochrane Database Syst. Rev. 2014, 4, CD000227. [Google Scholar] [CrossRef]
- Anderson, P.H.; Lam, N.N.; Turner, A.G.; Davey, R.A.; Kogawa, M.; Atkins, G.J.; Morris, H.A. The Pleiotropic Effects of Vitamin D in Bone. J. Steroid Biochem. Mol. Biol. 2013, 136, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, E.M.; Baldock, P.A.; Thomas, G.P.; Sims, N.A.; Henderson, N.K.; Hollis, B.; White, C.P.; Sunn, K.L.; Morrison, N.A.; Walsh, W.R.; et al. Increased Formation and Decreased Resorption of Bone in Mice with Elevated Vitamin D Receptor in Mature Cells of the Osteoblastic Lineage. FASEB J. 2000, 14, 1908–1916. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Seino, Y. Direct Action of 1,25-Dihydroxyvitamin D on Bone: VDRKO Bone shows Excessive Bone Formation in Normal Mineral Condition. J. Steroid Biochem. Mol. Biol. 2004, 89–90, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Beckman, M.J.; Johnson, J.A.; Goff, J.P.; Reinhardt, T.A.; Beitz, D.C.; Horst, R.L. The Role of Dietary Calcium in the Physiology of Vitamin D Toxicity: Excess Dietary Vitamin D3 Blunts Parathyroid Hormone Induction of Kidney 1-Hydroxylase. Arch. Biochem. Biophys. 1995, 319, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Szulc, P.; Garnero, P.; Munoz, F.; Marchand, F.; Delmas, P.D. Cross-Sectional Evaluation of Bone Metabolism in Men. J. Bone Miner. Res. 2001, 16, 1642–1650. [Google Scholar] [CrossRef] [PubMed]
- Peichl, P.; Griesmacherb, A.; Marteau, R.; Hejc, S.; Kumpan, W.; Muller, M.M.; Broll, H. Serum Crosslaps in Comparison to Serum Osteocalcin and Urinary Bone Resorption Markers. Clin. Biochem. 2001, 34, 131–139. [Google Scholar] [CrossRef]
- Bogaczewicz, J.; Karczmarewicz, E.; Pludowski, P.; Zabek, J.; Kowalski, J.; Lukaszkiewicz, J.; Wozniacka, A. Feasibility of Measurement of Bone Turnover Markers in Female Patients with Systemic Lupus Erythematosus. Rev. Bras. Reumatol. 2015, 55, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Mukaiyama, K.; Kamimura, M.; Uchiyama, S.; Ikegami, S.; Nakamura, Y.; Kato, H. Elevation of Serum Alkaline Phosphatase (ALP) Level in Postmenopausal Women is Caused by High Bone Turnover. Aging Clin. Exp. Res. 2015, 27, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, I.; Yamaguchi, T.; Yamauchi, M.; Yamamoto, M.; Kurioka, S.; Yano, S.; Sugimoto, T. Adiponectin is Associated with Changes in Bone Markers during Glycemic Control in Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2009, 94, 3031–3037. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, I.; Yamaguchi, T.; Yamamoto, M.; Yamauchi, M.; Kurioka, S.; Yano, S.; Sugimoto, T. Serum Osteocalcin Level is Associated with Glucose Metabolism and Atherosclerosis Parameters in Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2009, 94, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Im, J.A.; Yu, B.P.; Jeon, J.Y.; Kim, S.H. Relationship between Osteocalcin and Glucose Metabolism in Postmenopausal Women. Clin. Chim. Acta 2008, 396, 66–69. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | All (n = 197) | Vitamin D (n = 98) | Placebo (n = 99) | p-Value |
---|---|---|---|---|
Age (years) | 62.4 (52.9–68.1) | 62.4 (54.1–69.2) | 61.7 (51.5–67.5) | 0.705 |
Females (%) | 47 | 46 | 49 | 0.414 |
Females postmenopausal (%) | 81.5 | 80.9 | 82.2 | 0.540 |
BMI (kg/m2) | 29.9 (27.1–33.1) | 29.7 (27.5–33.1) | 29.9 (26.4–32.9) | 0.606 |
Office systolic BP (mmHg) | 142.0 (130.0–152.0) | 141.0 (131.5–152) | 143.0 (130–152.5) | 0.796 |
Office diastolic BP (mmHg) | 86.0 (80.0–94.8) | 86.0 (80.0–94.0) | 87.0 (78.0–95.0) | 0.751 |
25(OH)D (nmol/L) | 54.5 (43.0–64.3) | 56.5 (47.5–65.5) | 53.0 (38.0–63.8) | 0.081 |
1,25(OH)2D3 (pg/mL) | 47.7 (37.0–63.3) | 47.9 (37.5–63.3) | 46.5 (35.9–63.4) | 0.548 |
PTH (pg/mL) | 51.3 (39.6–63.6) | 48.9 (39.6–61.9) | 51.5 (39.3–65.9) | 0.729 |
bALP (µg/L) | 15.9 (13.1–19.9) | 15.3 (12.3–18.7) | 16.7 (13.3–20.6) | 0.087 |
CTX (ng/mL) | 0.18 (0.10–0.29) | 0.17 (0.09–0.27) | 0.19 (0.11–0.29) | 0.401 |
Osteocalcin (ng/mL) | 12.3 (9.1–16.7) | 11.7 (9.0–16.6) | 13.0 (9.1–18.0) | 0.252 |
P1NP (ng/mL) | 37.0 (30.0–50.0) | 34.9 (26.2–49.0) | 39.7 (31.4–51.0) | 0.085 |
Serum calcium (mmol/L) | 2.37 (2.30–2.42) | 2.37 (2.3–2.42) | 2.38 (2.31–2.42) | 0.437 |
Serum phosphate (mmol/L) | 0.94 ± 0.16 | 0.93 ± 0.17 | 0.97 ± 0.16 | 0.089 |
Diabetes mellitus (%) | 36 | 33 | 39 | 0.201 |
Fasting glucose (mg/dL) | 103 (92–138.5) | 102 (90–133) | 103.5 (92–146.5) | 0.487 |
HbA1c (mmol/mol) | 41 (37–51) | 41 (36.3–46) | 41 (37–57) | 0.405 |
HOMA-IR | 2.01 (1.19–3.88) | 2.07 (1.27–4.03) | 1.79 (1.11–3.77) | 0.601 |
eGFR CKD-EPI (mL/min/1.73 m2) | 82.4 ± 17.8 | 83.5 ± 17.1 | 81.3 ± 18.4 | 0.384 |
Triglycerides (mg/dL) | 120 (81–167) | 122 (80–167) | 119 (81–169) | 0.980 |
HDL-cholesterol (mg/dL) | 55 (45.5–66.5) | 52 (44–66) | 56 (46–67) | 0.329 |
LDL-cholesterol (mg/dL) | 113.3 ± 40.0 | 115.0 ± 40.1 | 111.6 ± 39.3 | 0.560 |
CRP (mg/L) | 1.9 (0.9–3.6) | 2.3 (1.2–3.8) | 1.4 (0.9–3.4) | 0.031 |
BTMs | 25(OH)D < 30 (n = 4) | 25(OH)D 30–39.8 (n = 31) | 25(OH)D 40–49.8 (n = 22) | 25(OH)D ≥ 50 (n = 111) | p-Value |
---|---|---|---|---|---|
25(OH)D (nmol/L) | 9.9 (9.1–10.6) | 13.4 (12.3–14.5) | 18.3 (17.4–19.1) | 24.8 (21.7–26.6) | <0.001 |
bALP (µg/L) | 18.9 (15.1–21.4) | 16.7 (12.6–22.5) | 18.1 (14.7–22.7) | 16.1 (13.8–19.7) | 0.732 |
CTX (ng/mL) | 0.13 (0.12–0.21) | 0.13 (0.06–0.25) | 0.17 (0.14–0.34) | 0.19 (0.12–0.30) | 0.126 |
OC (ng/mL) | 10.8 (9.4–12.2) | 11.5 (9.3–14.7) | 14.6 (11.0–19.7) | 12.9 (10.7–18.0) | 0.218 |
P1NP (ng/mL) | 31.5 (22.7–41.8) | 36.2 (28.7–43.6) | 43.6 (36.7–55.0) | 41.2 (31.9–52.1) | 0.103 |
PTH (pg/mL) | 48.5 (26.7–88.0) | 55.6 (41.7–68.9) | 52.6 (37.9–64.3) | 48.5 (41.0–61.9) | 0.453 |
Vitamin D and BTMs | β and n | 25(OH)D | 1,25(OH)2D3 | bALP | CTX | OC | P1NP | PTH |
---|---|---|---|---|---|---|---|---|
25(OH)D (nmol/L) | β | 1.000 | ||||||
n | 197 | |||||||
1,25(OH)2D3 (pg/mL) | β | 0.233 ** | 1.000 | |||||
n | 195 | 195 | ||||||
bALP (µg/L) | β | −0.090 | 0.023 | 1.000 | ||||
n | 190 | 188 | 190 | |||||
CTX (ng/mL) | β | 0.088 | 0.138 | 0.333 ** | 1.000 | |||
n | 177 | 176 | 171 | 177 | ||||
OC (ng/mL) | β | 0.084 | 0.066 | 0.419 ** | 0.626 ** | 1.000 | ||
n | 195 | 193 | 189 | 175 | 195 | |||
P1NP (ng/mL) | β | 0.037 | 0.092 | 0.552 ** | 0.634 ** | 0.725 ** | 1.000 | |
n | 189 | 187 | 185 | 172 | 189 | 189 | ||
PTH (pg/mL) | β | −0.086 | 0.108 | 0.115 | −0.012 | 0.080 | 0.062 | 1.000 |
n | 197 | 195 | 190 | 177 | 195 | 189 | 197 |
BTMs | Baseline | Follow-Up | Treatment Effect | p-Value |
---|---|---|---|---|
bALP (µg/L) | ||||
Vitamin D (n = 94) | 15.3 (12.3–18.7) | 16.2 (12.7–19.6) | 0.013 (−0.029 to 0.056) | 0.533 |
Placebo (n = 96) | 16.7 (13.3–20.6) | 16.2 (13.5–21.1) | ||
CTX (ng/mL) | ||||
Vitamin D (n = 85) | 0.17 (0.09–0.27) | 0.18 (0.11–0.28) | 0.024 (−0.163 to 0.210) | 0.802 |
Placebo (n = 86) | 0.19 (0.11–0.29) | 0.21 (0.10–0.33) | ||
Osteocalcin (ng/mL) | ||||
Vitamin D (n = 85) | 11.7 (9.0–16.6) | 12.8 (9.5–17.7) | 0.020 (−0.062 to 0.103) | 0.626 |
Placebo (n = 86) | 13.0 (9.1–18.0) | 13.6 (9.7–20.2) | ||
P1NP (ng/mL) | ||||
Vitamin D (n = 85) | 34.9 (26.2–49.0) | 38.6 (27.6–51.3) | −0.021 (−0.099 to 0.057) | 0.597 |
Placebo (n = 86) | 39.7 (31.4–51.0) | 43.1 (32.3–56.3) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwetz, V.; Trummer, C.; Pandis, M.; Grübler, M.R.; Verheyen, N.; Gaksch, M.; Zittermann, A.; März, W.; Aberer, F.; Lang, A.; et al. Effects of Vitamin D Supplementation on Bone Turnover Markers: A Randomized Controlled Trial. Nutrients 2017, 9, 432. https://doi.org/10.3390/nu9050432
Schwetz V, Trummer C, Pandis M, Grübler MR, Verheyen N, Gaksch M, Zittermann A, März W, Aberer F, Lang A, et al. Effects of Vitamin D Supplementation on Bone Turnover Markers: A Randomized Controlled Trial. Nutrients. 2017; 9(5):432. https://doi.org/10.3390/nu9050432
Chicago/Turabian StyleSchwetz, Verena, Christian Trummer, Marlene Pandis, Martin R. Grübler, Nicolas Verheyen, Martin Gaksch, Armin Zittermann, Winfried März, Felix Aberer, Angelika Lang, and et al. 2017. "Effects of Vitamin D Supplementation on Bone Turnover Markers: A Randomized Controlled Trial" Nutrients 9, no. 5: 432. https://doi.org/10.3390/nu9050432
APA StyleSchwetz, V., Trummer, C., Pandis, M., Grübler, M. R., Verheyen, N., Gaksch, M., Zittermann, A., März, W., Aberer, F., Lang, A., Treiber, G., Friedl, C., Obermayer-Pietsch, B., Pieber, T. R., Tomaschitz, A., & Pilz, S. (2017). Effects of Vitamin D Supplementation on Bone Turnover Markers: A Randomized Controlled Trial. Nutrients, 9(5), 432. https://doi.org/10.3390/nu9050432