Effects of the Exclusive Enteral Nutrition on the Microbiota Profile of Patients with Crohn’s Disease: A Systematic Review
Abstract
:1. Introduction
2. The Normal Intestinal Microbiota: Techniques of Analysis
3. Materials and Methods
4. Results
4.1. Studies Characteristics
4.2. Methodologies of Microbiota Determination
4.3. Overall Effects Induced by EEN on Microbial Composition, Diversity and Abundance
4.4. Effects on Specific Bacterial Species or Strains
4.5. EEN Induced Microbiota Changes and Relation to Disease Activity and Remission
4.6. Effects on Metabolic Pathways
5. Discussion
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Orel, R.; Kamhi Trop, T. Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease. World J. Gastroenterol. 2014, 20, 11505–11524. [Google Scholar] [CrossRef] [PubMed]
- Serban, D.E. The gut microbiota in the metagenomics era: Sometimes a friend, sometimes a foe. Roum. Arch. Microbiol. Immunol. 2011, 70, 134–140. [Google Scholar] [PubMed]
- Hold, G.L.; Smith, M.; Grange, C.; Watt, E.R.; El-Omar, E.M.; Mukhopadhya, I. Role of the gut microbiota in inflammatory bowel disease pathogenesis: What have we learnt in the past 10 years? World J. Gastroenterol. 2014, 20, 1192–1210. [Google Scholar] [CrossRef] [PubMed]
- De Cruz, P.; Prideaux, L.; Wagner, J.; Ng, S.C.; McSweeney, C.; Kirkwood, C.; Morrison, M.; Kamm, M.A. Characterization of the gastrointestinal microbiota in health and inflammatory bowel disease. Inflamm. Bowel Dis. 2012, 18, 372–390. [Google Scholar] [CrossRef] [PubMed]
- Serban, D.E. Microbiota in Inflammatory Bowel disease pathogenesis and therapy: Is it all about diet? Nutr. Clin. Pract. 2015, 30, 760–779. [Google Scholar] [CrossRef] [PubMed]
- Gevers, D.; Kugathasan, S.; Denson, L.A.; Vázquez-Baeza, Y.; Van Treuren, W.; Ren, B.; Schwager, E.; Knights, D.; Song, S.J.; Yassour, M.; et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 2014, 15, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Albenberg, L.; Compher, C.; Baldassano, R.; Piccoli, D.; Lewis, J.D.; Wu, G.D. Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology 2015, 148, 1087–1106. [Google Scholar] [CrossRef] [PubMed]
- Penagini, F.; Dilillo, D.; Borsani, B.; Cococcioni, L.; Galli, E.; Bedogni, G.; Zuin, G.; Zuccotti, G.V. Nutrition in Pediatric Inflammatory Bowel Disease: From Etiology to Treatment. A Systematic Review. Nutrients 2016. [Google Scholar] [CrossRef] [PubMed]
- Ruemmele, F.M.; Veres, G.; Kolho, K.L.; Griffiths, A.; Levine, A.; Escher, J.C.; Amil Dias, J.; Barabino, A.; Braegger, C.P.; Bronsky, J.; et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J. Crohns Colitis 2014, 8, 1179–1207. [Google Scholar] [CrossRef] [PubMed]
- Grover, Z.; Muir, R.; Lewindon, P. Exclusive enteral nutrition induces early clinical, mucosal and transmural remission in paediatric Crohn’s disease. J. Gastroenterol. 2014, 49, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, O.; Cordischi, L.; Cirulli, M.; Paganelli, M.; Labalestra, V.; Uccini, S.; Russo, P.M.; Cucchiara, S. Polymeric diet alone versus corticosteroids in the treatment of active pediatric Crohn’s disease: A randomized controlled open-label trial. Clin. Gastroenterol. Hepatol. 2006, 4, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Berni Canani, R.; Terrin, G.; Borrelli, O.; Romano, M.T.; Manguso, F.; Coruzzo, A.; D’Armiento, F.; Romeo, E.F.; Cucchiara, S. Short- and long-term therapeutic efficacy of nutritional therapy and corticosteroids in paediatric Crohn’s disease. Dig. Liver Dis. 2006, 38, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Ludvigsson, J.F.; Krantz, M.; Bodin, L.; Stenhammar, L.; Lindquist, B. Elemental versus polymeric enteral nutrition in paediatric Crohn’s disease: A multicentre randomized controlled trial. Acta Paediatr. 2004, 93, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Brown, S.; Kirkwood, B.; Giaffer, M.H. Polymeric versus elemental diet as primary treatment in active Crohn’s disease: A randomized, double-blind trial. Am. J. Gastroenterol. 2000, 95, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Rubio, A.; Pigneur, B.; Garnier-Lengline, H.; Talbotec, C.; Schmitz, J.; Canioni, D.; Goulet, O.; Ruemmele, F.M. The efficacy of exclusive nutritional therapy in paediatric Crohn’s disease, comparing fractionated oral vs. continuous enteral feeding. Aliment. Pharmacol. Ther. 2011, 33, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Ruemmele, F.M.; Pigneur, B.; Garnier-Lengliné, H. Enteral nutrition as treatment option for Crohn’s disease: In kids only? Nestlé Nutr. Inst. Workshop Ser. 2014, 79, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [Green Version]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Kellermayer, R. Associations of therapeutic enteral nutrition. Nutrients 2014, 21, 5298–5311. [Google Scholar] [CrossRef] [PubMed]
- Lagier, J.C.; Hugon, P.; Khelaifia, S.; Fournier, P.E.; La Scola, B.; Raoult, D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin. Microbiol. Rev. 2015, 28, 237–264. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.S.B.; Matias Rodrigues, J.F.; von Mering, C. Ecological consistency of SSU rRNA-based operational taxonomic units at a global scale. PLoS Comput. Biol. 2014, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharpton, T.J. An introduction to the analysis of shotgun metagenomic data. Front. Plant. Sci. 2014. [Google Scholar] [CrossRef] [PubMed]
- Lionetti, P.; Callegari, M.L.; Ferrari, S.; Cavicchi, M.C.; Pozzi, E.; de Martino, M.; Morelli, L. Enteral nutrition and microflora in pediatric Crohn’s disease. J. Parenter. Enter. Nutr. 2005, 29, S173–S175. [Google Scholar] [CrossRef] [PubMed]
- Leach, S.T.; Mitchell, H.M.; Eng, W.R.; Zhang, L.; Day, A.S. Sustained modulation of intestinal bacteria by exclusive enteral nutrition used to treat children with Crohn’s disease. Aliment. Pharmacol. Ther. 2008, 28, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Whitehead, R.N.; Griffiths, L.; Dawson, C.; Waring, R.H.; Ramsden, D.B.; Hunter, J.O.; Cole, J.A. Is the abundance of Faecalibacterium prausnitzii relevant to Crohn’s disease? FEMS Microbiol. Lett. 2010, 310, 138–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiga, H.; Kajiura, T.; Shinozaki, J.; Takagi, S.; Kinouchi, Y.; Takahashi, S.; Negoro, K.; Endo, K.; Kakuta, Y.; Suzuki, M.; et al. Changes of faecal microbiota in patients with Crohn’s disease treated with an elemental diet and total parenteral nutrition. Dig. Liver. Dis. 2012, 44, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Tjellstrom, B.; Hogberg, L.; Stenhammar, L.; Magnusson, K.E.; Midtvedt, T.; Norin, E.; Sundqvist, T. Effect of exclusive enteral nutrition on gut microflora function in children with Crohn’s disease. Scand. J. Gastroenterol. 2012, 47, 1454–1459. [Google Scholar] [CrossRef] [PubMed]
- D’Argenio, V.; Precone, V.; Casaburi, G.; Miele, E.; Martinelli, M.; Staiano, A.; Salvatore, F.; Sacchetti, L. An altered gut microbiome profile in a child affected by Crohn’s disease normalized after nutritional therapy. Am. J. Gastroenterol. 2013, 108, 851–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerasimidis, K.; Bertz, M.; Hanske, L.; Junick, J.; Biskou, O.; Aguilera, M.; Garrick, V.; Russell, R.K.; Blaut, M.; McGrogan, P.; et al. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn’s disease during enteral nutrition. Inflamm. Bowel. Dis. 2014, 20, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Quince, C.; Zeeshan Ijaz, U.; Loman, N.; Eren, A.M.; Saulnier, D.; Russell, J.; Haig, S.J.; Calus, S.T.; Quick, J.; Barclay, A.; et al. Extensive modulation of the fecal metagenome in children with Crohn’s disease during Exclusive Enteral Nutrition. Am. J. Gastroenterol. 2015, 110, 1718–1729. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D.; Chen, E.Z.; Baldassano, R.N.; Otley, A.R.; Griffiths, A.M.; Lee, D.; Bittinger, K.; Bailey, A.; Friedman, E.S.; Hoffmann, C.; et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe 2015, 18, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Kaakoush, N.O.; Day, A.S.; Leach, S.T.; Lemberg, D.A.; Nielsen, S.; Mitchell, H.M. Effect of exclusive enteral nutrition on the microbiota of children with newly diagnosed Crohn’s disease. Clin. Transl. Gastroenterol. 2015, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Schwerd, T.; Frivolt, K.; Clavel, T.; Lagkouvardos, I.; Katona, G.; Mayr, D.; Uhlig, H.H.; Haller, D.; Koletzko, S.; Bufler, P. Exclusive enteral nutrition in active pediatric Crohn disease: Effects on intestinal microbiota and immune regulation. J. Allergy Clin. Immunol. 2016, 138, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Guinet-Charpentier, C.; Lepage, P.; Morali, A.; Chamaillard, M.; Peyrin-Biroulet, L. Effects of enteral polymeric diet on gut microbiota in children with Crohn’s disease. Gut 2017, 66, 194–195. [Google Scholar] [CrossRef] [PubMed]
- Dunn, K.A.; Moore-Connors, J.; MacIntyre, B.; Stadnyk, A.; Thomas, N.A.; Noble, A.; Mahdi, G.; Rashid, M.; Otley, A.R.; Bielawski, J.P.; et al. The gut microbiome of pediatric Crohn’s disease patients differs from healthy controls in genes that can influence the balance between a healthy and dysregulated immune response. Inflamm. Bowel Dis. 2016, 22, 2607–2618. [Google Scholar] [CrossRef] [PubMed]
- Dunn, K.A.; Moore-Connors, J.; MacIntyre, B.; Stadnyk, A.W.; Thomas, N.A.; Noble, A.; Mahdi, G.; Rashid, M.; Otley, A.R.; Bielawski, J.P.; et al. Early changes in microbial community structure are associated with sustained remission after nutritional treatment of pediatric Crohn’s disease. Inflamm. Bowel Dis. 2016, 22, 2853–2862. [Google Scholar] [CrossRef] [PubMed]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.J.; Blugeon, S.; Bridonneau, C.; Furet, J.P.; Corthier, G.; et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef] [PubMed]
- Sokol, H.; Seksik, P.; Furet, J.P.; Firmesse, O.; Nion-Larmurier, I.; Beaugerie, L.; Cosnes, J.; Corthier, G.; Marteau, P.; Doré, J. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 2009, 15, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- McNeil, N.I. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 1984, 39, 338–342. [Google Scholar] [PubMed]
- Vinolo, M.A.R.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of Inflammation by Short Chain Fatty Acids. Nutrients 2011, 3, 858–876. [Google Scholar] [CrossRef] [PubMed]
- Elson, C.O.; Sartor, R.B.; Tennyson, G.S.; Riddell, R.H. Experimental models of Inflammatory bowel disease. Gastroenterology 1995, 109, 1344–1367. [Google Scholar] [CrossRef]
- Fabia, R.; Willén, R.; Ar’Rajab, A.; Andersson, R.; Ahrén, B.; Bengmark, S. Acetic acid-induced colitis in the rat: A reproducible experimental model for acute ulcerative colitis. Eur. Surg. Res. 1992, 24, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Slezak, K.; Hanske, L.; Loh, G.; Blaut, M. Increased bacterial putrescine has no impact on gut morphology and physiology in gnotobiotic adolescent mice. Benef. Microbes 2013, 4, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Stearns, J.C.; Lynch, M.D.; Senadheera, D.B.; Tenenbaum, H.C.; Goldberg, M.B.; Cvitkovitch, D.G.; Croitoru, K.; Moreno-Hagelsieb, G.; Neufeld, J.D. Bacterial biogeography of the human digestive tract. Sci. Rep. 2011. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, A.; Lennon, G.; O’Sullivan, O.; Docherty, N.; Balfe, A.; Maguire, A.; Mulcahy, H.E.; Doherty, G.; O’Donoghue, D.; Hyland, J.; et al. Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut 2015, 64, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Dethlefsen, L.; Relman, D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA 2011, 108, 4554–4561. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Xiao, L.; Liu, S.; Liu, X.; Luo, Y.; Ji, Q.; Yang, P.; Liu, Z. Exploration of the effect of probiotics supplementation on intestinal microbiota of food allergic mice. Am. J. Transl. Res. 2017, 9, 376–385. [Google Scholar] [PubMed]
- Shobar, R.M.; Velineni, S.; Keshavarzian, A.; Swanson, G.; DeMeo, M.T.; Melson, J.E.; Losurdo, J.; Engen, P.A.; Sun, Y.; Koenig, L.; Mutlu, E.A. The Effects of Bowel Preparation on Microbiota-Related Metrics Differ in Health and in Inflammatory Bowel Disease and for the Mucosal and Luminal Microbiota Compartments. Clin. Transl. Gastroenterol. 2016, 7, e143. [Google Scholar] [CrossRef] [PubMed]
- Kajiura, T.; Takeda, T.; Sakata, S.; Sakamoto, M.; Hashimoto, M.; Suzuki, H.; Suzuki, M.; Benno, Y. Change of intestinal microbiota with elemental diet and its impact on therapeutic effects in a murine model of chronic colitis. Dig. Dis. Sci. 2009, 54, 1892–1900. [Google Scholar] [CrossRef] [PubMed]
- Whelan, K.; Judd, P.A.; Preedy, V.R.; Simmering, R.; Jann, A.; Taylor, M.A. Fructooligosaccharides and fiber partially prevent the alterations in fecal microbiota and short-chain fatty acid concentrations caused by standard enteral formula in healthy humans. J. Nutr. 2005, 135, 1896–1902. [Google Scholar] [PubMed]
- Harvey, R.B.; Andrews, K.; Droleskey, R.E.; Kansagra, K.V.; Stoll, B.; Burrin, D.G.; Sheffield, C.L.; Anderson, R.C.; Nisbet, D.J. Qualitative and quantitative comparison of gut bacterial colonization in enterally and parenterally fed neonatal pigs. Curr. Issues Intest. Microbiol. 2006, 7, 61–64. [Google Scholar] [PubMed]
- Stephen, A.M.; Wiggins, H.S.; Cummings, J.H. Effect of changing transit time on colonic microbial metabolism in man. Gut 1987, 28, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Nagalingam, N.A.; Lynch, S.V. Role of the microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 2012, 18, 968–984. [Google Scholar] [CrossRef] [PubMed]
- Frank, D.N.; Robertson, C.E.; Hamm, C.M.; Kpadeh, Z.; Zhang, T.; Chen, H.; Zhu, W.; Sartor, R.B.; Boedeker, E.C.; Harpaz, N.; et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 2011, 17, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Sartor, R.B. The intestinal microbiota in inflammatory bowel diseases. Nestle Nutr. Inst. Workshop Ser. 2014, 79, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Cuív, P.Ó.; Begun, J.; Keely, S.; Lewindon, P.J.; Morrison, M. Towards an integrated understanding of the therapeutic utility of exclusive enteral nutrition in the treatment of Crohn’s disease. Food Funct. 2016, 7, 1741–1751. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Sitaraman, S.V.; Babbin, B.A.; Gerner-Smidt, P.; Ribot, E.M.; Garrett, N.; Alpern, J.A.; Akyildiz, A.; Theiss, A.L.; Nusrat, A.; Klapproth, J.M. Invasive Escherichia coli are a feature of Crohn’s disease. Lab. Investig. 2007, 87, 1042–1054. [Google Scholar] [CrossRef] [PubMed]
- Rolhion, N.; Darfeuille-Michaud, A. Adherent-invasive Escherichia coli in inflammatory bowel disease. Inflamm. Bowel Dis. 2007, 13, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Medina, M.; Aldeguer, X.; Lopez-Siles, M.; González-Huix, F.; López-Oliu, C.; Dahbi, G.; Blanco, J.E.; Blanco, J.; Garcia-Gil, L.J.; Darfeuille-Michaud, A. Molecular diversity of Escherichia coli in the human gut: New ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn’s disease. Inflamm. Bowel Dis. 2009, 15, 872–878. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Type of Study | Groups of Subjects (Number, Characteristics) | Exclusion Criteria (ATBs, Probiotics, Other Drugs) | Biological Sample (Type and Number of Samples) | Type of Formula and Duration of Treatment | Microbiota Analysis | Outcomes |
---|---|---|---|---|---|---|---|
Lionetti P et al., 2005 [23] | Prospective, controlled | nine active Crohn’s Disease (CD) adolescents (nine to 17 years), five controls (10–15 years) | Antibiotics or colon cleansing in the previous week | Fecal samples, multiple samples during the exclusive enteral nutrition (EEN) course and during partial enteral nutrition (total number not indicated) | Polymeric formula enriched with TGF-β2 for eight weeks | Temperature gradient gel electrophoresis (TGGE) analysis of 16S rRNA | TGGE profile varied greatly between subjects and required time to achieve stability of the band profile in each subject during exclusive and partial EN (no statistical analysis available). |
Leach ST et al., 2008 [24] | Prospective, controlled | six CD children at diagnosis, mean age 10.2 years (2.5–13.5); seven controls, mean age 5.9 years (2.1–12) | Antibiotics or antiinflammatory agents in the previous four weeks. Severe CD requiring surgery or intensive medical treatment. | Fecal samples collected prior to endoscopy and at one, two, four, six, eight, 16 and 26 weeks after the start of EEN | eight weeks of EEN (formula not specified) | PCR amplification of the bacterial 16S rRNA gene followed by denaturating gel electrophoresis (DGGE) | CD children had a greater degree of change in the bacterial composition during EEN compared to controls on a normal diet (p < 0.05). The greatest change was seen in Ruminococcaceae (p < 0.001) and the least in the Bacteroides-Prevotella group (p < 0.01). |
Jia W et al., 2010 [25] | Prospective, controlled | 20 CD, 21 Irritable bowel syndrome (IBS), 14 Ulcerative colitis (UC), and 18 controls | Not indicated | Fecal samples collected before and after two weeks of EEN treatment | two weeks of elemental formula | PCR amplification of Faecalibacterium prausnitzii DNA (A2-165 and M21/2 subgroup) | Levels of F. prausnitzii A2-165 decreased significantly (p = 0.0046) after treatment compared to baseline and to other groups. Levels of F. prausnitzii M21/2 decreased without statistical significance (p = 0.61). |
Shiga H et al., 2012 [26] | Prospective, controlled | 33 active CD (median age: 30 years, 15–47), 17 controls | No antibiotic or probiotics during the study period. | Fecal samples at baseline, after 38 days for the EEN group, 35 days for the total parenteral nutrition (TPN) group, six weeks for the controls. In 12 healthy controls, a second fecal sample was collected after six weeks. | eight patients: eight weeks of elemental formula; nine patients on total parenteral nutrition | Terminal restriction fragment length polymorphism analysis of bacterial 16S rRNA to evaluate the whole microbiota. Specific quantitative PCR to determine predominant bacterial groups. | Number of bacterial species was reduced by EEN in CD (p = 0.672), the ratios of bifidobacteria and Bacteroides fragilis were reduced (p = 0.664 and 0.034, respectively), and Enterococcus was increased (p = 0.788). |
Tjellstrom B et al., 2012 [27] | Prospective controlled | 18 active CD children, median age 13.5 years (10–17); 12 healthy controls, median age 14.5 years (14–15.5) | Not indicated | Fecal samples (eight patients collected at the start and finish of EEN) | six weeks of polymeric formula | Determination of the fecal pattern of short-chain-fatty acids (SCFAs) using gas-liquid chromatogrphy | Concentration of fecal acetic acid was reduced by EEN (p < 0.05), and butyric and valeric acids were increased (p = ns). 79% of CD showed response to EEN, showing a fecal pattern of SCFAs similar to healthy children. |
D’Argenio et al., 2013 [28] | Case report, controlled | one active CD patient (14 years), one control with gut polyp (15 years) | Not indicated | Ileum samples | eight weeks of polymeric formula | 16S rRNA next-generation sequencing | Bacterial diversity was reduced in CD patient at baseline compared to control and increased after EEN (p < 0.05). Composition changed after therapy (Bacteroides increased and Proteobacteria decreased) reaching a distribution similar to the healthy control (statistical significance not indicated). |
Gerasimidis K et al., 2014 [29] | Prospective, controlled | 15 active CD children (median age: 12.7 years), 11 newly diagnosed and four started a second EEN course; 21 healthy controls (median age: 9.9 years) | Antibiotics in the previous 3 months | 68 fecal samples from CD subjects (baseline, 15 to 30 days on EEN, at EEN end, and two to four months after EEN). 40 samples from controls (two samples for each) | eight weeks of polymeric formula TGF-β2 enriched | 16S rRNA amplification and quantification with real-time quantitative PCR. Measurement of SCFAs by gas cromatography. Measurement of D and L-lactate by enzymatic commercial assay. Measurement of fecal sulfide by a spetrophometric method. | After EEN, the global bacterial diversity abundance decreased (p = 0.037) and returned to normal on a free diet (p = 0.041). During EEN, concentrations of F. prausnitzii (p = 0.002) and Bifidobacterium genus decreased (p = 0.053) and re-increased on a normal diet (p = 0.006 for Faecalibacterium, p = ns for Bacteroides/Prevotella), but remained lower compared to healthy subjects. |
Quince C et al., 2015 [30] | Prospective controlled | 23 active CD (age: 6.9–14.7 years) 21 controls (age: 4.6–16.9 years) | Antibiotics in the previous three months | 78 fecal samples from CD patients (baseline, during EEN: 16th to 32th and 54th day and 63 days after EEN) 39 fecal samples from controls (collected at least two months apart) | eight weeks of polymeric formula TGF-β2 enriched | Sequencing of 16S rRNA gene performed on the MiSeq platform. Shotgun metagenome sequencing was performed for 69 samples with the Nextera XT Prep Kit and the Illumina dual barcoding Nextera XT Index kit. Shotgun metagenomics reads were used also for assignment to functional models through alignment to Kyoto Encyclopedia of Genes and Genomes (KEGG). | A decrease in species was evident after 15 days of EEN (p = 0.037). Diversity returned to baseline when patients were back to a normal diet but remained lower (at any time) compared to controls. At the community level, EEN made the CD microbial even more dissimilar to that of healthy controls. 34 genera significantly were reduced over the EEN course (including F. prausnitzii); only Lactococcus increased with EEN. |
Lewis JD et al., 2015 [31] | Prospective controlled | 90 active CD children (age: 10.1–15.5 years): 52 anti-TNF 21 EEN, 16 PEN 26 Healthy controls (age: 7.9–19.9 years, data collected from a previous study) | Probiotics in the previous two weeks, children with an ostomy | 366 Fecal samples collected at baseline, one to four and eight weeks into therapy | EEN: 90% of calories from a not specified dietary formula; PEN: 53% of calories from formula | Bacterial DNA sequenced using the Illumina HiSeq method. | Microbiota composition changed within one week of EEN, moving farther from the centroid of healthy controls (overall p = 0.05, among responders p = 0.02, among non responders p = 0.14). Abundance of six genera changed after one week (p = 0.05). An opposite pattern was seen in anti-TNF treated patients (microbiota composition became similar to healthy controls in one week) and in PEN treated patients. At the end of the eight weeks both EEN and anti-TNF responders had a microbiota composition similar to healthy controls. |
Kaakoush NO et al., 2015 [32] | Prospective, controlled | five newly diagnosed CD children, five healthy controls | Antibiotics or antinflammatory agents in the previous four weeks | 39 fecal samples collected at baseline (at diagnosis, prior to bowel cleansing for endscopy) and then at one, two, four, eight, 12, 16, and 26 weeks after diagnosis. | eight to 12 weeks of a polymeric formula | 16S rRNA gene and whole-genome high throughout sequencing | The number of OTUs decreased during EEN in responder patients (no statistical analysis indicated). |
Schwerd T et al., 2016 [33] | Prospective | 15 CD children, 12 newly diagnosed (mean age: 13.5 years, SD: 2.2 years) | Not indicated | 24 fecal samples collected from eight CD subjects at baseline, week two, and at cessation of EEN | Polymeric formula TGF-β2 enriched in 14 patients, elemental formula in one patient | High-throughput 16S rRNA gene sequencing | Altered fecal bacteria composition was seen after two weeks of EEN (bacterial profiles clustered from pre-EEN). EEN decreased the abundance of phylum Bacteroidetes (p = 0.039) and increased the abundance of Firmicutes (p = 0.027). |
Guinet-Charpentier C et al., 2016 [34] | Prospective, controlled | 34 CD children (median age 14.8 years, range 6.5–21): four children on EEN, eight on PEN, 22 on other treatments | Not indicated | Fecal samples collected at baseline, two weeks, and six weeks after EEN (three patients) | Polymeric formula TGF-β2 enriched | MiSeq sequencing of the 16S rRNA gene | A decrease in genera from the Proteobacteria phylum (particularly Sutterella) was observed (p < 0.05), whereas Alistipes (p < 0.05) and Bifidobacterium (p < 0.1) increased during EEN. |
Dunn KA et al., 2016 [35] | Prospective, controlled | 10 children with active CD (age 10 to 16 years) on EEN for 12 weeks; five controls (CD relatives) on normal diet | Use of other medications (including antibiotics) was not an exclusion criteria | 19 Fecal samples from CD patients collected at baseline (at least 48 h after bowel preparation) and week 12 | 12 weeks of EEN by NG tube | High-throughput sequencing of the 16S rRNA gene targeting the V6-V8 region performed on the Illumina MiSeq platform | Species diversity (Chao-1 index) decreased among sustained remission (SR) samples, whereas it increased among the non-SR samples over the course. Taxonomic composition changed over the course of EEN treatment (no specific statistic measure is indicated). |
Dunn KA et al., 2016 [36] | Prospective, controlled | 15 CD patients (aged 10–16 years), five controls (age nine to 14 years, relatives of CD patients) | Use of other medications (including antibiotics) was not an exclusion criteria | 33 CD patient samples (15 at baseline and 18 at various times at or after the end of EEN treatment (week 12). Five samples from healthy controls | 12 weeks of polymeric formula | Metagenomic data obtained by next-generation sequencing (NGS) (Illumina MiSeq). Sequences were compared to 28 complete microbial genomes annotated with KEGG. | Eight KEGG pathways differed significantly between baseline CD patients and controls (p < 0.05). SR patients had greater similarity to controls than NSR patients in all cases. |
Increased during EEN | Decreased during EEN |
---|---|
Firmicutes | |
Relative abundance of Firmicutes (p = 0.227) [33] | Levels of A2-165 Faecalibacterium prausnitzii (p = 0.0046) [25] |
Levels of M21/2 Faecalibacterium prausnitzii (p = 0.61) [25] | |
Concentration (log10 16S Ribosomal RNA Gene Copy Number/g of dry stool) of Faecalibacterium prausnitzii (p = 0.002) [29] | |
Relative abundance of Faecalibacterium (p = 0.068) [30] | |
Relative abundance of Lactococcus (p = 0.017) [30] | Relative abundance of Dialister (p = 0.04) [30] |
Relative abundance of Christensenellaceae (p = 0.0237) [33] | Relative abundance of Ruminococcacae (p = 0.04) [30] |
Relative abundance of Subdoligranulum (p = 0.023) [30] | |
Bacteroidetes | |
Concentration of Bacteroides (n = 1, p not reported) [28] | Concentration (log 10 cells per g of faeces) of Bacteroides fragilis (p = 0.034) [26] |
Abundance of Alistipes (p < 0.05) [34] | Concentration of Bacteroides/Prevotella (p = 0.053) [29] Concentration of Prevotella (p = 0.27) [30] |
Relative abundance of Bacteroidetes (p = 0.039) [33] | |
Proteobacteria | |
Concentration of Proteobacteria (n = 1, p not reported) [28] | |
Concentration of Sutterella (p < 0.05) [34] | |
Actinobacteria | |
Abundance of Bifidobacterium (p < 0.1) [34] | Abundance of Bifidobacteriaceae genus (p = 0.005) [30] |
Concentration of Bifidobacteria (p = 0.003) [29] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatti, S.; Galeazzi, T.; Franceschini, E.; Annibali, R.; Albano, V.; Verma, A.K.; De Angelis, M.; Lionetti, M.E.; Catassi, C. Effects of the Exclusive Enteral Nutrition on the Microbiota Profile of Patients with Crohn’s Disease: A Systematic Review. Nutrients 2017, 9, 832. https://doi.org/10.3390/nu9080832
Gatti S, Galeazzi T, Franceschini E, Annibali R, Albano V, Verma AK, De Angelis M, Lionetti ME, Catassi C. Effects of the Exclusive Enteral Nutrition on the Microbiota Profile of Patients with Crohn’s Disease: A Systematic Review. Nutrients. 2017; 9(8):832. https://doi.org/10.3390/nu9080832
Chicago/Turabian StyleGatti, Simona, Tiziana Galeazzi, Elisa Franceschini, Roberta Annibali, Veronica Albano, Anil Kumar Verma, Maria De Angelis, Maria Elena Lionetti, and Carlo Catassi. 2017. "Effects of the Exclusive Enteral Nutrition on the Microbiota Profile of Patients with Crohn’s Disease: A Systematic Review" Nutrients 9, no. 8: 832. https://doi.org/10.3390/nu9080832
APA StyleGatti, S., Galeazzi, T., Franceschini, E., Annibali, R., Albano, V., Verma, A. K., De Angelis, M., Lionetti, M. E., & Catassi, C. (2017). Effects of the Exclusive Enteral Nutrition on the Microbiota Profile of Patients with Crohn’s Disease: A Systematic Review. Nutrients, 9(8), 832. https://doi.org/10.3390/nu9080832